File size: 14,892 Bytes
91fb4ef
 
 
38cfbff
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910a853
91fb4ef
 
 
910a853
38cfbff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
910a853
 
54a2a4e
 
91fb4ef
 
38cfbff
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cfbff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
38cfbff
 
91fb4ef
38cfbff
 
 
 
 
 
 
 
 
91fb4ef
 
 
38cfbff
 
 
 
 
 
 
910a853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cfbff
 
32b4f0f
910a853
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
32b4f0f
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38cfbff
54a2a4e
38cfbff
91fb4ef
 
 
 
38cfbff
54a2a4e
38cfbff
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
38cfbff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import re
import logging
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
from datetime import datetime, timedelta

logger = logging.getLogger(__name__)

@dataclass
class TrainingState:
    """Represents the current state of training"""
    status: str = "idle"  # idle, initializing, training, completed, error, stopped
    current_step: int = 0
    total_steps: int = 0
    current_epoch: int = 0
    total_epochs: int = 0
    step_loss: float = 0.0
    learning_rate: float = 0.0
    grad_norm: float = 0.0
    memory_allocated: float = 0.0
    memory_reserved: float = 0.0
    start_time: Optional[datetime] = None
    last_step_time: Optional[datetime] = None
    estimated_remaining: Optional[str] = None
    error_message: Optional[str] = None
    initialization_stage: str = ""
    download_progress: float = 0.0
    elapsed_time: str = "0:00:00"
    
    # New fields for current task tracking
    current_task: str = ""
    current_task_progress: str = ""
    task_progress_percentage: float = 0.0
    task_items_processed: int = 0
    task_total_items: int = 0
    task_time_remaining: str = ""
    task_speed: str = ""
    
    # Store recent progress lines for task display
    recent_progress_lines: List[str] = None

    def __post_init__(self):
        if self.recent_progress_lines is None:
            self.recent_progress_lines = []

    def calculate_progress(self) -> float:
        """Calculate overall progress as percentage"""
        if self.total_steps == 0:
            return 0.0
        return (self.current_step / self.total_steps) * 100

    def to_dict(self) -> Dict[str, Any]:
        """Convert state to dictionary for UI updates"""
        # Use the stored elapsed time directly if it exists
        elapsed = self.elapsed_time
        
        # Use precomputed remaining time from logs if available
        remaining = str(self.estimated_remaining) if self.estimated_remaining else "calculating..."
        
        result = {
            "status": self.status,
            "progress": f"{self.calculate_progress():.1f}%",
            "current_step": self.current_step,
            "total_steps": self.total_steps,
            "current_epoch": self.current_epoch,
            "total_epochs": self.total_epochs,
            "step_loss": f"{self.step_loss:.4f}",
            "learning_rate": f"{self.learning_rate:.2e}",
            "grad_norm": f"{self.grad_norm:.4f}",
            "memory": f"{self.memory_allocated:.1f}GB allocated, {self.memory_reserved:.1f}GB reserved",
            "elapsed": elapsed,
            "remaining": remaining,
            "initialization_stage": self.initialization_stage,
            "error_message": self.error_message,
            "download_progress": self.download_progress
        }
        
        # Add current task information
        result["current_task"] = self.get_task_display()
        
        return result
    
    def get_task_display(self) -> str:
        """Generate a formatted display of the current task"""
        if not self.recent_progress_lines:
            if self.status == "training":
                return "Training in progress..."
            return ""
        
        # Get the most recent progress line
        latest_line = self.recent_progress_lines[-1]
        
        # For downloading shards or loading checkpoint shards
        if "Downloading shards" in latest_line or "Loading checkpoint shards" in latest_line:
            # Extract just the progress bar part
            match = re.search(r'(\d+%\|[β–β–Žβ–β–Œβ–‹β–Šβ–‰β–ˆ\s]+\|)', latest_line)
            if match:
                progress_bar = match.group(1)
                
                # Extract the remaining information
                time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
                time_info = time_match.group(1) if time_match else ""
                
                task_type = "Downloading shards" if "Downloading shards" in latest_line else "Loading checkpoint shards"
                
                return f"{task_type}:\n{progress_bar}\n{time_info}"
        
        # For "Rank 0" progress (typically training steps)
        elif "Rank 0:" in latest_line:
            match = re.search(r'Rank 0:\s+(\d+%\|[β–β–Žβ–β–Œβ–‹β–Šβ–‰β–ˆ\s]+\|)', latest_line)
            if match:
                progress_bar = match.group(1)
                
                # Extract step information
                step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
                step_info = step_match.group(1) if step_match else ""
                
                # Extract time information
                time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
                time_info = time_match.group(1) if time_match else ""
                
                return f"Training iteration:\n{progress_bar} {step_info}\n{time_info}"
        
        # For Filling buffer progress
        elif "Filling buffer" in latest_line:
            match = re.search(r'(\d+%\|[β–β–Žβ–β–Œβ–‹β–Šβ–‰β–ˆ\s]+\|)', latest_line)
            if match:
                progress_bar = match.group(1)
                
                # Extract step information
                step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
                step_info = step_match.group(1) if step_match else ""
                
                # Extract time information
                time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
                time_info = time_match.group(1) if time_match else ""
                
                return f"Filling buffer from data iterator:\n{progress_bar} {step_info}\n{time_info}"
                
        # For other progress lines
        elif "%" in latest_line and "|" in latest_line:
            # Generic progress bar pattern
            match = re.search(r'(\d+%\|[β–β–Žβ–β–Œβ–‹β–Šβ–‰β–ˆ\s]+\|)', latest_line)
            if match:
                progress_bar = match.group(1)
                
                # Try to extract step information
                step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
                step_info = step_match.group(1) if step_match else ""
                
                # Try to extract time information
                time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
                time_info = time_match.group(1) if time_match else ""
                
                task_prefix = "Processing:"
                
                # Try to determine task type
                if "Training" in latest_line:
                    task_prefix = "Training:"
                elif "Precomputing" in latest_line:
                    task_prefix = "Precomputing:"
                
                return f"{task_prefix}\n{progress_bar} {step_info}\n{time_info}"
        
        # If we couldn't parse it properly, just return the line
        return latest_line.strip()

class TrainingLogParser:
    """Parser for training logs with state management"""
    
    def __init__(self):
        self.state = TrainingState()
        self._last_update_time = None
        # Maximum number of recent progress lines to store
        self.max_recent_lines = 5
        
    def reset(self):
        """Reset parser state"""
        self.state = TrainingState()
        self._last_update_time = None
    
    def get_current_task_display(self) -> str:
        """Get the formatted current task display"""
        return self.state.get_task_display()
    
    def parse_line(self, line: str) -> Optional[Dict[str, Any]]:
        """Parse a single log line and update state"""
        try:
            # Check if this is a progress line
            if any(pattern in line for pattern in ["Downloading shards:", "Loading checkpoint shards:", "Rank 0:", "Filling buffer", "|"]) and "%" in line:
                # Add to recent progress lines, maintaining order and max length
                self.state.recent_progress_lines.append(line)
                if len(self.state.recent_progress_lines) > self.max_recent_lines:
                    self.state.recent_progress_lines.pop(0)
                
                # Parse the Training steps line for additional information
                if "Training steps:" in line:
                    # Set status to training if we see this
                    self.state.status = "training"
                    
                    if not self.state.start_time:
                        self.state.start_time = datetime.now()

                    # Extract step numbers from the format: Training steps:   4%|▍         | 44/1000 [41:57<17:22:32, 65.43s/it]
                    steps_match = re.search(r"\|\s*(\d+)/(\d+)", line)
                    if steps_match:
                        self.state.current_step = int(steps_match.group(1))
                        self.state.total_steps = int(steps_match.group(2))
                    
                    # Extract elapsed time - Format example: [41:57<17:22:32, 65.43s/it]
                    elapsed_match = re.search(r"\[(\d+:\d+)(:\d+)?<", line)
                    if elapsed_match:
                        if elapsed_match.group(2):  # has hours:minutes:seconds format
                            self.state.elapsed_time = elapsed_match.group(1) + elapsed_match.group(2)
                        else:  # has minutes:seconds format
                            self.state.elapsed_time = elapsed_match.group(1)
                    
                    # Extract remaining time - Format example: [41:57<17:22:32, 65.43s/it]
                    remaining_match = re.search(r"<([\d:]+)", line)
                    if remaining_match:
                        self.state.estimated_remaining = remaining_match.group(1)
                    
                    # Extract metrics with different patterns
                    # Pattern 1: grad_norm=0.113, global_avg_loss=0.15, global_max_loss=0.15
                    grad_norm_match = re.search(r"grad_norm=([0-9.e-]+)", line)
                    if grad_norm_match:
                        self.state.grad_norm = float(grad_norm_match.group(1))
                    
                    # Try global_avg_loss as the main loss metric
                    loss_match = re.search(r"global_avg_loss=([0-9.e-]+)", line)
                    if loss_match:
                        self.state.step_loss = float(loss_match.group(1))
                    elif "step_loss=" in line:
                        # Fall back to step_loss if global_avg_loss not found
                        loss_match = re.search(r"step_loss=([0-9.e-]+)", line)
                        if loss_match:
                            self.state.step_loss = float(loss_match.group(1))
                    
                    # Extract learning rate if available
                    lr_match = re.search(r"lr=([0-9.e-]+)", line)
                    if lr_match:
                        self.state.learning_rate = float(lr_match.group(1))
                    
                    # Update last processing time
                    self.state.last_step_time = datetime.now()
                
                # Return updated state
                return self.state.to_dict()
            
            # Parse "Starting training step" lines to extract step/total info if not already parsed
            step_match = re.search(r"Starting training step \((\d+)/(\d+)\)", line)
            if step_match:
                current_step = int(step_match.group(1))
                total_steps = int(step_match.group(2))
                
                # Only update if we don't already have a value or if this is more recent
                if self.state.total_steps == 0 or current_step > self.state.current_step:
                    self.state.current_step = current_step
                    self.state.total_steps = total_steps
                    self.state.status = "training"  # Ensure status is set to training
                    logger.info(f"Updated training step: {current_step}/{total_steps}")
                    return self.state.to_dict()

            if ("Started training" in line) or ("Starting training" in line):
                self.state.status = "training"
                if not self.state.start_time:
                    self.state.start_time = datetime.now()
                return self.state.to_dict()

            # Epoch information
            epoch_match = re.search(r"Starting epoch \((\d+)/(\d+)\)", line)
            if epoch_match:
                self.state.current_epoch = int(epoch_match.group(1))
                self.state.total_epochs = int(epoch_match.group(2))
                logger.info(f"Updated epoch: {self.state.current_epoch}/{self.state.total_epochs}")
                return self.state.to_dict()

            # Initialization stages
            if "Initializing" in line:
                self.state.status = "initializing"
                self.state.initialization_stage = line.split("Initializing")[1].strip()
                logger.info(f"Initialization stage: {self.state.initialization_stage}")
                return self.state.to_dict()

            # Memory usage
            if "memory_allocated" in line:
                mem_match = re.search(r'"memory_allocated":\s*([0-9.]+)', line)
                if mem_match:
                    self.state.memory_allocated = float(mem_match.group(1))
                
                reserved_match = re.search(r'"memory_reserved":\s*([0-9.]+)', line)
                if reserved_match:
                    self.state.memory_reserved = float(reserved_match.group(1))
                logger.info(f"Updated memory: allocated={self.state.memory_allocated}GB, reserved={self.state.memory_reserved}GB")
                return self.state.to_dict()

            # Completion states
            if "Training completed successfully" in line:
                self.state.status = "completed"
                # Store final elapsed time
                self.state.last_step_time = datetime.now()
                logger.info("Training completed")
                return self.state.to_dict()

            if any(x in line for x in ["Training process stopped", "Training stopped"]):
                self.state.status = "stopped"
                # Store final elapsed time
                self.state.last_step_time = datetime.now()
                logger.info("Training stopped")
                return self.state.to_dict()

            if "Error during training:" in line:
                self.state.status = "error"
                self.state.error_message = line.split("Error during training:")[1].strip()
                logger.info(f"Training error: {self.state.error_message}")
                return self.state.to_dict()

        except Exception as e:
            logger.error(f"Error parsing line: {str(e)}")
            
        return None