Spaces:
Running
Running
File size: 29,142 Bytes
c8cb798 d2662cc c8cb798 b91a6aa c8cb798 89bbef2 d2662cc c8cb798 d2662cc c8cb798 ab45a2c b91a6aa c8cb798 ed18efe c8cb798 cb66746 c8cb798 d2662cc 0431fa9 d2662cc 0431fa9 d2662cc c8cb798 b91a6aa d2662cc 0431fa9 b91a6aa c8cb798 883eb72 c8cb798 0431fa9 c8cb798 0431fa9 c8cb798 0431fa9 c8cb798 ed18efe c8cb798 ed18efe c8cb798 0431fa9 a3e57a3 0431fa9 883eb72 0431fa9 c8cb798 d2662cc b91a6aa ab45a2c b91a6aa ab45a2c 246c64e d2662cc ab45a2c b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa c8cb798 d2662cc b91a6aa 61a25f0 b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa 0431fa9 883eb72 0431fa9 b91a6aa 883eb72 b91a6aa 0431fa9 b91a6aa d2662cc b91a6aa 883eb72 b91a6aa c8cb798 d2662cc c8cb798 883eb72 c8cb798 b91a6aa 0431fa9 c8cb798 d2662cc b91a6aa d2662cc b91a6aa 61a25f0 d2662cc b91a6aa d2662cc 61a25f0 d2662cc 61a25f0 d2662cc 61a25f0 d2662cc b91a6aa c8cb798 b91a6aa d2662cc b91a6aa 0431fa9 b91a6aa 883eb72 b91a6aa 0431fa9 b91a6aa 0431fa9 b91a6aa c8cb798 d2662cc c8cb798 883eb72 c8cb798 b91a6aa 0431fa9 c8cb798 b91a6aa d2662cc b91a6aa d2662cc b91a6aa d2662cc b91a6aa 883eb72 b91a6aa 0431fa9 b91a6aa d2662cc b91a6aa d2662cc b91a6aa 0431fa9 d2662cc 883eb72 0431fa9 d2662cc 883eb72 d2662cc 0431fa9 d2662cc b91a6aa d2662cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
"""
Preview tab for Video Model Studio UI
"""
import gradio as gr
import logging
import json
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple
import time
from vms.utils import BaseTab
from vms.config import (
OUTPUT_PATH, MODEL_TYPES, DEFAULT_PROMPT_PREFIX, MODEL_VERSIONS
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class PreviewTab(BaseTab):
"""Preview tab for testing trained models"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "preview_tab"
self.title = "4️⃣ Preview"
def create(self, parent=None) -> gr.TabItem:
"""Create the Preview tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
gr.Markdown("## 🔬 Preview your model")
with gr.Row():
with gr.Column(scale=2):
# Add dropdown to choose between LoRA and original model
has_lora = self.check_lora_model_exists()
lora_choices = []
default_lora_choice = ""
if has_lora:
lora_choices = ["Use LoRA model", "Use original model"]
default_lora_choice = "Use LoRA model"
else:
lora_choices = ["Cannot find LoRA model", "Use original model"]
default_lora_choice = "Use original model"
self.components["use_lora"] = gr.Dropdown(
choices=lora_choices,
label="Model Selection",
value=default_lora_choice
)
self.components["prompt"] = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=3
)
self.components["negative_prompt"] = gr.Textbox(
label="Negative Prompt",
placeholder="Enter negative prompt here...",
lines=3,
value="worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background"
)
self.components["prompt_prefix"] = gr.Textbox(
label="Global Prompt Prefix",
placeholder="Prefix to add to all prompts",
value=DEFAULT_PROMPT_PREFIX
)
# Ensure seed is interactive with a slider
self.components["seed"] = gr.Slider(
label="Generation Seed (-1 for random)",
minimum=-1,
maximum=2147483647, # 2^31 - 1
step=1,
value=-1,
info="Set to -1 for random seed or specific value for reproducible results",
interactive=True
)
with gr.Row():
# Get the currently selected model type from training tab if possible
default_model = self.get_default_model_type()
with gr.Column():
# Make model_type read-only (disabled), as it must match what was trained
self.components["model_type"] = gr.Dropdown(
choices=list(MODEL_TYPES.keys()),
label="Model Type (from training)",
value=default_model,
interactive=False
)
# Add model version selection based on model type
self.components["model_version"] = gr.Dropdown(
label="Model Version",
choices=self.get_model_version_choices(default_model),
value=self.get_default_model_version(default_model)
)
# Add image input for image-to-video models
self.components["conditioning_image"] = gr.Image(
label="Conditioning Image (for Image-to-Video models)",
type="filepath",
