jbilcke-hf's picture
jbilcke-hf HF Staff
upgrading finetrainers (and losing my extra code + improvements)
80ebcb3
raw
history blame
2.27 kB
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTokenizerFast
from .base import ProcessorMixin
class CLIPPooledProcessor(ProcessorMixin):
r"""
Processor for the Llama family of models. This processor is used to encode text inputs and return the embeddings
and attention masks for the input text.
Args:
output_names (`List[str]`):
The names of the outputs that the processor should return. The first output is the embeddings of the input
text and the second output is the attention mask for the input text.
"""
def __init__(self, output_names: List[str] = None, input_names: Optional[Dict[str, Any]] = None) -> None:
super().__init__()
self.output_names = output_names
self.input_names = input_names
assert len(output_names) == 1
if input_names is not None:
assert len(input_names) <= 3
def forward(
self,
tokenizer: Union[CLIPTokenizer, CLIPTokenizerFast],
text_encoder: CLIPTextModel,
caption: Union[str, List[str]],
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Encode the input text and return the embeddings and attention mask for the input text.
Args:
tokenizer (`Union[LlamaTokenizer, LlamaTokenizerFast]`):
The tokenizer used to tokenize the input text.
text_encoder (`LlamaModel`):
The text encoder used to encode the input text.
caption (`Union[str, List[str]]`):
The input text to be encoded.
"""
if isinstance(caption, str):
caption = [caption]
device = text_encoder.device
dtype = text_encoder.dtype
text_inputs = tokenizer(
caption,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device)
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=False).pooler_output
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
return {self.output_names[0]: prompt_embeds}