Spaces:
Running
Running
import argparse | |
import sys | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
from .constants import DEFAULT_IMAGE_RESOLUTION_BUCKETS, DEFAULT_VIDEO_RESOLUTION_BUCKETS | |
from .models import SUPPORTED_MODEL_CONFIGS | |
class Args: | |
r""" | |
The arguments for the finetrainers training script. | |
For helpful information about arguments, run `python train.py --help`. | |
TODO(aryan): add `python train.py --recommend_configs --model_name <model_name>` to recommend | |
good training configs for a model after extensive testing. | |
TODO(aryan): add `python train.py --memory_requirements --model_name <model_name>` to show | |
memory requirements per model, per training type with sensible training settings. | |
MODEL ARGUMENTS | |
--------------- | |
model_name (`str`): | |
Name of model to train. To get a list of models, run `python train.py --list_models`. | |
pretrained_model_name_or_path (`str`): | |
Path to pretrained model or model identifier from https://huggingface.co/models. The model should be | |
loadable based on specified `model_name`. | |
revision (`str`, defaults to `None`): | |
If provided, the model will be loaded from a specific branch of the model repository. | |
variant (`str`, defaults to `None`): | |
Variant of model weights to use. Some models provide weight variants, such as `fp16`, to reduce disk | |
storage requirements. | |
cache_dir (`str`, defaults to `None`): | |
The directory where the downloaded models and datasets will be stored, or loaded from. | |
text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
Data type for the text encoder when generating text embeddings. | |
text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
Data type for the text encoder 2 when generating text embeddings. | |
text_encoder_3_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
Data type for the text encoder 3 when generating text embeddings. | |
transformer_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
Data type for the transformer model. | |
vae_dtype (`torch.dtype`, defaults to `torch.bfloat16`): | |
Data type for the VAE model. | |
layerwise_upcasting_modules (`List[str]`, defaults to `[]`): | |
Modules that should have fp8 storage weights but higher precision computation. Choose between ['transformer']. | |
layerwise_upcasting_storage_dtype (`torch.dtype`, defaults to `float8_e4m3fn`): | |
Data type for the layerwise upcasting storage. Choose between ['float8_e4m3fn', 'float8_e5m2']. | |
layerwise_upcasting_skip_modules_pattern (`List[str]`, defaults to `["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"]`): | |
Modules to skip for layerwise upcasting. Layers such as normalization and modulation, when casted to fp8 precision | |
naively (as done in layerwise upcasting), can lead to poorer training and inference quality. We skip these layers | |
by default, and recommend adding more layers to the default list based on the model architecture. | |
DATASET ARGUMENTS | |
----------------- | |
data_root (`str`): | |
A folder containing the training data. | |
dataset_file (`str`, defaults to `None`): | |
Path to a CSV/JSON/JSONL file containing metadata for training. This should be provided if you're not using | |
a directory dataset format containing a simple `prompts.txt` and `videos.txt`/`images.txt` for example. | |
video_column (`str`): | |
The column of the dataset containing videos. Or, the name of the file in `data_root` folder containing the | |
line-separated path to video data. | |
caption_column (`str`): | |
The column of the dataset containing the instance prompt for each video. Or, the name of the file in | |
`data_root` folder containing the line-separated instance prompts. | |
id_token (`str`, defaults to `None`): | |
Identifier token appended to the start of each prompt if provided. This is useful for LoRA-type training. | |
image_resolution_buckets (`List[Tuple[int, int]]`, defaults to `None`): | |
Resolution buckets for images. This should be a list of integer tuples, where each tuple represents the | |
resolution (height, width) of the image. All images will be resized to the nearest bucket resolution. | |
video_resolution_buckets (`List[Tuple[int, int, int]]`, defaults to `None`): | |
Resolution buckets for videos. This should be a list of integer tuples, where each tuple represents the | |
resolution (num_frames, height, width) of the video. All videos will be resized to the nearest bucket | |
resolution. | |
video_reshape_mode (`str`, defaults to `None`): | |
All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']. | |
TODO(aryan): We don't support this. | |
caption_dropout_p (`float`, defaults to `0.00`): | |
Probability of dropout for the caption tokens. This is useful to improve the unconditional generation | |
quality of the model. | |
caption_dropout_technique (`str`, defaults to `empty`): | |
Technique to use for caption dropout. Choose between ['empty', 'zero']. Some models apply caption dropout | |
by setting the prompt condition to an empty string, while others zero-out the text embedding tensors. | |
precompute_conditions (`bool`, defaults to `False`): | |
Whether or not to precompute the conditionings for the model. This is useful for faster training, and | |
reduces the memory requirements. | |
