Spaces:
Running
Running
File size: 70,948 Bytes
c8cb798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
[](#cogvideox)CogVideoX
=======================

[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://arxiv.org/abs/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
The abstract from the paper is:
_We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at [https://github.com/THUDM/CogVideo](https://github.com/THUDM/CogVideo)._
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
checkpoints
recommended inference dtype
[`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b)
torch.float16
[`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b)
torch.bfloat16
[`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b)
torch.bfloat16
There are two official CogVideoX checkpoints available for image-to-video.
checkpoints
recommended inference dtype
[`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V)
torch.bfloat16
[`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V)
torch.bfloat16
For the CogVideoX 1.5 series:
* Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
* Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
* Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
checkpoints
recommended inference dtype
[`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose)
torch.bfloat16
[`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose)
torch.bfloat16
[](#inference)Inference
-----------------------
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
First, load the pipeline:
Copied
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export\_to\_video,load\_image
pipe = CogVideoXPipeline.from\_pretrained("THUDM/CogVideoX-5b").to("cuda") \# or "THUDM/CogVideoX-2b"
If you are using the image-to-video pipeline, load it as follows:
Copied
pipe = CogVideoXImageToVideoPipeline.from\_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
Copied
pipe.transformer.to(memory\_format=torch.channels\_last)
Compile the components and run inference:
Copied
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
\# CogVideoX works well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance\_scale=6, num\_inference\_steps=50).frames\[0\]
The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
Copied
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
### [](#memory-optimization)Memory optimization
CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
* `pipe.enable_model_cpu_offload()`:
* Without enabling cpu offloading, memory usage is `33 GB`
* With enabling cpu offloading, memory usage is `19 GB`
* `pipe.enable_sequential_cpu_offload()`:
* Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
* When enabled, memory usage is under `4 GB`
* `pipe.vae.enable_tiling()`:
* With enabling cpu offloading and tiling, memory usage is `11 GB`
* `pipe.vae.enable_slicing()`
[](#quantization)Quantization
-----------------------------
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [CogVideoXPipeline](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.CogVideoXPipeline) for inference with bitsandbytes.
Copied
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export\_to\_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant\_config = BitsAndBytesConfig(load\_in\_8bit=True)
text\_encoder\_8bit = T5EncoderModel.from\_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text\_encoder",
quantization\_config=quant\_config,
torch\_dtype=torch.float16,
)
quant\_config = DiffusersBitsAndBytesConfig(load\_in\_8bit=True)
transformer\_8bit = CogVideoXTransformer3DModel.from\_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization\_config=quant\_config,
torch\_dtype=torch.float16,
)
pipeline = CogVideoXPipeline.from\_pretrained(
"THUDM/CogVideoX-2b",
text\_encoder=text\_encoder\_8bit,
transformer=transformer\_8bit,
torch\_dtype=torch.float16,
device\_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance\_scale=6, num\_inference\_steps=50).frames\[0\]
export\_to\_video(video, "ship.mp4", fps=8)
[](#diffusers.CogVideoXPipeline)CogVideoXPipeline
-------------------------------------------------
### class diffusers.CogVideoXPipeline
[](#diffusers.CogVideoXPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py#L147)
( tokenizer: T5Tokenizertext\_encoder: T5EncoderModelvae: AutoencoderKLCogVideoXtransformer: CogVideoXTransformer3DModelscheduler: typing.Union\[diffusers.schedulers.scheduling\_ddim\_cogvideox.CogVideoXDDIMScheduler, diffusers.schedulers.scheduling\_dpm\_cogvideox.CogVideoXDPMScheduler\] )
Parameters
* [](#diffusers.CogVideoXPipeline.vae)**vae** ([AutoencoderKL](/docs/diffusers/main/en/api/models/autoencoderkl#diffusers.AutoencoderKL)) β Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
* [](#diffusers.CogVideoXPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1\_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
* [](#diffusers.CogVideoXPipeline.tokenizer)**tokenizer** (`T5Tokenizer`) β Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
* [](#diffusers.CogVideoXPipeline.transformer)**transformer** ([CogVideoXTransformer3DModel](/docs/diffusers/main/en/api/models/cogvideox_transformer3d#diffusers.CogVideoXTransformer3DModel)) β A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
* [](#diffusers.CogVideoXPipeline.scheduler)**scheduler** ([SchedulerMixin](/docs/diffusers/main/en/api/schedulers/overview#diffusers.SchedulerMixin)) β A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
Pipeline for text-to-video generation using CogVideoX.
