Spaces:
Running
Running
from typing import Any, Dict, Optional, Tuple | |
import diffusers | |
import torch | |
from diffusers import LTXVideoTransformer3DModel | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.utils.import_utils import is_torch_version | |
def patch_transformer_forward() -> None: | |
_perform_ltx_transformer_forward_patch() | |
def patch_apply_rotary_emb_for_tp_compatibility() -> None: | |
_perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() | |
def _perform_ltx_transformer_forward_patch() -> None: | |
LTXVideoTransformer3DModel.forward = _patched_LTXVideoTransformer3Dforward | |
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None: | |
def apply_rotary_emb(x, freqs): | |
cos, sin = freqs | |
# ======== THIS IS CHANGED FROM THE ORIGINAL IMPLEMENTATION ======== | |
# The change is made due to unsupported DTensor operation aten.ops.unbind | |
# FIXME: Once aten.ops.unbind support lands, this will no longer be required | |
# x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2] | |
x_real, x_imag = x.unflatten(2, (-1, 2)).chunk(2, dim=-1) # [B, S, H, D // 2] | |
# ================================================================== | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2) | |
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
return out | |
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb | |
def _patched_LTXVideoTransformer3Dforward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_attention_mask: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
rope_interpolation_scale: Optional[Tuple[float, float, float]] = None, | |
return_dict: bool = True, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
batch_size = hidden_states.size(0) | |
# ===== This is modified compared to Diffusers ===== | |
# This is done because the Diffusers pipeline will pass in a 1D tensor for timestep | |
if timestep.ndim == 1: | |
timestep = timestep.view(-1, 1, 1).expand(-1, *hidden_states.shape[1:-1], -1) | |
# ================================================== | |
temb, embedded_timestep = self.time_embed( | |
timestep.flatten(), | |
batch_size=batch_size, | |
hidden_dtype=hidden_states.dtype, | |
) | |
# ===== This is modified compared to Diffusers ===== | |
# temb = temb.view(batch_size, -1, temb.size(-1)) | |
# embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) | |
# ================================================== | |
# This is done to make it possible to use per-token timestep embedding | |
temb = temb.view(batch_size, *hidden_states.shape[1:-1], temb.size(-1)) | |
embedded_timestep = embedded_timestep.view(batch_size, *hidden_states.shape[1:-1], embedded_timestep.size(-1)) | |
# ================================================== | |
hidden_states = self.proj_in(hidden_states) | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1)) | |
for block in self.transformer_blocks: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] | |
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = hidden_states * (1 + scale) + shift | |
output = self.proj_out(hidden_states) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |