File size: 7,594 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import datetime
import pathlib
from typing import Optional

import torch
from diffusers.utils import is_accelerate_available

from ..logging import get_logger
from ..utils import get_device_info
from .base import BaseParallelBackend
from .utils import apply_ddp_accelerate


if not is_accelerate_available():
    raise ImportError(
        "Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
    )

from accelerate import Accelerator
from accelerate.data_loader import DataLoader
from accelerate.utils import (
    DataLoaderConfiguration,
    DistributedDataParallelKwargs,
    InitProcessGroupKwargs,
    ProjectConfiguration,
)


logger = get_logger()
_device_type, _device_module = get_device_info()


class AccelerateParallelBackend(BaseParallelBackend):
    def __init__(
        self,
        world_size: int,
        pp_degree: int = 1,
        dp_degree: int = 1,
        dp_shards: int = -1,
        cp_degree: int = 1,
        tp_degree: int = 1,
        backend: str = "nccl",
        timeout: int = 180,
        logging_dir: Optional[str] = None,
        output_dir: Optional[str] = None,
        gradient_accumulation_steps: Optional[int] = None,
    ) -> None:
        super().__init__()

        self._world_size = world_size
        self._pp_degree = pp_degree
        self._dp_degree = dp_degree
        self._dp_shards = dp_shards
        self._cp_degree = cp_degree
        self._tp_degree = tp_degree
        self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
        self._logging_dir = (
            self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
        )
        self._backend = backend
        self._timeout = timeout
        self._gradient_accumulation_steps = gradient_accumulation_steps

        if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
            raise ValueError(
                "AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
            )
        if dp_degree != world_size:
            raise ValueError("Data parallel degree must be equal to world size.")

        self._accelerator: Accelerator = None
        self._mesh: torch.distributed.DeviceMesh = None

    def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
        project_config = None
        ddp_kwargs = None
        init_process_group_kwargs = None
        if self._accelerator is None:
            project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
            ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
            dataloader_config = DataLoaderConfiguration(
                split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
            )
            init_process_group_kwargs = InitProcessGroupKwargs(
                backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
            )
        self._accelerator, model = apply_ddp_accelerate(
            model,
            project_config,
            ddp_kwargs,
            init_process_group_kwargs,
            dataloader_config,
            self._gradient_accumulation_steps,
            accelerator=self._accelerator,
        )
        logger.debug("Applied AccelerateParallel::apply_ddp to model.")
        return model

    def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
        logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
        return dataset

    def prepare_dataloader(
        self,
        dataset: torch.utils.data.IterableDataset,
        batch_size: int = 1,
        num_workers: int = 0,
        pin_memory: bool = False,
    ) -> DataLoader:
        dataloader = torch.utils.data.DataLoader(
            dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
        )
        dataloader = self._accelerator.prepare_data_loader(dataloader)
        logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
        return dataloader

    def prepare_optimizer(self, optimizer, lr_scheduler):
        optimizer = self._accelerator.prepare_optimizer(optimizer)
        lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
        return optimizer, lr_scheduler

    def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
        def _get_mesh():
            if name is None:
                return self._mesh
            try:
                return self._mesh[name]
            except (KeyError, RuntimeError):
                return self._mesh

        if self._mesh is not None:
            return _get_mesh()

        mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
        mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
        names = [x[0] for x in mesh_list]
        degrees = [x[1] for x in mesh_list]
        mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)

        dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []

        if self.data_replication_enabled:
            dp_mesh_names.append("dp_replicate")
            dp_cp_mesh_names.append("dp_replicate")
        if self.data_sharding_enabled:
            dp_mesh_names.append("dp_shard")
            dp_cp_mesh_names.append("dp_shard")
            dp_shard_cp_mesh_names.append("dp_shard")
        if self.context_parallel_enabled:
            dp_cp_mesh_names.append("cp")
            dp_shard_cp_mesh_names.append("cp")

        if len(dp_mesh_names) > 0:
            mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
        if len(dp_cp_mesh_names) > 0:
            mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
        if len(dp_shard_cp_mesh_names) > 0:
            mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")

        logger.debug(f"Device mesh: {mesh}")
        self._mesh = mesh
        return _get_mesh()

    @property
    def world_size(self):
        return self._accelerator.num_processes

    @property
    def rank(self):
        return self._accelerator.process_index

    @property
    def local_rank(self):
        return self._accelerator.local_process_index

    @property
    def is_main_process(self):
        r"""Returns `True` if the current process is the main process on the master node."""
        return self._accelerator.is_main_process

    @property
    def is_local_main_process(self):
        r"""Returns `True` if the current process is the main process on local node."""
        return self._accelerator.is_local_main_process

    @property
    def device(self):
        return self._accelerator.device

    def wait_for_everyone(self):
        self._accelerator.wait_for_everyone()

    def destroy(self):
        self._accelerator.end_training()

    @property
    def pipeline_parallel_enabled(self):
        return self._pp_degree > 1

    @property
    def data_parallel_enabled(self):
        return self._dp_degree > 1 or self._dp_shards > 1

    @property
    def data_replication_enabled(self):
        return self._dp_degree > 1

    @property
    def data_sharding_enabled(self):
        return self._dp_shards > 1

    @property
    def context_parallel_enabled(self):
        return self._cp_degree > 1

    @property
    def tensor_parallel_enabled(self):
        return self._tp_degree > 1