This model inherits from [DiffusionPipeline](/docs/diffusers/main/en/api/pipelines/overview#diffusers.DiffusionPipeline). Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
#### \_\_call\_\_
[](#diffusers.CogVideoXPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py#L505)
( prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Noneheight: typing.Optional\[int\] = Nonewidth: typing.Optional\[int\] = Nonenum\_frames: typing.Optional\[int\] = Nonenum\_inference\_steps: int = 50timesteps: typing.Optional\[typing.List\[int\]\] = Noneguidance\_scale: float = 6use\_dynamic\_cfg: bool = Falsenum\_videos\_per\_prompt: int = 1eta: float = 0.0generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.FloatTensor\] = Noneprompt\_embeds: typing.Optional\[torch.FloatTensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.FloatTensor\] = Noneoutput\_type: str = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Union\[typing.Callable\[\[int, int, typing.Dict\], NoneType\], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 226 ) β export const metadata = 'undefined';[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
Expand 19 parameters
Parameters
* [](#diffusers.CogVideoXPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.CogVideoXPipeline.__call__.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXPipeline.__call__.height)**height** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.CogVideoXPipeline.__call__.width)**width** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The width in pixels of the generated image. This is set to 720 by default for the best results.
* [](#diffusers.CogVideoXPipeline.__call__.num_frames)**num\_frames** (`int`, defaults to `48`) β Number of frames to generate. Must be divisible by self.vae\_scale\_factor\_temporal. Generated video will contain 1 extra frame because CogVideoX is conditioned with (num\_seconds \* fps + 1) frames where num\_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above.
* [](#diffusers.CogVideoXPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.CogVideoXPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.CogVideoXPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, _optional_, defaults to 7.0) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.CogVideoXPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.CogVideoXPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.CogVideoXPipeline.__call__.latents)**latents** (`torch.FloatTensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.CogVideoXPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.CogVideoXPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput` instead of a plain tuple.
* [](#diffusers.CogVideoXPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.CogVideoXPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.CogVideoXPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.CogVideoXPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int`, defaults to `226`) β Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
Returns
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.CogVideoXPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import CogVideoXPipeline
\>>> from diffusers.utils import export\_to\_video
\>>> \# Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
\>>> pipe = CogVideoXPipeline.from\_pretrained("THUDM/CogVideoX-2b", torch\_dtype=torch.float16).to("cuda")
\>>> prompt = (
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
... "atmosphere of this unique musical performance."
... )
\>>> video = pipe(prompt=prompt, guidance\_scale=6, num\_inference\_steps=50).frames\[0\]
\>>> export\_to\_video(video, "output.mp4", fps=8)
#### encode\_prompt
[](#diffusers.CogVideoXPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py#L244)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 226device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.CogVideoXPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.CogVideoXPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.CogVideoXPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.CogVideoXPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.CogVideoXPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
#### fuse\_qkv\_projections
[](#diffusers.CogVideoXPipeline.fuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py#L428)
( )
Enables fused QKV projections.
#### unfuse\_qkv\_projections
[](#diffusers.CogVideoXPipeline.unfuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py#L433)
( )
Disable QKV projection fusion if enabled.
[](#diffusers.CogVideoXImageToVideoPipeline)CogVideoXImageToVideoPipeline
-------------------------------------------------------------------------
### class diffusers.CogVideoXImageToVideoPipeline
[](#diffusers.CogVideoXImageToVideoPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py#L164)
( tokenizer: T5Tokenizertext\_encoder: T5EncoderModelvae: AutoencoderKLCogVideoXtransformer: CogVideoXTransformer3DModelscheduler: typing.Union\[diffusers.schedulers.scheduling\_ddim\_cogvideox.CogVideoXDDIMScheduler, diffusers.schedulers.scheduling\_dpm\_cogvideox.CogVideoXDPMScheduler\] )
Parameters
* [](#diffusers.CogVideoXImageToVideoPipeline.vae)**vae** ([AutoencoderKL](/docs/diffusers/main/en/api/models/autoencoderkl#diffusers.AutoencoderKL)) β Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
* [](#diffusers.CogVideoXImageToVideoPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1\_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
* [](#diffusers.CogVideoXImageToVideoPipeline.tokenizer)**tokenizer** (`T5Tokenizer`) β Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
* [](#diffusers.CogVideoXImageToVideoPipeline.transformer)**transformer** ([CogVideoXTransformer3DModel](/docs/diffusers/main/en/api/models/cogvideox_transformer3d#diffusers.CogVideoXTransformer3DModel)) β A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
* [](#diffusers.CogVideoXImageToVideoPipeline.scheduler)**scheduler** ([SchedulerMixin](/docs/diffusers/main/en/api/schedulers/overview#diffusers.SchedulerMixin)) β A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
Pipeline for image-to-video generation using CogVideoX.
