File size: 7,537 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import functools
import pathlib
import shutil
import time
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union

import torch
import torch.distributed.checkpoint
from torch.distributed.checkpoint.state_dict import (
    StateDictOptions,
    get_model_state_dict,
    set_model_state_dict,
)
from torch.distributed.checkpoint.stateful import Stateful

from ..logging import get_logger


if TYPE_CHECKING:
    from .. import optimizer


logger = get_logger()


class ModelWrapper(Stateful):
    def __init__(self, model: Union[torch.nn.Module, List[torch.nn.Module]]) -> None:
        self.model = [model] if isinstance(model, torch.nn.Module) else model

    def state_dict(self) -> Dict[str, Any]:
        return {k: v for sd in map(get_model_state_dict, self.model) for k, v in sd.items()}

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        func = functools.partial(
            set_model_state_dict,
            model_state_dict=state_dict,
            options=StateDictOptions(strict=False),
        )
        list(map(func, self.model))


class PTDCheckpointManager:
    def __init__(
        self,
        dataloader: torch.utils.data.DataLoader,
        model_parts: List[torch.nn.Module],
        optimizers: "optimizer.OptimizerWrapper",
        schedulers: "optimizer.SchedulerWrapper",
        states: Dict[str, Any],
        checkpointing_steps: int,
        checkpointing_limit: int,
        output_dir: str,
        enable: bool = True,
        _callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
        _prefix: str = "finetrainers_step",
    ) -> None:
        self.states = states
        self.states.update(
            {
                "model": ModelWrapper(model_parts),
                "optimizer": optimizers,
                "dataloader": dataloader,
            }
        )
        self.states.update(schedulers.get_lr_scheduler_state())

        self.checkpointing_steps = checkpointing_steps
        self.checkpointing_limit = checkpointing_limit
        self.output_dir = pathlib.Path(output_dir)
        self.enable = enable
        self._callback_fn = _callback_fn
        self._prefix = _prefix

        logger.info(f"Checkpointing enabled. Checkpoints will be stored in '{self.output_dir}'")

    def save(self, step: int = -1, force: bool = False, *, _device: torch.device, _is_main_process: bool) -> str:
        if not self._should_checkpoint(step, force):
            return None

        checkpoint_dir = self._get_checkpoint_dir(step)
        begin_time = time.monotonic()
        torch.distributed.checkpoint.save(self.states, checkpoint_id=checkpoint_dir.as_posix())
        end_time = time.monotonic()
        logger.info(
            f"Saved checkpoint in {end_time - begin_time:.2f} seconds at step {step}. Directory: {checkpoint_dir}"
        )
        self._purge_stale_checkpoints()

        state_dicts = [
            gather_state_dict_on_cpu_rank0(model, _device, is_main_process=_is_main_process)
            for model in self.states["model"].model
        ]
        if self._callback_fn is not None:
            list(map(self._callback_fn, state_dicts))

        return checkpoint_dir.as_posix()

    def load(self, step: int = -1) -> bool:
        if not self.enable:
            return False
        if not self.output_dir.exists():
            return False
        if step != -1 and not self._get_checkpoint_dir(step).exists():
            return False

        if step == -1:
            latest_checkpoint_dir = self._find_latest_checkpoint_dir()
            if latest_checkpoint_dir is None:
                return False
            step = int(latest_checkpoint_dir.name.split("_")[-1])

        checkpoint_dir = self._get_checkpoint_dir(step)
        logger.info(f"Loading checkpoint from '{checkpoint_dir}' at step {step}")

        # For step 0, optimizers/schedulers are not available as they are created during training after first step
        states = {"model": self.states["model"]} if step == 0 else self.states

        # See bug: https://github.com/pytorch/pytorch/pull/138575
        original_stateful_states = {k: v for k, v in states.items() if isinstance(v, Stateful)}
        begin_time = time.monotonic()
        torch.distributed.checkpoint.load(states, checkpoint_id=checkpoint_dir.as_posix())
        end_time = time.monotonic()
        logger.info(f"Loaded checkpoint in {end_time - begin_time:.2f} seconds.")

        # bugfix from above: restore the original stateful objects, whose states were already updated in-place by dcp.load()
        states.update(original_stateful_states)

        return True

    def _should_checkpoint(self, step: int, force: bool) -> bool:
        if not self.enable:
            return False

        if not force:
            if step % self.checkpointing_steps != 0:
                return False

        return True

    def _get_checkpoint_dir(self, step: int) -> pathlib.Path:
        return self.output_dir / f"{self._prefix}_{step}"

    def _find_latest_checkpoint_dir(self) -> Union[pathlib.Path, None]:
        checkpoints = sorted(self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]))
        return checkpoints[-1] if len(checkpoints) > 0 else None

    def _purge_stale_checkpoints(self) -> None:
        if self.checkpointing_limit is None or self.checkpointing_limit <= 0:
            return
        checkpoints = sorted(
            self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]), reverse=True
        )
        for checkpoint in checkpoints[self.checkpointing_limit :]:
            logger.info(f"Deleting stale checkpoint: {checkpoint}")
            shutil.rmtree(checkpoint, ignore_errors=True)


def gather_state_dict_on_cpu_rank0(
    model, device: Optional[torch.device] = None, *, is_main_process: bool
) -> Dict[str, Any]:
    cpu_state_dict = {}
    sharded_sd = model.state_dict()
    for param_name, param in sharded_sd.items():
        if param.is_cpu:
            # Move back to device if offloaded to CPU
            param = param.to(device)
        if hasattr(param, "_local_tensor"):
            # Gather DTensor
            param = param.full_tensor()
        if is_main_process:
            cpu_state_dict[param_name] = param.cpu()
        torch.distributed.barrier()
    return cpu_state_dict


# # Copied from pytorch (torch/distributed/checkpoint/format_utils.py) to support callbacks to modify state_dict
# def dcp_to_torch_save(
#     dcp_checkpoint_dir: Union[str, os.PathLike],
#     torch_save_path: Union[str, os.PathLike],
#     callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
# ):
#     """
#     Given a directory containing a DCP checkpoint, this function will convert it into a
#     Torch save file.

#     Args:
#         dcp_checkpoint_dir: Directory containing the DCP checkpoint.
#         torch_save_path: Filename to store the converted Torch save file.
#         callback_fn: Optional callback function that takes the state_dict as input and returns a modified state_dict.

#     .. warning::
#         To avoid OOM, it's recommended to only run this function on a single rank.
#     """
#     state_dict = {}
#     _load_state_dict(
#         state_dict,
#         storage_reader=FileSystemReader(dcp_checkpoint_dir),
#         planner=_EmptyStateDictLoadPlanner(),
#         no_dist=True,
#     )
#     if callback_fn is not None:
#         state_dict = callback_fn(state_dict)
#     torch.save(state_dict, torch_save_path)