Spaces:
Running
Running
from typing import List, Tuple, Union | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast | |
from .base import ProcessorMixin | |
class T5Processor(ProcessorMixin): | |
r""" | |
Processor for the T5 family of models. This processor is used to encode text inputs and return the embeddings | |
and attention masks for the input text. | |
Args: | |
output_names (`List[str]`): | |
The names of the outputs that the processor should return. The first output is the embeddings of the input | |
text and the second output is the attention mask for the input text. | |
""" | |
def __init__(self, output_names: List[str]): | |
super().__init__() | |
self.output_names = output_names | |
assert len(self.output_names) == 2 | |
def forward( | |
self, | |
tokenizer: Union[T5Tokenizer, T5TokenizerFast], | |
text_encoder: T5EncoderModel, | |
caption: Union[str, List[str]], | |
max_sequence_length: int, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
r""" | |
Encode the input text and return the embeddings and attention mask for the input text. | |
Args: | |
tokenizer (`Union[T5Tokenizer, T5TokenizerFast]`): | |
The tokenizer used to tokenize the input text. | |
text_encoder (`T5EncoderModel`): | |
The text encoder used to encode the input text. | |
caption (`Union[str, List[str]]`): | |
The input text to be encoded. | |
max_sequence_length (`int`): | |
The maximum sequence length of the input text. | |
""" | |
if isinstance(caption, str): | |
caption = [caption] | |
device = text_encoder.device | |
dtype = text_encoder.dtype | |
batch_size = len(caption) | |
text_inputs = tokenizer( | |
caption, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.bool().to(device) | |
prompt_embeds = text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) | |
return { | |
self.output_names[0]: prompt_embeds, | |
self.output_names[1]: prompt_attention_mask, | |
} | |