This model inherits from [DiffusionPipeline](/docs/diffusers/main/en/api/pipelines/overview#diffusers.DiffusionPipeline). Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
#### \_\_call\_\_
[](#diffusers.CogVideoXImageToVideoPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py#L602)
( image: typing.Union\[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List\[PIL.Image.Image\], typing.List\[numpy.ndarray\], typing.List\[torch.Tensor\]\]prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Noneheight: typing.Optional\[int\] = Nonewidth: typing.Optional\[int\] = Nonenum\_frames: int = 49num\_inference\_steps: int = 50timesteps: typing.Optional\[typing.List\[int\]\] = Noneguidance\_scale: float = 6use\_dynamic\_cfg: bool = Falsenum\_videos\_per\_prompt: int = 1eta: float = 0.0generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.FloatTensor\] = Noneprompt\_embeds: typing.Optional\[torch.FloatTensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.FloatTensor\] = Noneoutput\_type: str = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Union\[typing.Callable\[\[int, int, typing.Dict\], NoneType\], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 226 ) β export const metadata = 'undefined';[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
Expand 20 parameters
Parameters
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.image)**image** (`PipelineImageInput`) β The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.height)**height** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.width)**width** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The width in pixels of the generated image. This is set to 720 by default for the best results.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.num_frames)**num\_frames** (`int`, defaults to `48`) β Number of frames to generate. Must be divisible by self.vae\_scale\_factor\_temporal. Generated video will contain 1 extra frame because CogVideoX is conditioned with (num\_seconds \* fps + 1) frames where num\_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, _optional_, defaults to 7.0) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.latents)**latents** (`torch.FloatTensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput` instead of a plain tuple.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.CogVideoXImageToVideoPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int`, defaults to `226`) β Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
Returns
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.CogVideoXImageToVideoPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import CogVideoXImageToVideoPipeline
\>>> from diffusers.utils import export\_to\_video, load\_image
\>>> pipe = CogVideoXImageToVideoPipeline.from\_pretrained("THUDM/CogVideoX-5b-I2V", torch\_dtype=torch.bfloat16)
\>>> pipe.to("cuda")
\>>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
\>>> image = load\_image(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
... )
\>>> video = pipe(image, prompt, use\_dynamic\_cfg=True)
\>>> export\_to\_video(video.frames\[0\], "output.mp4", fps=8)
#### encode\_prompt
[](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py#L267)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 226device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.CogVideoXImageToVideoPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
#### fuse\_qkv\_projections
[](#diffusers.CogVideoXImageToVideoPipeline.fuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py#L523)
( )
Enables fused QKV projections.
#### unfuse\_qkv\_projections
[](#diffusers.CogVideoXImageToVideoPipeline.unfuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py#L529)
( )
Disable QKV projection fusion if enabled.
