VideoModelStudio / vms /training_log_parser.py
jbilcke-hf's picture
jbilcke-hf HF Staff
working on training job failure recovery
54a2a4e
raw
history blame
8.26 kB
import re
import logging
from dataclasses import dataclass
from typing import Optional, Dict, Any
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
@dataclass
class TrainingState:
"""Represents the current state of training"""
status: str = "idle" # idle, initializing, training, completed, error, stopped
current_step: int = 0
total_steps: int = 0
current_epoch: int = 0
total_epochs: int = 0
step_loss: float = 0.0
learning_rate: float = 0.0
grad_norm: float = 0.0
memory_allocated: float = 0.0
memory_reserved: float = 0.0
start_time: Optional[datetime] = None
last_step_time: Optional[datetime] = None
estimated_remaining: Optional[timedelta] = None
error_message: Optional[str] = None
initialization_stage: str = ""
download_progress: float = 0.0
def calculate_progress(self) -> float:
"""Calculate overall progress as percentage"""
if self.total_steps == 0:
return 0.0
return (self.current_step / self.total_steps) * 100
def to_dict(self) -> Dict[str, Any]:
"""Convert state to dictionary for UI updates"""
# Calculate elapsed time only if training is active and we have a start time
if self.start_time and self.status in ["training", "initializing"]:
elapsed = str(datetime.now() - self.start_time)
else:
# Use the last known elapsed time or show 0
elapsed = "0:00:00" if not self.last_step_time else str(self.last_step_time - self.start_time if self.start_time else "0:00:00")
# Use precomputed remaining time from logs if available
remaining = str(self.estimated_remaining) if self.estimated_remaining else "calculating..."
return {
"status": self.status,
"progress": f"{self.calculate_progress():.1f}%",
"current_step": self.current_step,
"total_steps": self.total_steps,
"current_epoch": self.current_epoch,
"total_epochs": self.total_epochs,
"step_loss": f"{self.step_loss:.4f}",
"learning_rate": f"{self.learning_rate:.2e}",
"grad_norm": f"{self.grad_norm:.4f}",
"memory": f"{self.memory_allocated:.1f}GB allocated, {self.memory_reserved:.1f}GB reserved",
"elapsed": elapsed,
"remaining": remaining,
"initialization_stage": self.initialization_stage,
"error_message": self.error_message,
"download_progress": self.download_progress
}
class TrainingLogParser:
"""Parser for training logs with state management"""
def __init__(self):
self.state = TrainingState()
self._last_update_time = None
def parse_line(self, line: str) -> Optional[Dict[str, Any]]:
"""Parse a single log line and update state"""
try:
# For debugging
#logger.info(f"Parsing line: {line[:100]}...")
# Training step progress line example:
# Training steps: 1%|▏ | 1/70 [00:14<16:11, 14.08s/it, grad_norm=0.00789, step_loss=0.555, lr=3e-7]
if ("Started training" in line) or ("Starting training" in line):
self.state.status = "training"
# Check for "Training steps:" which contains the progress information
if "Training steps:" in line:
# Set status to training if we see this
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
# Extract step numbers
steps_match = re.search(r"(\d+)/(\d+)", line)
if steps_match:
self.state.current_step = int(steps_match.group(1))
self.state.total_steps = int(steps_match.group(2))
# Extract metrics
for pattern, attr in [
(r"step_loss=([0-9.e-]+)", "step_loss"),
(r"lr=([0-9.e-]+)", "learning_rate"),
(r"grad_norm=([0-9.e-]+)", "grad_norm")
]:
match = re.search(pattern, line)
if match:
setattr(self.state, attr, float(match.group(1)))
# Extract time remaining directly from the log
# Format: [MM:SS<M:SS:SS, SS.SSs/it]
time_remaining_match = re.search(r"<(\d+:\d+:\d+)", line)
if time_remaining_match:
remaining_str = time_remaining_match.group(1)
# Store the string directly - no need to parse it
self.state.estimated_remaining = remaining_str
# If no direct time estimate, look for hour:min format
if not time_remaining_match:
hour_min_match = re.search(r"<(\d+h\s*\d+m)", line)
if hour_min_match:
self.state.estimated_remaining = hour_min_match.group(1)
# Update last processing time
self.state.last_step_time = datetime.now()
logger.info(f"Updated training state: step={self.state.current_step}/{self.state.total_steps}, loss={self.state.step_loss}")
return self.state.to_dict()
# Epoch information
# there is an issue with how epoch is reported because we display:
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
# we should probably just show the steps
epoch_match = re.search(r"Starting epoch \((\d+)/(\d+)\)", line)
if epoch_match:
self.state.current_epoch = int(epoch_match.group(1))
self.state.total_epochs = int(epoch_match.group(2))
logger.info(f"Updated epoch: {self.state.current_epoch}/{self.state.total_epochs}")
return self.state.to_dict()
# Initialization stages
if "Initializing" in line:
self.state.status = "initializing"
self.state.initialization_stage = line.split("Initializing")[1].strip()
logger.info(f"Initialization stage: {self.state.initialization_stage}")
return self.state.to_dict()
# Memory usage
if "memory_allocated" in line:
mem_match = re.search(r'"memory_allocated":\s*([0-9.]+)', line)
if mem_match:
self.state.memory_allocated = float(mem_match.group(1))
reserved_match = re.search(r'"memory_reserved":\s*([0-9.]+)', line)
if reserved_match:
self.state.memory_reserved = float(reserved_match.group(1))
logger.info(f"Updated memory: allocated={self.state.memory_allocated}GB, reserved={self.state.memory_reserved}GB")
return self.state.to_dict()
# Completion states
if "Training completed successfully" in line:
self.status = "completed"
# Store final elapsed time
self.last_step_time = datetime.now()
logger.info("Training completed")
return self.state.to_dict()
if any(x in line for x in ["Training process stopped", "Training stopped"]):
self.status = "stopped"
# Store final elapsed time
self.last_step_time = datetime.now()
logger.info("Training stopped")
return self.state.to_dict()
if "Error during training:" in line:
self.state.status = "error"
self.state.error_message = line.split("Error during training:")[1].strip()
logger.info(f"Training error: {self.state.error_message}")
return self.state.to_dict()
except Exception as e:
logger.error(f"Error parsing line: {str(e)}")
return None
def reset(self):
"""Reset parser state"""
self.state = TrainingState()
self._last_update_time = None