remove_common_llm_caption_prefixes (`bool`, defaults to `False`): | |
Whether or not to remove common LLM caption prefixes. This is useful for improving the quality of the | |
generated text. | |
DATALOADER_ARGUMENTS | |
-------------------- | |
See https://pytorch.org/docs/stable/data.html for more information. | |
dataloader_num_workers (`int`, defaults to `0`): | |
Number of subprocesses to use for data loading. `0` means that the data will be loaded in a blocking manner | |
on the main process. | |
pin_memory (`bool`, defaults to `False`): | |
Whether or not to use the pinned memory setting in PyTorch dataloader. This is useful for faster data loading. | |
DIFFUSION ARGUMENTS | |
------------------- | |
flow_resolution_shifting (`bool`, defaults to `False`): | |
Resolution-dependent shifting of timestep schedules. | |
[Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206). | |
TODO(aryan): We don't support this yet. | |
flow_base_seq_len (`int`, defaults to `256`): | |
Base number of tokens for images/video when applying resolution-dependent shifting. | |
flow_max_seq_len (`int`, defaults to `4096`): | |
Maximum number of tokens for images/video when applying resolution-dependent shifting. | |
flow_base_shift (`float`, defaults to `0.5`): | |
Base shift for timestep schedules when applying resolution-dependent shifting. | |
flow_max_shift (`float`, defaults to `1.15`): | |
Maximum shift for timestep schedules when applying resolution-dependent shifting. | |
flow_shift (`float`, defaults to `1.0`): | |
Instead of training with uniform/logit-normal sigmas, shift them as (shift * sigma) / (1 + (shift - 1) * sigma). | |
Setting it higher is helpful when trying to train models for high-resolution generation or to produce better | |
samples in lower number of inference steps. | |
flow_weighting_scheme (`str`, defaults to `none`): | |
We default to the "none" weighting scheme for uniform sampling and uniform loss. | |
Choose between ['sigma_sqrt', 'logit_normal', 'mode', 'cosmap', 'none']. | |
flow_logit_mean (`float`, defaults to `0.0`): | |
Mean to use when using the `'logit_normal'` weighting scheme. | |
flow_logit_std (`float`, defaults to `1.0`): | |
Standard deviation to use when using the `'logit_normal'` weighting scheme. | |
flow_mode_scale (`float`, defaults to `1.29`): | |
Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`. | |
TRAINING ARGUMENTS | |
------------------ | |
training_type (`str`, defaults to `None`): | |
Type of training to perform. Choose between ['lora']. | |
seed (`int`, defaults to `42`): | |
A seed for reproducible training. | |
batch_size (`int`, defaults to `1`): | |
Per-device batch size. | |
train_epochs (`int`, defaults to `1`): | |
Number of training epochs. | |
train_steps (`int`, defaults to `None`): | |
Total number of training steps to perform. If provided, overrides `train_epochs`. | |
rank (`int`, defaults to `128`): | |
The rank for LoRA matrices. | |
lora_alpha (`float`, defaults to `64`): | |
The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices. | |
target_modules (`List[str]`, defaults to `["to_k", "to_q", "to_v", "to_out.0"]`): | |
The target modules for LoRA. Make sure to modify this based on the model. | |
gradient_accumulation_steps (`int`, defaults to `1`): | |
Number of gradients steps to accumulate before performing an optimizer step. | |
gradient_checkpointing (`bool`, defaults to `False`): | |
Whether or not to use gradient/activation checkpointing to save memory at the expense of slower | |
backward pass. | |
checkpointing_steps (`int`, defaults to `500`): | |
Save a checkpoint of the training state every X training steps. These checkpoints can be used both | |
as final checkpoints in case they are better than the last checkpoint, and are also suitable for | |
resuming training using `resume_from_checkpoint`. | |
checkpointing_limit (`int`, defaults to `None`): | |
Max number of checkpoints to store. | |
resume_from_checkpoint (`str`, defaults to `None`): | |
Whether training should be resumed from a previous checkpoint. Use a path saved by `checkpointing_steps`, | |
or `"latest"` to automatically select the last available checkpoint. | |
OPTIMIZER ARGUMENTS | |
------------------- | |
optimizer (`str`, defaults to `adamw`): | |
The optimizer type to use. Choose between ['adam', 'adamw']. | |
use_8bit_bnb (`bool`, defaults to `False`): | |
Whether to use 8bit variant of the `optimizer` using `bitsandbytes`. | |
lr (`float`, defaults to `1e-4`): | |
Initial learning rate (after the potential warmup period) to use. | |
scale_lr (`bool`, defaults to `False`): | |
Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size. | |
lr_scheduler (`str`, defaults to `cosine_with_restarts`): | |
The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial', | |
'constant', 'constant_with_warmup']. | |
lr_warmup_steps (`int`, defaults to `500`): | |
Number of steps for the warmup in the lr scheduler. | |
lr_num_cycles (`int`, defaults to `1`): | |
Number of hard resets of the lr in cosine_with_restarts scheduler. | |
lr_power (`float`, defaults to `1.0`): | |
Power factor of the polynomial scheduler. | |
beta1 (`float`, defaults to `0.9`): | |
beta2 (`float`, defaults to `0.95`): | |
beta3 (`float`, defaults to `0.999`): | |