[](#diffusers.CogVideoXVideoToVideoPipeline)CogVideoXVideoToVideoPipeline
-------------------------------------------------------------------------
### class diffusers.CogVideoXVideoToVideoPipeline
[](#diffusers.CogVideoXVideoToVideoPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py#L169)
( tokenizer: T5Tokenizertext\_encoder: T5EncoderModelvae: AutoencoderKLCogVideoXtransformer: CogVideoXTransformer3DModelscheduler: typing.Union\[diffusers.schedulers.scheduling\_ddim\_cogvideox.CogVideoXDDIMScheduler, diffusers.schedulers.scheduling\_dpm\_cogvideox.CogVideoXDPMScheduler\] )
Parameters
* [](#diffusers.CogVideoXVideoToVideoPipeline.vae)**vae** ([AutoencoderKL](/docs/diffusers/main/en/api/models/autoencoderkl#diffusers.AutoencoderKL)) β Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
* [](#diffusers.CogVideoXVideoToVideoPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1\_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
* [](#diffusers.CogVideoXVideoToVideoPipeline.tokenizer)**tokenizer** (`T5Tokenizer`) β Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
* [](#diffusers.CogVideoXVideoToVideoPipeline.transformer)**transformer** ([CogVideoXTransformer3DModel](/docs/diffusers/main/en/api/models/cogvideox_transformer3d#diffusers.CogVideoXTransformer3DModel)) β A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
* [](#diffusers.CogVideoXVideoToVideoPipeline.scheduler)**scheduler** ([SchedulerMixin](/docs/diffusers/main/en/api/schedulers/overview#diffusers.SchedulerMixin)) β A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
Pipeline for video-to-video generation using CogVideoX.
This model inherits from [DiffusionPipeline](/docs/diffusers/main/en/api/pipelines/overview#diffusers.DiffusionPipeline). Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
#### \_\_call\_\_
[](#diffusers.CogVideoXVideoToVideoPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py#L575)
( video: typing.List\[PIL.Image.Image\] = Noneprompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Noneheight: typing.Optional\[int\] = Nonewidth: typing.Optional\[int\] = Nonenum\_inference\_steps: int = 50timesteps: typing.Optional\[typing.List\[int\]\] = Nonestrength: float = 0.8guidance\_scale: float = 6use\_dynamic\_cfg: bool = Falsenum\_videos\_per\_prompt: int = 1eta: float = 0.0generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.FloatTensor\] = Noneprompt\_embeds: typing.Optional\[torch.FloatTensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.FloatTensor\] = Noneoutput\_type: str = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Union\[typing.Callable\[\[int, int, typing.Dict\], NoneType\], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 226 ) β export const metadata = 'undefined';[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
Expand 20 parameters
Parameters
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.video)**video** (`List[PIL.Image.Image]`) β The input video to condition the generation on. Must be a list of images/frames of the video.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.height)**height** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.width)**width** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The width in pixels of the generated image. This is set to 720 by default for the best results.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.strength)**strength** (`float`, _optional_, defaults to 0.8) β Higher strength leads to more differences between original video and generated video.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, _optional_, defaults to 7.0) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.latents)**latents** (`torch.FloatTensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.FloatTensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput` instead of a plain tuple.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.CogVideoXVideoToVideoPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int`, defaults to `226`) β Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
Returns
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.CogVideoXVideoToVideoPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline
\>>> from diffusers.utils import export\_to\_video, load\_video
\>>> \# Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
\>>> pipe = CogVideoXVideoToVideoPipeline.from\_pretrained("THUDM/CogVideoX-5b", torch\_dtype=torch.bfloat16)
\>>> pipe.to("cuda")
\>>> pipe.scheduler = CogVideoXDPMScheduler.from\_config(pipe.scheduler.config)
\>>> input\_video = load\_video(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
... )
\>>> prompt = (
... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "
... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "
... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "
... "moons, but the remainder of the scene is mostly realistic."
... )
\>>> video = pipe(
... video=input\_video, prompt=prompt, strength=0.8, guidance\_scale=6, num\_inference\_steps=50
... ).frames\[0\]
\>>> export\_to\_video(video, "output.mp4", fps=8)
#### encode\_prompt
[](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py#L269)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 226device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.CogVideoXVideoToVideoPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
#### fuse\_qkv\_projections
[](#diffusers.CogVideoXVideoToVideoPipeline.fuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py#L496)
( )
Enables fused QKV projections.
#### unfuse\_qkv\_projections
[](#diffusers.CogVideoXVideoToVideoPipeline.unfuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py#L502)
( )
Disable QKV projection fusion if enabled.
