jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
15 kB
import functools
import os
from typing import Any, Dict, List, Optional, Tuple
import torch
from accelerate import init_empty_weights
from diffusers import (
AutoencoderKLHunyuanVideo,
FlowMatchEulerDiscreteScheduler,
HunyuanVideoPipeline,
HunyuanVideoTransformer3DModel,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, LlamaModel
import finetrainers.functional as FF
from finetrainers.data import VideoArtifact
from finetrainers.logging import get_logger
from finetrainers.models.modeling_utils import ModelSpecification
from finetrainers.processors import CLIPPooledProcessor, LlamaProcessor, ProcessorMixin
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function
logger = get_logger()
class HunyuanLatentEncodeProcessor(ProcessorMixin):
r"""
Processor to encode image/video into latents using the HunyuanVideo VAE.
Args:
output_names (`List[str]`):
The names of the outputs that the processor returns. The outputs are in the following order:
- latents: The latents of the input image/video.
"""
def __init__(self, output_names: List[str]):
super().__init__()
self.output_names = output_names
assert len(self.output_names) == 1
def forward(
self,
vae: AutoencoderKLHunyuanVideo,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
) -> Dict[str, torch.Tensor]:
device = vae.device
dtype = vae.dtype
if image is not None:
video = image.unsqueeze(1)
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
video = video.to(device=device, dtype=vae.dtype)
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
if compute_posterior:
latents = vae.encode(video).latent_dist.sample(generator=generator)
latents = latents.to(dtype=dtype)
else:
if vae.use_slicing and video.shape[0] > 1:
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
moments = torch.cat(encoded_slices)
else:
moments = vae._encode(video)
latents = moments.to(dtype=dtype)
return {self.output_names[0]: latents}
class HunyuanVideoModelSpecification(ModelSpecification):
def __init__(
self,
pretrained_model_name_or_path: str = "hunyuanvideo-community/HunyuanVideo",
tokenizer_id: Optional[str] = None,
tokenizer_2_id: Optional[str] = None,
text_encoder_id: Optional[str] = None,
text_encoder_2_id: Optional[str] = None,
transformer_id: Optional[str] = None,
vae_id: Optional[str] = None,
text_encoder_dtype: torch.dtype = torch.bfloat16,
transformer_dtype: torch.dtype = torch.bfloat16,
vae_dtype: torch.dtype = torch.bfloat16,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
condition_model_processors: List[ProcessorMixin] = None,
latent_model_processors: List[ProcessorMixin] = None,
**kwargs,
) -> None:
super().__init__(
pretrained_model_name_or_path=pretrained_model_name_or_path,
tokenizer_id=tokenizer_id,
tokenizer_2_id=tokenizer_2_id,
text_encoder_id=text_encoder_id,
text_encoder_2_id=text_encoder_2_id,
transformer_id=transformer_id,
vae_id=vae_id,
text_encoder_dtype=text_encoder_dtype,
transformer_dtype=transformer_dtype,
vae_dtype=vae_dtype,
revision=revision,
cache_dir=cache_dir,
)
if condition_model_processors is None:
condition_model_processors = [
LlamaProcessor(["encoder_hidden_states", "encoder_attention_mask"]),
CLIPPooledProcessor(
["pooled_projections"],
input_names={"tokenizer_2": "tokenizer", "text_encoder_2": "text_encoder"},
),
]
if latent_model_processors is None:
latent_model_processors = [HunyuanLatentEncodeProcessor(["latents"])]
self.condition_model_processors = condition_model_processors
self.latent_model_processors = latent_model_processors
@property
def _resolution_dim_keys(self):
return {"latents": (2, 3, 4)}
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.tokenizer_id is not None:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
)
if self.tokenizer_2_id is not None:
tokenizer_2 = AutoTokenizer.from_pretrained(self.tokenizer_2_id, **common_kwargs)
else:
tokenizer_2 = CLIPTokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer_2", **common_kwargs
)
if self.text_encoder_id is not None:
text_encoder = LlamaModel.from_pretrained(
self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
)
else:
text_encoder = LlamaModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=self.text_encoder_dtype,
**common_kwargs,
)
if self.text_encoder_2_id is not None:
text_encoder_2 = CLIPTextModel.from_pretrained(
self.text_encoder_2_id, torch_dtype=self.text_encoder_2_dtype, **common_kwargs
)
else:
text_encoder_2 = CLIPTextModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=self.text_encoder_2_dtype,
**common_kwargs,
)
return {
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
}
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.vae_id is not None:
vae = AutoencoderKLHunyuanVideo.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
else:
vae = AutoencoderKLHunyuanVideo.from_pretrained(
self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
)
return {"vae": vae}
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.transformer_id is not None:
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
)
else:
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=self.transformer_dtype,
**common_kwargs,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {"transformer": transformer, "scheduler": scheduler}
def load_pipeline(
self,
tokenizer: Optional[AutoTokenizer] = None,
tokenizer_2: Optional[CLIPTokenizer] = None,
text_encoder: Optional[LlamaModel] = None,
text_encoder_2: Optional[CLIPTextModel] = None,
transformer: Optional[HunyuanVideoTransformer3DModel] = None,
vae: Optional[AutoencoderKLHunyuanVideo] = None,
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
enable_slicing: bool = False,
enable_tiling: bool = False,
enable_model_cpu_offload: bool = False,
training: bool = False,
**kwargs,
) -> HunyuanVideoPipeline:
components = {
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
}
components = get_non_null_items(components)
pipe = HunyuanVideoPipeline.from_pretrained(
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
)
pipe.text_encoder.to(self.text_encoder_dtype)
pipe.text_encoder_2.to(self.text_encoder_2_dtype)
pipe.vae.to(self.vae_dtype)
_enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
if not training:
pipe.transformer.to(self.transformer_dtype)
if enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
return pipe
@torch.no_grad()
def prepare_conditions(
self,
tokenizer: AutoTokenizer,
tokenizer_2: CLIPTokenizer,
text_encoder: LlamaModel,
text_encoder_2: CLIPTextModel,
caption: str,
max_sequence_length: int = 256,
**kwargs,
) -> Dict[str, Any]:
conditions = {
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"caption": caption,
"max_sequence_length": max_sequence_length,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_conditions(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
@torch.no_grad()
def prepare_latents(
self,
vae: AutoencoderKLHunyuanVideo,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Dict[str, torch.Tensor]:
conditions = {
"vae": vae,
"image": image,
"video": video,
"generator": generator,
"compute_posterior": compute_posterior,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_latents(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
def forward(
self,
transformer: HunyuanVideoTransformer3DModel,
condition_model_conditions: Dict[str, torch.Tensor],
latent_model_conditions: Dict[str, torch.Tensor],
sigmas: torch.Tensor,
guidance: float = 1.0,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, ...]:
if compute_posterior:
latents = latent_model_conditions.pop("latents")
else:
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
latents = posterior.sample(generator=generator)
del posterior
latents = latents * self.vae_config.scaling_factor
noise = torch.zeros_like(latents).normal_(generator=generator)
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
timesteps = (sigmas.flatten() * 1000.0).long()
guidance = latents.new_full((latents.size(0),), fill_value=guidance) * 1000.0
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
latent_model_conditions["guidance"] = guidance
pred = transformer(
**latent_model_conditions,
**condition_model_conditions,
timestep=timesteps,
return_dict=False,
)[0]
target = FF.flow_match_target(noise, latents)
return pred, target, sigmas
def validation(
self,
pipeline: HunyuanVideoPipeline,
prompt: str,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
**kwargs,
) -> List[ArtifactType]:
generation_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"generator": generator,
"return_dict": True,
"output_type": "pil",
}
generation_kwargs = get_non_null_items(generation_kwargs)
video = pipeline(**generation_kwargs).frames[0]
return [VideoArtifact(value=video)]
def _save_lora_weights(
self,
directory: str,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
metadata: Optional[Dict[str, str]] = None,
*args,
**kwargs,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
HunyuanVideoPipeline.save_lora_weights(
directory,
transformer_state_dict,
save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
safe_serialization=True,
)
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def _save_model(
self,
directory: str,
transformer: HunyuanVideoTransformer3DModel,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
with init_empty_weights():
transformer_copy = HunyuanVideoTransformer3DModel.from_config(transformer.config)
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))