weight_decay (`float`, defaults to `0.0001`): | |
Penalty for large weights in the model. | |
epsilon (`float`, defaults to `1e-8`): | |
Small value to avoid division by zero in the optimizer. | |
max_grad_norm (`float`, defaults to `1.0`): | |
Maximum gradient norm to clip the gradients. | |
VALIDATION ARGUMENTS | |
-------------------- | |
validation_prompts (`List[str]`, defaults to `None`): | |
List of prompts to use for validation. If not provided, a random prompt will be selected from the training | |
dataset. | |
validation_images (`List[str]`, defaults to `None`): | |
List of image paths to use for validation. | |
validation_videos (`List[str]`, defaults to `None`): | |
List of video paths to use for validation. | |
validation_heights (`List[int]`, defaults to `None`): | |
List of heights for the validation videos. | |
validation_widths (`List[int]`, defaults to `None`): | |
List of widths for the validation videos. | |
validation_num_frames (`List[int]`, defaults to `None`): | |
List of number of frames for the validation videos. | |
num_validation_videos_per_prompt (`int`, defaults to `1`): | |
Number of videos to use for validation per prompt. | |
validation_every_n_epochs (`int`, defaults to `None`): | |
Perform validation every `n` training epochs. | |
validation_every_n_steps (`int`, defaults to `None`): | |
Perform validation every `n` training steps. | |
enable_model_cpu_offload (`bool`, defaults to `False`): | |
Whether or not to offload different modeling components to CPU during validation. | |
validation_frame_rate (`int`, defaults to `25`): | |
Frame rate to use for the validation videos. This value is defaulted to 25, as used in LTX Video pipeline. | |
MISCELLANEOUS ARGUMENTS | |
----------------------- | |
tracker_name (`str`, defaults to `finetrainers`): | |
Name of the tracker/project to use for logging training metrics. | |
push_to_hub (`bool`, defaults to `False`): | |
Whether or not to push the model to the Hugging Face Hub. | |
hub_token (`str`, defaults to `None`): | |
The API token to use for pushing the model to the Hugging Face Hub. | |
hub_model_id (`str`, defaults to `None`): | |
The model identifier to use for pushing the model to the Hugging Face Hub. | |
output_dir (`str`, defaults to `None`): | |
The directory where the model checkpoints and logs will be stored. | |
logging_dir (`str`, defaults to `logs`): | |
The directory where the logs will be stored. | |
allow_tf32 (`bool`, defaults to `False`): | |
Whether or not to allow the use of TF32 matmul on compatible hardware. | |
nccl_timeout (`int`, defaults to `1800`): | |
Timeout for the NCCL communication. | |
report_to (`str`, defaults to `wandb`): | |
The name of the logger to use for logging training metrics. Choose between ['wandb']. | |
""" | |
# Model arguments | |
model_name: str = None | |
pretrained_model_name_or_path: str = None | |
revision: Optional[str] = None | |
variant: Optional[str] = None | |
cache_dir: Optional[str] = None | |
text_encoder_dtype: torch.dtype = torch.bfloat16 | |
text_encoder_2_dtype: torch.dtype = torch.bfloat16 | |
text_encoder_3_dtype: torch.dtype = torch.bfloat16 | |
transformer_dtype: torch.dtype = torch.bfloat16 | |
vae_dtype: torch.dtype = torch.bfloat16 | |
layerwise_upcasting_modules: List[str] = [] | |
layerwise_upcasting_storage_dtype: torch.dtype = torch.float8_e4m3fn | |
layerwise_upcasting_skip_modules_pattern: List[str] = [ | |
"patch_embed", | |
"pos_embed", | |
"x_embedder", | |
"context_embedder", | |
"time_embed", | |
"^proj_in$", | |
"^proj_out$", | |
"norm", | |
] | |
# Dataset arguments | |
data_root: str = None | |
dataset_file: Optional[str] = None | |
video_column: str = None | |
caption_column: str = None | |
id_token: Optional[str] = None | |
image_resolution_buckets: List[Tuple[int, int]] = None | |
video_resolution_buckets: List[Tuple[int, int, int]] = None | |
video_reshape_mode: Optional[str] = None | |
caption_dropout_p: float = 0.00 | |
caption_dropout_technique: str = "empty" | |
precompute_conditions: bool = False | |
remove_common_llm_caption_prefixes: bool = False | |
# Dataloader arguments | |
dataloader_num_workers: int = 0 | |
pin_memory: bool = False | |
# Diffusion arguments | |
flow_resolution_shifting: bool = False | |
flow_base_seq_len: int = 256 | |
flow_max_seq_len: int = 4096 | |
flow_base_shift: float = 0.5 | |
flow_max_shift: float = 1.15 | |
flow_shift: float = 1.0 | |
flow_weighting_scheme: str = "none" | |
flow_logit_mean: float = 0.0 | |
flow_logit_std: float = 1.0 | |
flow_mode_scale: float = 1.29 | |
# Training arguments | |
training_type: str = None | |
seed: int = 42 | |
batch_size: int = 1 | |
train_epochs: int = 1 | |
train_steps: int = None | |
rank: int = 128 | |
lora_alpha: float = 64 | |
target_modules: List[str] = ["to_k", "to_q", "to_v", "to_out.0"] | |
gradient_accumulation_steps: int = 1 | |
gradient_checkpointing: bool = False | |
checkpointing_steps: int = 500 | |
checkpointing_limit: Optional[int] = None | |
resume_from_checkpoint: Optional[str] = None | |
enable_slicing: bool = False | |
enable_tiling: bool = False | |
# Optimizer arguments | |
optimizer: str = "adamw" | |
use_8bit_bnb: bool = False | |
lr: float = 1e-4 | |
scale_lr: bool = False | |
lr_scheduler: str = "cosine_with_restarts" | |
lr_warmup_steps: int = 0 | |
lr_num_cycles: int = 1 | |
lr_power: float = 1.0 | |
beta1: float = 0.9 | |
beta2: float = 0.95 | |
beta3: float = 0.999 | |
weight_decay: float = 0.0001 | |
epsilon: float = 1e-8 | |
max_grad_norm: float = 1.0 | |
# Validation arguments | |
validation_prompts: List[str] = None | |
validation_images: List[str] = None | |
validation_videos: List[str] = None | |
validation_heights: List[int] = None | |
validation_widths: List[int] = None | |
validation_num_frames: List[int] = None | |
num_validation_videos_per_prompt: int = 1 | |
validation_every_n_epochs: Optional[int] = None | |
validation_every_n_steps: Optional[int] = None | |
enable_model_cpu_offload: bool = False | |
validation_frame_rate: int = 25 | |
# Miscellaneous arguments | |
tracker_name: str = "finetrainers" | |
push_to_hub: bool = False | |
hub_token: Optional[str] = None | |
hub_model_id: Optional[str] = None | |
output_dir: str = None | |
logging_dir: Optional[str] = "logs" | |
allow_tf32: bool = False | |
nccl_timeout: int = 1800 # 30 minutes | |
report_to: str = "wandb" | |
def to_dict(self) -> Dict[str, Any]: | |
return { | |
"model_arguments": { | |
"model_name": self.model_name, | |
"pretrained_model_name_or_path": self.pretrained_model_name_or_path, | |
"revision": self.revision, | |
"variant": self.variant, | |
"cache_dir": self.cache_dir, | |
"text_encoder_dtype": self.text_encoder_dtype, | |
"text_encoder_2_dtype": self.text_encoder_2_dtype, | |
"text_encoder_3_dtype": self.text_encoder_3_dtype, | |
"transformer_dtype": self.transformer_dtype, | |
"vae_dtype": self.vae_dtype, | |
"layerwise_upcasting_modules": self.layerwise_upcasting_modules, | |
"layerwise_upcasting_storage_dtype": self.layerwise_upcasting_storage_dtype, | |
"layerwise_upcasting_skip_modules_pattern": self.layerwise_upcasting_skip_modules_pattern, | |
}, | |
"dataset_arguments": { | |
"data_root": self.data_root, | |
"dataset_file": self.dataset_file, | |
"video_column": self.video_column, | |
"caption_column": self.caption_column, | |
"id_token": self.id_token, | |
"image_resolution_buckets": self.image_resolution_buckets, | |
"video_resolution_buckets": self.video_resolution_buckets, | |
"video_reshape_mode": self.video_reshape_mode, | |
"caption_dropout_p": self.caption_dropout_p, | |
"caption_dropout_technique": self.caption_dropout_technique, | |
"precompute_conditions": self.precompute_conditions, | |
"remove_common_llm_caption_prefixes": self.remove_common_llm_caption_prefixes, | |
}, | |
"dataloader_arguments": { | |
"dataloader_num_workers": self.dataloader_num_workers, | |
"pin_memory": self.pin_memory, | |
}, | |
"diffusion_arguments": { | |
"flow_resolution_shifting": self.flow_resolution_shifting, | |
"flow_base_seq_len": self.flow_base_seq_len, | |
"flow_max_seq_len": self.flow_max_seq_len, | |
"flow_base_shift": self.flow_base_shift, | |
"flow_max_shift": self.flow_max_shift, | |
"flow_shift": self.flow_shift, | |
"flow_weighting_scheme": self.flow_weighting_scheme, | |
"flow_logit_mean": self.flow_logit_mean, | |
"flow_logit_std": self.flow_logit_std, | |
"flow_mode_scale": self.flow_mode_scale, | |
}, | |
"training_arguments": { | |
"training_type": self.training_type, | |
"seed": self.seed, | |
"batch_size": self.batch_size, | |
"train_epochs": self.train_epochs, | |
"train_steps": self.train_steps, | |
"rank": self.rank, | |
"lora_alpha": self.lora_alpha, | |
"target_modules": self.target_modules, | |
"gradient_accumulation_steps": self.gradient_accumulation_steps, | |
"gradient_checkpointing": self.gradient_checkpointing, | |
"checkpointing_steps": self.checkpointing_steps, | |
"checkpointing_limit": self.checkpointing_limit, | |
"resume_from_checkpoint": self.resume_from_checkpoint, | |
"enable_slicing": self.enable_slicing, | |
"enable_tiling": self.enable_tiling, | |
}, | |
"optimizer_arguments": { | |
"optimizer": self.optimizer, | |
"use_8bit_bnb": self.use_8bit_bnb, | |
"lr": self.lr, | |
"scale_lr": self.scale_lr, | |
"lr_scheduler": self.lr_scheduler, | |
"lr_warmup_steps": self.lr_warmup_steps, | |
"lr_num_cycles": self.lr_num_cycles, | |
"lr_power": self.lr_power, | |
"beta1": self.beta1, | |
"beta2": self.beta2, | |
"beta3": self.beta3, | |
"weight_decay": self.weight_decay, | |
"epsilon": self.epsilon, | |
"max_grad_norm": self.max_grad_norm, | |
}, | |
"validation_arguments": { | |
"validation_prompts": self.validation_prompts, | |
"validation_images": self.validation_images, | |
"validation_videos": self.validation_videos, | |
"num_validation_videos_per_prompt": self.num_validation_videos_per_prompt, | |
"validation_every_n_epochs": self.validation_every_n_epochs, | |
"validation_every_n_steps": self.validation_every_n_steps, | |
"enable_model_cpu_offload": self.enable_model_cpu_offload, | |
"validation_frame_rate": self.validation_frame_rate, | |
}, | |
"miscellaneous_arguments": { | |
"tracker_name": self.tracker_name, | |
"push_to_hub": self.push_to_hub, | |
"hub_token": self.hub_token, | |
"hub_model_id": self.hub_model_id, | |
"output_dir": self.output_dir, | |
"logging_dir": self.logging_dir, | |
"allow_tf32": self.allow_tf32, | |
"nccl_timeout": self.nccl_timeout, | |
"report_to": self.report_to, | |
}, | |
} | |
# TODO(aryan): handle more informative messages | |
_IS_ARGUMENTS_REQUIRED = "--list_models" not in sys.argv | |
def parse_arguments() -> Args: | |
parser = argparse.ArgumentParser() | |
if _IS_ARGUMENTS_REQUIRED: | |
_add_model_arguments(parser) | |
_add_dataset_arguments(parser) | |
_add_dataloader_arguments(parser) | |
_add_diffusion_arguments(parser) | |
_add_training_arguments(parser) | |
_add_optimizer_arguments(parser) | |
_add_validation_arguments(parser) | |
_add_miscellaneous_arguments(parser) | |
args = parser.parse_args() | |
return _map_to_args_type(args) | |
else: | |
_add_helper_arguments(parser) | |
args = parser.parse_args() | |
_display_helper_messages(args) | |
sys.exit(0) | |
def validate_args(args: Args): | |
_validated_model_args(args) | |
_validate_training_args(args) | |
_validate_validation_args(args) | |
def _add_model_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
required=True, | |
choices=list(SUPPORTED_MODEL_CONFIGS.keys()), | |
help="Name of model to train.", | |
) | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--text_encoder_dtype", type=str, default="bf16", help="Data type for the text encoder.") | |
parser.add_argument("--text_encoder_2_dtype", type=str, default="bf16", help="Data type for the text encoder 2.") | |
parser.add_argument("--text_encoder_3_dtype", type=str, default="bf16", help="Data type for the text encoder 3.") | |
parser.add_argument("--transformer_dtype", type=str, default="bf16", help="Data type for the transformer model.") | |
parser.add_argument("--vae_dtype", type=str, default="bf16", help="Data type for the VAE model.") | |
parser.add_argument( | |
"--layerwise_upcasting_modules", | |
type=str, | |
default=[], | |
nargs="+", | |
choices=["transformer"], | |
help="Modules that should have fp8 storage weights but higher precision computation.", | |
) | |
parser.add_argument( | |
"--layerwise_upcasting_storage_dtype", | |
type=str, | |
default="float8_e4m3fn", | |
choices=["float8_e4m3fn", "float8_e5m2"], | |
help="Data type for the layerwise upcasting storage.", | |
) | |
parser.add_argument( | |
"--layerwise_upcasting_skip_modules_pattern", | |
type=str, | |
default=["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"], | |
nargs="+", | |
help="Modules to skip for layerwise upcasting.", | |
) | |
def _add_dataset_arguments(parser: argparse.ArgumentParser) -> None: | |
def parse_resolution_bucket(resolution_bucket: str) -> Tuple[int, ...]: | |
return tuple(map(int, resolution_bucket.split("x"))) | |
def parse_image_resolution_bucket(resolution_bucket: str) -> Tuple[int, int]: | |
resolution_bucket = parse_resolution_bucket(resolution_bucket) | |
assert ( | |
len(resolution_bucket) == 2 | |
), f"Expected 2D resolution bucket, got {len(resolution_bucket)}D resolution bucket" | |
return resolution_bucket | |
def parse_video_resolution_bucket(resolution_bucket: str) -> Tuple[int, int, int]: | |
resolution_bucket = parse_resolution_bucket(resolution_bucket) | |
assert ( | |
len(resolution_bucket) == 3 | |
), f"Expected 3D resolution bucket, got {len(resolution_bucket)}D resolution bucket" | |
return resolution_bucket | |
parser.add_argument( | |
"--data_root", | |
type=str, | |
required=True, | |
help=("A folder containing the training data."), | |
) | |
parser.add_argument( | |
"--dataset_file", | |
type=str, | |
default=None, | |
help=("Path to a CSV file if loading prompts/video paths using this format."), | |
) | |
parser.add_argument( | |
"--video_column", | |
type=str, | |
default="video", | |
help="The column of the dataset containing videos. Or, the name of the file in `--data_root` folder containing the line-separated path to video data.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default="text", | |
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--data_root` folder containing the line-separated instance prompts.", | |
) | |
parser.add_argument( | |
"--id_token", | |
type=str, | |
default=None, | |
help="Identifier token appended to the start of each prompt if provided.", | |
) | |
parser.add_argument( | |
"--image_resolution_buckets", | |
type=parse_image_resolution_bucket, | |
default=None, | |
nargs="+", | |
help="Resolution buckets for images.", | |
) | |
parser.add_argument( | |
"--video_resolution_buckets", | |
type=parse_video_resolution_bucket, | |
default=None, | |
nargs="+", | |
help="Resolution buckets for videos.", | |
) | |
parser.add_argument( | |
"--video_reshape_mode", | |
type=str, | |
default=None, | |
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']", | |
) | |
parser.add_argument( | |
"--caption_dropout_p", | |
type=float, | |
default=0.00, | |
help="Probability of dropout for the caption tokens.", | |
) | |
parser.add_argument( | |
"--caption_dropout_technique", | |
type=str, | |
default="empty", | |
choices=["empty", "zero"], | |
help="Technique to use for caption dropout.", | |
) | |
parser.add_argument( | |
"--precompute_conditions", | |
action="store_true", | |
help="Whether or not to precompute the conditionings for the model.", | |
) | |
parser.add_argument( | |
"--remove_common_llm_caption_prefixes", | |
action="store_true", | |
help="Whether or not to remove common LLM caption prefixes.", | |
) | |
def _add_dataloader_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", | |
) | |
parser.add_argument( | |
"--pin_memory", | |
action="store_true", | |