[](#diffusers.CogVideoXFunControlPipeline)CogVideoXFunControlPipeline
---------------------------------------------------------------------
### class diffusers.CogVideoXFunControlPipeline
[](#diffusers.CogVideoXFunControlPipeline)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py#L154)
( tokenizer: T5Tokenizertext\_encoder: T5EncoderModelvae: AutoencoderKLCogVideoXtransformer: CogVideoXTransformer3DModelscheduler: KarrasDiffusionSchedulers )
Parameters
* [](#diffusers.CogVideoXFunControlPipeline.vae)**vae** ([AutoencoderKL](/docs/diffusers/main/en/api/models/autoencoderkl#diffusers.AutoencoderKL)) β Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
* [](#diffusers.CogVideoXFunControlPipeline.text_encoder)**text\_encoder** (`T5EncoderModel`) β Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1\_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
* [](#diffusers.CogVideoXFunControlPipeline.tokenizer)**tokenizer** (`T5Tokenizer`) β Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
* [](#diffusers.CogVideoXFunControlPipeline.transformer)**transformer** ([CogVideoXTransformer3DModel](/docs/diffusers/main/en/api/models/cogvideox_transformer3d#diffusers.CogVideoXTransformer3DModel)) β A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
* [](#diffusers.CogVideoXFunControlPipeline.scheduler)**scheduler** ([SchedulerMixin](/docs/diffusers/main/en/api/schedulers/overview#diffusers.SchedulerMixin)) β A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
Pipeline for controlled text-to-video generation using CogVideoX Fun.
This model inherits from [DiffusionPipeline](/docs/diffusers/main/en/api/pipelines/overview#diffusers.DiffusionPipeline). Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
#### \_\_call\_\_
[](#diffusers.CogVideoXFunControlPipeline.__call__)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py#L551)
( prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonenegative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonecontrol\_video: typing.Optional\[typing.List\[PIL.Image.Image\]\] = Noneheight: typing.Optional\[int\] = Nonewidth: typing.Optional\[int\] = Nonenum\_inference\_steps: int = 50timesteps: typing.Optional\[typing.List\[int\]\] = Noneguidance\_scale: float = 6use\_dynamic\_cfg: bool = Falsenum\_videos\_per\_prompt: int = 1eta: float = 0.0generator: typing.Union\[torch.\_C.Generator, typing.List\[torch.\_C.Generator\], NoneType\] = Nonelatents: typing.Optional\[torch.Tensor\] = Nonecontrol\_video\_latents: typing.Optional\[torch.Tensor\] = Noneprompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Noneoutput\_type: str = 'pil'return\_dict: bool = Trueattention\_kwargs: typing.Optional\[typing.Dict\[str, typing.Any\]\] = Nonecallback\_on\_step\_end: typing.Union\[typing.Callable\[\[int, int, typing.Dict\], NoneType\], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType\] = Nonecallback\_on\_step\_end\_tensor\_inputs: typing.List\[str\] = \['latents'\]max\_sequence\_length: int = 226 ) β export const metadata = 'undefined';[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
Expand 20 parameters
Parameters
* [](#diffusers.CogVideoXFunControlPipeline.__call__.prompt)**prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXFunControlPipeline.__call__.control_video)**control\_video** (`List[PIL.Image.Image]`) β The control video to condition the generation on. Must be a list of images/frames of the video. If not provided, `control_video_latents` must be provided.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.height)**height** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The height in pixels of the generated image. This is set to 480 by default for the best results.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.width)**width** (`int`, _optional_, defaults to self.transformer.config.sample\_height \* self.vae\_scale\_factor\_spatial) β The width in pixels of the generated image. This is set to 720 by default for the best results.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.num_inference_steps)**num\_inference\_steps** (`int`, _optional_, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.timesteps)**timesteps** (`List[int]`, _optional_) β Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.guidance_scale)**guidance\_scale** (`float`, _optional_, defaults to 6.0) β Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β The number of videos to generate per prompt.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.generator)**generator** (`torch.Generator` or `List[torch.Generator]`, _optional_) β One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.latents)**latents** (`torch.Tensor`, _optional_) β Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.control_video_latents)**control\_video\_latents** (`torch.Tensor`, _optional_) β Pre-generated control latents, sampled from a Gaussian distribution, to be used as inputs for controlled video generation. If not provided, `control_video` must be provided.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.output_type)**output\_type** (`str`, _optional_, defaults to `"pil"`) β The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.return_dict)**return\_dict** (`bool`, _optional_, defaults to `True`) β Whether or not to return a `~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput` instead of a plain tuple.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.attention_kwargs)**attention\_kwargs** (`dict`, _optional_) β A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention\_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
