Spaces:
Running
Running
import datetime | |
import os | |
import pathlib | |
from typing import Optional | |
import datasets.distributed | |
import torch | |
from ..data import DPDataLoader | |
from ..logging import get_logger | |
from ..utils import get_device_info | |
from .base import BaseParallelBackend | |
from .utils import apply_ddp_ptd | |
_device_type, _device_module = get_device_info() | |
logger = get_logger() | |
class PytorchDTensorParallelBackend(BaseParallelBackend): | |
def __init__( | |
self, | |
world_size: int, | |
pp_degree: int = 1, | |
dp_degree: int = 1, | |
dp_shards: int = -1, | |
cp_degree: int = 1, | |
tp_degree: int = 1, | |
backend: str = "nccl", | |
timeout: int = 180, | |
logging_dir: Optional[str] = None, | |
output_dir: Optional[str] = None, | |
gradient_accumulation_steps: Optional[int] = None, | |
) -> None: | |
super().__init__() | |
self._world_size = world_size | |
self._pp_degree = pp_degree | |
self._dp_degree = dp_degree | |
self._dp_shards = dp_shards | |
self._cp_degree = cp_degree | |
self._tp_degree = tp_degree | |
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None | |
self._logging_dir = ( | |
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None | |
) | |
self._backend = backend | |
self._timeout = timeout | |
for degree in [pp_degree, dp_degree, dp_shards, cp_degree, tp_degree]: | |
if degree < 1: | |
raise ValueError(f"Parallel degree must be at least 1, got {degree}.") | |
if dp_shards * pp_degree * dp_degree * cp_degree * tp_degree != world_size: | |
raise ValueError( | |
f"World size {world_size} must be divisible by the product of all parallel degrees and data parallel shards." | |
) | |
torch.distributed.init_process_group(backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)) | |
_device_module.set_device(self.local_rank) | |
logger.info( | |
f"Initialized parallel state with:\n" | |
f" - World size: {world_size}\n" | |
f" - Pipeline parallel degree: {pp_degree}\n" | |
f" - Data parallel degree: {dp_degree}\n" | |
f" - Context parallel degree: {cp_degree}\n" | |
f" - Tensor parallel degree: {tp_degree}\n" | |
f" - Data parallel shards: {dp_shards}\n" | |
) | |
self._mesh: torch.distributed.DeviceMesh = None | |
def apply_ddp( | |
self, model: torch.nn.Module, device_mesh: Optional[torch.distributed.DeviceMesh] = None | |
) -> torch.nn.Module: | |
if device_mesh is None: | |
device_mesh = self.get_mesh() | |
apply_ddp_ptd(model, device_mesh) | |
logger.debug("Applied PytorchDTensorParallel::apply_ddp to model.") | |
return model | |
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset: | |
dp_mesh = self.get_mesh("dp_replicate") | |
if dp_mesh is None: | |
dp_mesh = self.get_mesh() | |
if self.world_size > 1: | |
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size() | |
else: | |
dp_local_rank, dp_world_size = 0, 1 | |
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size) | |
logger.debug("PytorchDTensorParallelBackend::prepare_dataset completed!") | |
return dataset | |
def prepare_dataloader( | |
self, dataset: torch.utils.data.IterableDataset, batch_size: int, num_workers: int, pin_memory: bool | |
) -> DPDataLoader: | |
dp_mesh = self.get_mesh("dp_replicate") | |
if dp_mesh is None: | |
dp_mesh = self.get_mesh() | |
if self.world_size > 1: | |
dp_local_rank = dp_mesh.get_local_rank() | |
else: | |
dp_local_rank = 0 | |
dataloader = DPDataLoader(dp_local_rank, dataset, batch_size=batch_size, num_workers=num_workers) | |
logger.debug("PytorchDTensorParallelBackend::prepare_dataloader completed!") | |
return dataloader | |
def prepare_optimizer(self, optimizer, lr_scheduler): | |
logger.debug("PytorchDTensorParallelBackend::prepare_optimizer completed!") | |
return optimizer, lr_scheduler | |
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh: | |
def _get_mesh(): | |
if name is None: | |
return self._mesh | |
try: | |
return self._mesh[name] | |
except (KeyError, RuntimeError): | |
if self._mesh.ndim == 0: | |
return None | |
return self._mesh | |
if self._mesh is not None: | |
return _get_mesh() | |
mesh_list = [ | |
("pp", self._pp_degree), | |
("dp_replicate", self._dp_degree), | |
("dp_shard", self._dp_shards), | |
("cp", self._cp_degree), | |
("tp", self._tp_degree), | |
] | |
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1] | |
names = [x[0] for x in mesh_list] | |
degrees = [x[1] for x in mesh_list] | |
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names) | |
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], [] | |
if self.data_replication_enabled: | |
dp_mesh_names.append("dp_replicate") | |
dp_cp_mesh_names.append("dp_replicate") | |
if self.data_sharding_enabled: | |
dp_mesh_names.append("dp_shard") | |
dp_cp_mesh_names.append("dp_shard") | |
dp_shard_cp_mesh_names.append("dp_shard") | |
if self.context_parallel_enabled: | |
dp_cp_mesh_names.append("cp") | |
dp_shard_cp_mesh_names.append("cp") | |
if len(dp_mesh_names) > 0: | |
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp") | |
if len(dp_cp_mesh_names) > 0: | |
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp") | |
if len(dp_shard_cp_mesh_names) > 0: | |
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp") | |
logger.debug(f"Device mesh: {mesh}") | |
self._mesh = mesh | |
return _get_mesh() | |
def world_size(self): | |
return torch.distributed.get_world_size() | |
def rank(self): | |
return torch.distributed.get_rank() | |
def local_rank(self): | |
return int(os.environ.get("LOCAL_RANK", 0)) | |
def is_main_process(self): | |
r"""Returns `True` if the current process is the main process on the master node.""" | |
return self.rank == 0 | |
def is_local_main_process(self): | |
r"""Returns `True` if the current process is the main process on local node.""" | |
return self.local_rank == 0 | |
def device(self): | |
return torch.device(_device_type, self.local_rank) | |
def wait_for_everyone(self): | |
return torch.distributed.barrier() | |
# @contextmanager | |
# def main_process_first(self): | |
# if self.is_main_process: | |
# yield | |
# self.wait_for_everyone() | |
# else: | |
# self.wait_for_everyone() | |
# yield | |
def destroy(self): | |
if self.is_main_process: | |
self.tracker.finish() | |
return torch.distributed.destroy_process_group() | |
def pipeline_parallel_enabled(self): | |
return self._pp_degree > 1 | |
def data_parallel_enabled(self): | |
return self._dp_degree > 1 or self._dp_shards > 1 | |
def data_replication_enabled(self): | |
return self._dp_degree > 1 | |
def data_sharding_enabled(self): | |
return self._dp_shards > 1 | |
def context_parallel_enabled(self): | |
return self._cp_degree > 1 | |
def tensor_parallel_enabled(self): | |
return self._tp_degree > 1 | |