help="Whether or not to use the pinned memory setting in pytorch dataloader.", | |
) | |
def _add_diffusion_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--flow_resolution_shifting", | |
action="store_true", | |
help="Resolution-dependent shifting of timestep schedules.", | |
) | |
parser.add_argument( | |
"--flow_base_seq_len", | |
type=int, | |
default=256, | |
help="Base image/video sequence length for the diffusion model.", | |
) | |
parser.add_argument( | |
"--flow_max_seq_len", | |
type=int, | |
default=4096, | |
help="Maximum image/video sequence length for the diffusion model.", | |
) | |
parser.add_argument( | |
"--flow_base_shift", | |
type=float, | |
default=0.5, | |
help="Base shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)", | |
) | |
parser.add_argument( | |
"--flow_max_shift", | |
type=float, | |
default=1.15, | |
help="Maximum shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)", | |
) | |
parser.add_argument( | |
"--flow_shift", | |
type=float, | |
default=1.0, | |
help="Shift value to use for the flow matching timestep schedule.", | |
) | |
parser.add_argument( | |
"--flow_weighting_scheme", | |
type=str, | |
default="none", | |
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], | |
help='We default to the "none" weighting scheme for uniform sampling and uniform loss', | |
) | |
parser.add_argument( | |
"--flow_logit_mean", | |
type=float, | |
default=0.0, | |
help="Mean to use when using the `'logit_normal'` weighting scheme.", | |
) | |
parser.add_argument( | |
"--flow_logit_std", | |
type=float, | |
default=1.0, | |
help="Standard deviation to use when using the `'logit_normal'` weighting scheme.", | |
) | |
parser.add_argument( | |
"--flow_mode_scale", | |
type=float, | |
default=1.29, | |
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
) | |
def _add_training_arguments(parser: argparse.ArgumentParser) -> None: | |
# TODO: support full finetuning and other kinds | |
parser.add_argument( | |
"--training_type", | |
type=str, | |
choices=["lora", "full-finetune"], | |
required=True, | |
help="Type of training to perform. Choose between ['lora', 'full-finetune']", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
default=1, | |
help="Batch size (per device) for the training dataloader.", | |
) | |
parser.add_argument("--train_epochs", type=int, default=1, help="Number of training epochs.") | |
parser.add_argument( | |
"--train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.", | |
) | |
parser.add_argument("--rank", type=int, default=64, help="The rank for LoRA matrices.") | |
parser.add_argument( | |
"--lora_alpha", | |
type=int, | |
default=64, | |
help="The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.", | |
) | |
parser.add_argument( | |
"--target_modules", | |
type=str, | |
default=["to_k", "to_q", "to_v", "to_out.0"], | |
nargs="+", | |
help="The target modules for LoRA.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpointing_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--enable_slicing", | |
action="store_true", | |
help="Whether or not to use VAE slicing for saving memory.", | |
) | |
parser.add_argument( | |
"--enable_tiling", | |
action="store_true", | |
help="Whether or not to use VAE tiling for saving memory.", | |
) | |
def _add_optimizer_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--lr", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", | |
type=int, | |
default=500, | |
help="Number of steps for the warmup in the lr scheduler.", | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument( | |
"--lr_power", | |
type=float, | |
default=1.0, | |
help="Power factor of the polynomial scheduler.", | |
) | |
parser.add_argument( | |
"--optimizer", | |
type=lambda s: s.lower(), | |
default="adam", | |
choices=["adam", "adamw"], | |
help=("The optimizer type to use."), | |
) | |
parser.add_argument( | |
"--use_8bit_bnb", | |
action="store_true", | |
help=("Whether to use 8bit variant of the `--optimizer` using `bitsandbytes`."), | |
) | |
parser.add_argument( | |
"--beta1", | |
type=float, | |
default=0.9, | |
help="The beta1 parameter for the Adam and Prodigy optimizers.", | |
) | |
parser.add_argument( | |
"--beta2", | |
type=float, | |
default=0.95, | |
help="The beta2 parameter for the Adam and Prodigy optimizers.", | |
) | |
parser.add_argument( | |
"--beta3", | |
type=float, | |
default=None, | |
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.", | |
) | |
parser.add_argument( | |
"--weight_decay", | |
type=float, | |
default=1e-04, | |
help="Weight decay to use for optimizer.", | |
) | |
parser.add_argument( | |
"--epsilon", | |
type=float, | |
default=1e-8, | |
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
) | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
def _add_validation_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--validation_prompts", | |
type=str, | |
default=None, | |
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.", | |
) | |
parser.add_argument( | |
"--validation_images", | |
type=str, | |
default=None, | |
help="One or more image path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.", | |
) | |
parser.add_argument( | |
"--validation_videos", | |
type=str, | |
default=None, | |
help="One or more video path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.", | |
) | |
parser.add_argument( | |
"--validation_separator", | |
type=str, | |
default=":::", | |
help="String that separates multiple validation prompts", | |
) | |
parser.add_argument( | |
"--num_validation_videos", | |
type=int, | |
default=1, | |
help="Number of videos that should be generated during validation per `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=None, | |
help="Run validation every X training epochs. Validation consists of running the validation prompt `args.num_validation_videos` times.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=None, | |
help="Run validation every X training steps. Validation consists of running the validation prompt `args.num_validation_videos` times.", | |
) | |
parser.add_argument( | |
"--validation_frame_rate", | |
type=int, | |
default=25, | |
help="Frame rate to use for the validation videos.", | |
) | |
parser.add_argument( | |
"--enable_model_cpu_offload", | |
action="store_true", | |
help="Whether or not to enable model-wise CPU offloading when performing validation/testing to save memory.", | |
) | |
def _add_miscellaneous_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument("--tracker_name", type=str, default="finetrainers", help="Project tracker name") | |
parser.add_argument( | |
"--push_to_hub", | |
action="store_true", | |
help="Whether or not to push the model to the Hub.", | |
) | |
parser.add_argument( | |
"--hub_token", | |
type=str, | |
default=None, | |
help="The token to use to push to the Model Hub.", | |
) | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="finetrainers-training", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help="Directory where logs are stored.", | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--nccl_timeout", | |
type=int, | |
default=600, | |
help="Maximum timeout duration before which allgather, or related, operations fail in multi-GPU/multi-node training settings.", | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="none", | |
choices=["none", "wandb"], | |
help="The integration to report the results and logs to.", | |
) | |
def _add_helper_arguments(parser: argparse.ArgumentParser) -> None: | |
parser.add_argument( | |
"--list_models", | |
action="store_true", | |
help="List all the supported models.", | |
) | |
_DTYPE_MAP = { | |
"bf16": torch.bfloat16, | |
"fp16": torch.float16, | |
"fp32": torch.float32, | |
"float8_e4m3fn": torch.float8_e4m3fn, | |
"float8_e5m2": torch.float8_e5m2, | |
} | |
def _map_to_args_type(args: Dict[str, Any]) -> Args: | |
result_args = Args() | |
# Model arguments | |
result_args.model_name = args.model_name | |
result_args.pretrained_model_name_or_path = args.pretrained_model_name_or_path | |
result_args.revision = args.revision | |
result_args.variant = args.variant | |
result_args.cache_dir = args.cache_dir | |
result_args.text_encoder_dtype = _DTYPE_MAP[args.text_encoder_dtype] | |
result_args.text_encoder_2_dtype = _DTYPE_MAP[args.text_encoder_2_dtype] | |
result_args.text_encoder_3_dtype = _DTYPE_MAP[args.text_encoder_3_dtype] | |
result_args.transformer_dtype = _DTYPE_MAP[args.transformer_dtype] | |
result_args.vae_dtype = _DTYPE_MAP[args.vae_dtype] | |
result_args.layerwise_upcasting_modules = args.layerwise_upcasting_modules | |
result_args.layerwise_upcasting_storage_dtype = _DTYPE_MAP[args.layerwise_upcasting_storage_dtype] | |
result_args.layerwise_upcasting_skip_modules_pattern = args.layerwise_upcasting_skip_modules_pattern | |
# Dataset arguments | |
if args.data_root is None and args.dataset_file is None: | |
raise ValueError("At least one of `data_root` or `dataset_file` should be provided.") | |
result_args.data_root = args.data_root | |
result_args.dataset_file = args.dataset_file | |
result_args.video_column = args.video_column | |
result_args.caption_column = args.caption_column | |
result_args.id_token = args.id_token | |
result_args.image_resolution_buckets = args.image_resolution_buckets or DEFAULT_IMAGE_RESOLUTION_BUCKETS | |
result_args.video_resolution_buckets = args.video_resolution_buckets or DEFAULT_VIDEO_RESOLUTION_BUCKETS | |
result_args.video_reshape_mode = args.video_reshape_mode | |
result_args.caption_dropout_p = args.caption_dropout_p | |
result_args.caption_dropout_technique = args.caption_dropout_technique | |
result_args.precompute_conditions = args.precompute_conditions | |
result_args.remove_common_llm_caption_prefixes = args.remove_common_llm_caption_prefixes | |
# Dataloader arguments | |
result_args.dataloader_num_workers = args.dataloader_num_workers | |
result_args.pin_memory = args.pin_memory | |
# Diffusion arguments | |
result_args.flow_resolution_shifting = args.flow_resolution_shifting | |
result_args.flow_base_seq_len = args.flow_base_seq_len | |
result_args.flow_max_seq_len = args.flow_max_seq_len | |
result_args.flow_base_shift = args.flow_base_shift | |
result_args.flow_max_shift = args.flow_max_shift | |
result_args.flow_shift = args.flow_shift | |
result_args.flow_weighting_scheme = args.flow_weighting_scheme | |
result_args.flow_logit_mean = args.flow_logit_mean | |
result_args.flow_logit_std = args.flow_logit_std | |
result_args.flow_mode_scale = args.flow_mode_scale | |
# Training arguments | |
result_args.training_type = args.training_type | |
result_args.seed = args.seed | |
result_args.batch_size = args.batch_size | |
result_args.train_epochs = args.train_epochs | |
result_args.train_steps = args.train_steps | |
result_args.rank = args.rank | |
result_args.lora_alpha = args.lora_alpha | |
result_args.target_modules = args.target_modules | |
result_args.gradient_accumulation_steps = args.gradient_accumulation_steps | |
result_args.gradient_checkpointing = args.gradient_checkpointing | |
result_args.checkpointing_steps = args.checkpointing_steps | |
result_args.checkpointing_limit = args.checkpointing_limit | |
result_args.resume_from_checkpoint = args.resume_from_checkpoint | |
result_args.enable_slicing = args.enable_slicing | |
result_args.enable_tiling = args.enable_tiling | |
# Optimizer arguments | |
result_args.optimizer = args.optimizer or "adamw" | |
result_args.use_8bit_bnb = args.use_8bit_bnb | |
result_args.lr = args.lr or 1e-4 | |
result_args.scale_lr = args.scale_lr | |
result_args.lr_scheduler = args.lr_scheduler | |
result_args.lr_warmup_steps = args.lr_warmup_steps | |
result_args.lr_num_cycles = args.lr_num_cycles | |
result_args.lr_power = args.lr_power | |
result_args.beta1 = args.beta1 | |
result_args.beta2 = args.beta2 | |
result_args.beta3 = args.beta3 | |
result_args.weight_decay = args.weight_decay | |
result_args.epsilon = args.epsilon | |
result_args.max_grad_norm = args.max_grad_norm | |
# Validation arguments | |
validation_prompts = args.validation_prompts.split(args.validation_separator) if args.validation_prompts else [] | |
validation_images = args.validation_images.split(args.validation_separator) if args.validation_images else None | |
validation_videos = args.validation_videos.split(args.validation_separator) if args.validation_videos else None | |
stripped_validation_prompts = [] | |
validation_heights = [] | |
validation_widths = [] | |
validation_num_frames = [] | |
for prompt in validation_prompts: | |
prompt: str | |
prompt = prompt.strip() | |
actual_prompt, separator, resolution = prompt.rpartition("@@@") | |
stripped_validation_prompts.append(actual_prompt) | |
num_frames, height, width = None, None, None | |
if len(resolution) > 0: | |
num_frames, height, width = map(int, resolution.split("x")) | |
validation_num_frames.append(num_frames) | |
validation_heights.append(height) | |
validation_widths.append(width) | |
if validation_images is None: | |
validation_images = [None] * len(validation_prompts) | |
if validation_videos is None: | |
validation_videos = [None] * len(validation_prompts) | |
result_args.validation_prompts = stripped_validation_prompts | |
result_args.validation_heights = validation_heights | |
result_args.validation_widths = validation_widths | |
result_args.validation_num_frames = validation_num_frames | |
result_args.validation_images = validation_images | |
result_args.validation_videos = validation_videos | |
result_args.num_validation_videos_per_prompt = args.num_validation_videos | |
result_args.validation_every_n_epochs = args.validation_epochs | |
result_args.validation_every_n_steps = args.validation_steps | |
result_args.enable_model_cpu_offload = args.enable_model_cpu_offload | |
result_args.validation_frame_rate = args.validation_frame_rate | |
# Miscellaneous arguments | |
result_args.tracker_name = args.tracker_name | |
result_args.push_to_hub = args.push_to_hub | |
result_args.hub_token = args.hub_token | |
result_args.hub_model_id = args.hub_model_id | |
result_args.output_dir = args.output_dir | |
result_args.logging_dir = args.logging_dir | |
result_args.allow_tf32 = args.allow_tf32 | |
result_args.nccl_timeout = args.nccl_timeout | |
result_args.report_to = args.report_to | |
return result_args | |
def _validated_model_args(args: Args): | |
if args.training_type == "full-finetune": | |
assert ( | |
"transformer" not in args.layerwise_upcasting_modules | |
), "Layerwise upcasting is not supported for full-finetune training" | |
def _validate_training_args(args: Args): | |
if args.training_type == "lora": | |
assert args.rank is not None, "Rank is required for LoRA training" | |
assert args.lora_alpha is not None, "LoRA alpha is required for LoRA training" | |
assert ( | |
args.target_modules is not None and len(args.target_modules) > 0 | |
), "Target modules are required for LoRA training" | |
def _validate_validation_args(args: Args): | |
assert args.validation_prompts is not None, "Validation prompts are required for validation" | |
if args.validation_images is not None: | |
assert len(args.validation_images) == len( | |
args.validation_prompts | |
), "Validation images and prompts should be of same length" | |
if args.validation_videos is not None: | |
assert len(args.validation_videos) == len( | |
args.validation_prompts | |
), "Validation videos and prompts should be of same length" | |
assert len(args.validation_prompts) == len( | |
args.validation_heights | |
), "Validation prompts and heights should be of same length" | |
assert len(args.validation_prompts) == len( | |
args.validation_widths | |
), "Validation prompts and widths should be of same length" | |
def _display_helper_messages(args: argparse.Namespace): | |
if args.list_models: | |
print("Supported models:") | |
for index, model_name in enumerate(SUPPORTED_MODEL_CONFIGS.keys()): | |
print(f" {index + 1}. {model_name}") | |