* [](#diffusers.CogVideoXFunControlPipeline.__call__.callback_on_step_end)**callback\_on\_step\_end** (`Callable`, _optional_) β A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.callback_on_step_end_tensor_inputs)**callback\_on\_step\_end\_tensor\_inputs** (`List`, _optional_) β The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
* [](#diffusers.CogVideoXFunControlPipeline.__call__.max_sequence_length)**max\_sequence\_length** (`int`, defaults to `226`) β Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
Returns
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) or `tuple`
export const metadata = 'undefined';
[CogVideoXPipelineOutput](/docs/diffusers/main/en/api/pipelines/cogvideox#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput) if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
[](#diffusers.CogVideoXFunControlPipeline.__call__.example)
Examples:
Copied
\>>> import torch
\>>> from diffusers import CogVideoXFunControlPipeline, DDIMScheduler
\>>> from diffusers.utils import export\_to\_video, load\_video
\>>> pipe = CogVideoXFunControlPipeline.from\_pretrained(
... "alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose", torch\_dtype=torch.bfloat16
... )
\>>> pipe.scheduler = DDIMScheduler.from\_config(pipe.scheduler.config)
\>>> pipe.to("cuda")
\>>> control\_video = load\_video(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
... )
\>>> prompt = (
... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "
... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "
... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "
... "moons, but the remainder of the scene is mostly realistic."
... )
\>>> video = pipe(prompt=prompt, control\_video=control\_video).frames\[0\]
\>>> export\_to\_video(video, "output.mp4", fps=8)
#### encode\_prompt
[](#diffusers.CogVideoXFunControlPipeline.encode_prompt)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py#L253)
( prompt: typing.Union\[str, typing.List\[str\]\]negative\_prompt: typing.Union\[str, typing.List\[str\], NoneType\] = Nonedo\_classifier\_free\_guidance: bool = Truenum\_videos\_per\_prompt: int = 1prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonenegative\_prompt\_embeds: typing.Optional\[torch.Tensor\] = Nonemax\_sequence\_length: int = 226device: typing.Optional\[torch.device\] = Nonedtype: typing.Optional\[torch.dtype\] = None )
Parameters
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.prompt)**prompt** (`str` or `List[str]`, _optional_) β prompt to be encoded
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.negative_prompt)**negative\_prompt** (`str` or `List[str]`, _optional_) β The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.do_classifier_free_guidance)**do\_classifier\_free\_guidance** (`bool`, _optional_, defaults to `True`) β Whether to use classifier free guidance or not.
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.num_videos_per_prompt)**num\_videos\_per\_prompt** (`int`, _optional_, defaults to 1) β Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.prompt_embeds)**prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.negative_prompt_embeds)**negative\_prompt\_embeds** (`torch.Tensor`, _optional_) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, _e.g._ prompt weighting. If not provided, negative\_prompt\_embeds will be generated from `negative_prompt` input argument.
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.device)**device** β (`torch.device`, _optional_): torch device
* [](#diffusers.CogVideoXFunControlPipeline.encode_prompt.dtype)**dtype** β (`torch.dtype`, _optional_): torch dtype
Encodes the prompt into text encoder hidden states.
#### fuse\_qkv\_projections
[](#diffusers.CogVideoXFunControlPipeline.fuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py#L473)
( )
Enables fused QKV projections.
#### unfuse\_qkv\_projections
[](#diffusers.CogVideoXFunControlPipeline.unfuse_qkv_projections)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py#L478)
( )
Disable QKV projection fusion if enabled.
[](#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput)CogVideoXPipelineOutput
------------------------------------------------------------------------------------------------
### class diffusers.pipelines.cogvideo.pipeline\_output.CogVideoXPipelineOutput
[](#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput)[< source \>](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_output.py#L8)
( frames: Tensor )
Parameters
* [](#diffusers.pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput.frames)**frames** (`torch.Tensor`, `np.ndarray`, or List\[List\[PIL.Image.Image\]\]) β List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`.
Output class for CogVideo pipelines.
[< \> Update on GitHub](https://github.com/huggingface/diffusers/blob/main/docs/source/en/api/pipelines/cogvideox.md)
CogVideoX
[βBLIP-Diffusion](/docs/diffusers/main/en/api/pipelines/blip_diffusion) [CogView3β](/docs/diffusers/main/en/api/pipelines/cogview3) |