visible=False
)
with gr.Row():
self.components["resolution_preset"] = gr.Dropdown(
choices=["480p", "720p"],
label="Resolution Preset",
value="480p"
)
with gr.Row():
self.components["width"] = gr.Number(
label="Width",
value=832,
precision=0
)
self.components["height"] = gr.Number(
label="Height",
value=480,
precision=0
)
with gr.Row():
self.components["num_frames"] = gr.Slider(
label="Number of Frames",
minimum=1,
maximum=257,
step=8,
value=49
)
self.components["fps"] = gr.Slider(
label="FPS",
minimum=1,
maximum=60,
step=1,
value=16
)
with gr.Row():
self.components["guidance_scale"] = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=5.0
)
self.components["flow_shift"] = gr.Slider(
label="Flow Shift",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0
)
with gr.Row():
self.components["lora_scale"] = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
visible=has_lora # Only visible if using LoRA
)
self.components["inference_steps"] = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
step=1,
value=20
)
self.components["enable_cpu_offload"] = gr.Checkbox(
label="Enable Model CPU Offload (for low-VRAM GPUs)",
value=False # let's assume user is using a video model training rig with a good GPU
)
self.components["generate_btn"] = gr.Button(
"Generate Video",
variant="primary"
)
with gr.Column(scale=3):
self.components["preview_video"] = gr.Video(
label="Generated Video",
interactive=False
)
self.components["status"] = gr.Textbox(
label="Status",
interactive=False
)
with gr.Accordion("Log", open=False):
self.components["log"] = gr.TextArea(
label="Generation Log",
interactive=False,
lines=60
)
return tab
def check_lora_model_exists(self) -> bool:
"""Check if any LoRA model files exist in the output directory"""
# Look for the standard LoRA weights file
lora_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors"
if lora_path.exists():
return True
# If not found in the expected location, try to find in checkpoints
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
if not checkpoints:
return False
for checkpoint in checkpoints:
lora_path = checkpoint / "pytorch_lora_weights.safetensors"
if lora_path.exists():
return True
return False
def update_lora_ui(self, use_lora_value: str) -> Dict[str, Any]:
"""Update UI based on LoRA selection"""
is_using_lora = "Use LoRA model" in use_lora_value
return {
self.components["lora_scale"]: gr.Slider(visible=is_using_lora)
}
def get_model_version_choices(self, model_type: str) -> List[str]:
"""Get model version choices based on model type"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
if not internal_type or internal_type not in MODEL_VERSIONS:
logger.warning(f"No model versions found for {model_type} (internal type: {internal_type})")
return []
# Return just the model IDs as a list of simple strings
version_ids = list(MODEL_VERSIONS.get(internal_type, {}).keys())
logger.info(f"Found {len(version_ids)} versions for {model_type}: {version_ids}")
# Ensure they're all strings
return [str(version) for version in version_ids]
def get_default_model_version(self, model_type: str) -> str:
"""Get default model version for the given model type"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
logger.debug(f"get_default_model_version({model_type}) = {internal_type}")
if not internal_type or internal_type not in MODEL_VERSIONS:
logger.warning(f"No valid model versions found for {model_type}")
return ""
# Get the first version available for this model type
versions = list(MODEL_VERSIONS.get(internal_type, {}).keys())
if versions:
default_version = versions[0]
logger.debug(f"Default version for {model_type}: {default_version}")
return default_version
return ""
def get_default_model_type(self) -> str:
"""Get the model type from the latest training session"""
try:
# First check the session.json which contains the actual training data
session_file = OUTPUT_PATH / "session.json"
if session_file.exists():
with open(session_file, 'r') as f:
session_data = json.load(f)
# Get the internal model type from the session parameters
if "params" in session_data and "model_type" in session_data["params"]:
internal_model_type = session_data["params"]["model_type"]
# Convert internal model type to display name
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == internal_model_type:
logger.info(f"Using model type '{display_name}' from session file")
return display_name
# If we couldn't map it, log a warning
logger.warning(f"Could not map internal model type '{internal_model_type}' to a display name")
# If we couldn't get it from session.json, try to get it from UI state
ui_state = self.app.training.load_ui_state()
model_type = ui_state.get("model_type")
# Make sure it's a valid model type
if model_type in MODEL_TYPES:
return model_type
# If we still couldn't get a valid model type, try to get it from the training tab
if hasattr(self.app, 'tabs') and 'train_tab' in self.app.tabs:
train_tab = self.app.tabs['train_tab']
if hasattr(train_tab, 'components') and 'model_type' in train_tab.components:
train_model_type = train_tab.components['model_type'].value
if train_model_type in MODEL_TYPES:
return train_model_type
# Fallback to first model type
return list(MODEL_TYPES.keys())[0]
except Exception as e:
logger.warning(f"Failed to get default model type from session: {e}")
return list(MODEL_TYPES.keys())[0]
def extract_model_id(self, model_version_choice: str) -> str:
"""Extract model ID from model version choice string"""
if " - " in model_version_choice:
return model_version_choice.split(" - ")[0].strip()
return model_version_choice
def get_model_version_type(self, model_type: str, model_version: str) -> str:
"""Get the model version type (text-to-video or image-to-video)"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
if not internal_type:
return "text-to-video"
# Extract model_id from model version choice
model_id = self.extract_model_id(model_version)
# Get versions from preview service
versions = self.app.previewing.get_model_versions(internal_type)
model_version_info = versions.get(model_id, {})
# Return the model version type or default to text-to-video
return model_version_info.get("type", "text-to-video")
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Update resolution when preset changes
self.components["resolution_preset"].change(
fn=self.update_resolution,
inputs=[self.components["resolution_preset"]],
outputs=[
self.components["width"],
self.components["height"],
self.components["flow_shift"]
]
)
# Update model_version choices when model_type changes or tab is selected
if hasattr(self.app, 'tabs_component') and self.app.tabs_component is not None:
self.app.tabs_component.select(
fn=self.sync_model_type_and_versions,
inputs=[],
outputs=[
self.components["model_type"],
self.components["model_version"]
]
)
# Update model version-specific UI elements when version changes
self.components["model_version"].change(
fn=self.update_model_version_ui,
inputs=[
self.components["model_type"],
self.components["model_version"]
],
outputs=[
self.components["conditioning_image"]
]
)
# Connect LoRA selection dropdown to update LoRA weight visibility
self.components["use_lora"].change(
fn=self.update_lora_ui,
inputs=[self.components["use_lora"]],
outputs=[self.components["lora_scale"]]
)
# Load preview UI state when the tab is selected
if hasattr(self.app, 'tabs_component') and self.app.tabs_component is not None:
self.app.tabs_component.select(
fn=self.load_preview_state,
inputs=[],
outputs=[
self.components["prompt"],
self.components["negative_prompt"],
self.components["prompt_prefix"],
self.components["width"],
self.components["height"],
self.components["num_frames"],
self.components["fps"],
self.components["guidance_scale"],
self.components["flow_shift"],
self.components["lora_scale"],
self.components["inference_steps"],
self.components["enable_cpu_offload"],
self.components["model_version"],
self.components["seed"],
self.components["use_lora"]
]
)
# Save preview UI state when values change
for component_name in [
