jbilcke-hf's picture
jbilcke-hf HF Staff
upgrading finetrainers (and losing my extra code + improvements)
80ebcb3
raw
history blame
5.26 kB
from typing import Any, Dict, Optional, Tuple
import diffusers
import torch
from diffusers import LTXVideoTransformer3DModel
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils.import_utils import is_torch_version
def patch_transformer_forward() -> None:
_perform_ltx_transformer_forward_patch()
def patch_apply_rotary_emb_for_tp_compatibility() -> None:
_perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch()
def _perform_ltx_transformer_forward_patch() -> None:
LTXVideoTransformer3DModel.forward = _patched_LTXVideoTransformer3Dforward
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
def apply_rotary_emb(x, freqs):
cos, sin = freqs
# ======== THIS IS CHANGED FROM THE ORIGINAL IMPLEMENTATION ========
# The change is made due to unsupported DTensor operation aten.ops.unbind
# FIXME: Once aten.ops.unbind support lands, this will no longer be required
# x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2]
x_real, x_imag = x.unflatten(2, (-1, 2)).chunk(2, dim=-1) # [B, S, H, D // 2]
# ==================================================================
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb
def _patched_LTXVideoTransformer3Dforward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_attention_mask: torch.Tensor,
num_frames: int,
height: int,
width: int,
rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
return_dict: bool = True,
*args,
**kwargs,
) -> torch.Tensor:
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
batch_size = hidden_states.size(0)
# ===== This is modified compared to Diffusers =====
# This is done because the Diffusers pipeline will pass in a 1D tensor for timestep
if timestep.ndim == 1:
timestep = timestep.view(-1, 1, 1).expand(-1, *hidden_states.shape[1:-1], -1)
# ==================================================
temb, embedded_timestep = self.time_embed(
timestep.flatten(),
batch_size=batch_size,
hidden_dtype=hidden_states.dtype,
)
# ===== This is modified compared to Diffusers =====
# temb = temb.view(batch_size, -1, temb.size(-1))
# embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))
# ==================================================
# This is done to make it possible to use per-token timestep embedding
temb = temb.view(batch_size, *hidden_states.shape[1:-1], temb.size(-1))
embedded_timestep = embedded_timestep.view(batch_size, *hidden_states.shape[1:-1], embedded_timestep.size(-1))
# ==================================================
hidden_states = self.proj_in(hidden_states)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))
for block in self.transformer_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
encoder_attention_mask,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
encoder_attention_mask=encoder_attention_mask,
)
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
hidden_states = self.norm_out(hidden_states)
hidden_states = hidden_states * (1 + scale) + shift
output = self.proj_out(hidden_states)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)