"prompt", "negative_prompt", "prompt_prefix", "model_version", "resolution_preset",
"width", "height", "num_frames", "fps", "guidance_scale", "flow_shift",
"lora_scale", "inference_steps", "enable_cpu_offload", "seed", "use_lora"
]:
if component_name in self.components:
self.components[component_name].change(
fn=self.save_preview_state_value,
inputs=[self.components[component_name]],
outputs=[]
)
# Generate button click
self.components["generate_btn"].click(
fn=self.generate_video,
inputs=[
self.components["model_type"],
self.components["model_version"],
self.components["prompt"],
self.components["negative_prompt"],
self.components["prompt_prefix"],
self.components["width"],
self.components["height"],
self.components["num_frames"],
self.components["guidance_scale"],
self.components["flow_shift"],
self.components["lora_scale"],
self.components["inference_steps"],
self.components["enable_cpu_offload"],
self.components["fps"],
self.components["conditioning_image"],
self.components["seed"],
self.components["use_lora"]
],
outputs=[
self.components["preview_video"],
self.components["status"],
self.components["log"]
]
)
def update_model_version_ui(self, model_type: str, model_version: str) -> Dict[str, Any]:
"""Update UI based on the selected model version"""
model_version_type = self.get_model_version_type(model_type, model_version)
# Show conditioning image input only for image-to-video models
show_conditioning_image = model_version_type == "image-to-video"
return {
self.components["conditioning_image"]: gr.Image(visible=show_conditioning_image)
}
def sync_model_type_and_versions(self) -> Tuple[str, str]:
"""Sync model type with training tab when preview tab is selected and update model version choices"""
model_type = self.get_default_model_type()
model_version = ""
# Try to get model_version from session or UI state
ui_state = self.app.training.load_ui_state()
preview_state = ui_state.get("preview", {})
model_version = preview_state.get("model_version", "")
# If no model version specified or invalid, use default
if not model_version:
# Get the internal model type
internal_type = MODEL_TYPES.get(model_type)
if internal_type and internal_type in MODEL_VERSIONS:
versions = list(MODEL_VERSIONS[internal_type].keys())
if versions:
model_version = versions[0]
return model_type, model_version
def update_resolution(self, preset: str) -> Tuple[int, int, float]:
"""Update resolution and flow shift based on preset"""
if preset == "480p":
return 832, 480, 3.0
elif preset == "720p":
return 1280, 720, 5.0
else:
return 832, 480, 3.0
def load_preview_state(self) -> Tuple:
"""Load saved preview UI state"""
# Try to get the saved state
try:
state = self.app.training.load_ui_state()
preview_state = state.get("preview", {})
# Get model type (can't be changed in UI)
model_type = self.get_default_model_type()
# If model_version not in choices for current model_type, use default
model_version = preview_state.get("model_version", "")
model_version_choices = self.get_model_version_choices(model_type)
if model_version not in model_version_choices and model_version_choices:
model_version = model_version_choices[0]
# Check if LoRA exists and set appropriate dropdown options
has_lora = self.check_lora_model_exists()
use_lora = preview_state.get("use_lora", "")
# Validate use_lora value against current state
if has_lora:
valid_choices = ["Use LoRA model", "Use original model"]
if use_lora not in valid_choices:
use_lora = "Use LoRA model" # Default when LoRA exists
else:
valid_choices = ["Cannot find LoRA model", "Use original model"]
if use_lora not in valid_choices:
use_lora = "Use original model" # Default when no LoRA
# Update the dropdown choices in the UI
try:
self.components["use_lora"].choices = valid_choices
except Exception as e:
logger.error(f"Failed to update use_lora choices: {e}")
return (
preview_state.get("prompt", ""),
preview_state.get("negative_prompt", "worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background"),
preview_state.get("prompt_prefix", DEFAULT_PROMPT_PREFIX),
preview_state.get("width", 832),
preview_state.get("height", 480),
preview_state.get("num_frames", 49),
preview_state.get("fps", 16),
preview_state.get("guidance_scale", 5.0),
preview_state.get("flow_shift", 3.0),
preview_state.get("lora_scale", 0.7),
preview_state.get("inference_steps", 30),
preview_state.get("enable_cpu_offload", True),
model_version,
preview_state.get("seed", -1),
use_lora
)
except Exception as e:
logger.error(f"Error loading preview state: {e}")
# Return defaults if loading fails
return (
"",
"worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background",
DEFAULT_PROMPT_PREFIX,
832, 480, 49, 16, 5.0, 3.0, 0.7, 30, True,
self.get_default_model_version(self.get_default_model_type()),
-1,
"Use original model" if not self.check_lora_model_exists() else "Use LoRA model"
)
def save_preview_state_value(self, value: Any) -> None:
"""Save an individual preview state value"""
try:
# Get the component name from the event context
import inspect
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
event_context = frame.frame.f_locals
component = event_context.get('component')
if component is None:
return
# Find the component name
component_name = None
for name, comp in self.components.items():
if comp == component:
component_name = name
break
if component_name is None:
return
# Load current state
state = self.app.training.load_ui_state()
if "preview" not in state:
state["preview"] = {}
# Update the value
state["preview"][component_name] = value
# Save state
self.app.training.save_ui_state(state)
except Exception as e:
logger.error(f"Error saving preview state: {e}")
def generate_video(
self,
model_type: str,
model_version: str,
prompt: str,
negative_prompt: str,
prompt_prefix: str,
width: int,
height: int,
num_frames: int,
guidance_scale: float,
flow_shift: float,
lora_scale: float,
inference_steps: int,
enable_cpu_offload: bool,
fps: int,
conditioning_image: Optional[str] = None,
seed: int = -1,
use_lora: str = "Use LoRA model"
) -> Tuple[Optional[str], str, str]:
"""Handler for generate button click, delegates to preview service"""
# Save all the parameters to preview state before generating
print("preview_tab: generate_video() has been called")
try:
state = self.app.training.load_ui_state()
if "preview" not in state:
state["preview"] = {}
# Extract model ID from model version choice
model_version_id = self.extract_model_id(model_version)
# Update all values
preview_state = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"prompt_prefix": prompt_prefix,
"model_type": model_type,
"model_version": model_version,
"width": width,
"height": height,
"num_frames": num_frames,
"fps": fps,
"guidance_scale": guidance_scale,
"flow_shift": flow_shift,
"lora_scale": lora_scale,
"inference_steps": inference_steps,
"enable_cpu_offload": enable_cpu_offload,
"seed": seed,
"use_lora": use_lora
}
state["preview"] = preview_state
self.app.training.save_ui_state(state)
except Exception as e:
logger.error(f"Error saving preview state before generation: {e}")
# Extract model ID from model version choice string
model_version_id = self.extract_model_id(model_version)
# Initial UI update
video_path, status, log = None, "Initializing generation...", "Starting video generation process..."
# Set lora_path to None if not using LoRA
use_lora_model = use_lora == "Use LoRA model"
# Start actual generation
# If not using LoRA, set lora_scale to 0 to disable it
effective_lora_scale = lora_scale if use_lora_model else 0.0
result = self.app.previewing.generate_video(
model_type=model_type,
model_version=model_version_id,
prompt=prompt,
negative_prompt=negative_prompt,
prompt_prefix=prompt_prefix,
width=width,
height=height,
num_frames=num_frames,
guidance_scale=guidance_scale,
flow_shift=flow_shift,
lora_scale=effective_lora_scale, # Use 0.0 if not using LoRA
inference_steps=inference_steps,
enable_cpu_offload=enable_cpu_offload,
fps=fps,
conditioning_image=conditioning_image,
seed=seed
)
# Return final result
return result |