jbilcke-hf's picture
jbilcke-hf HF Staff
workaround for Finetrainers
9000726
raw
history blame
28.9 kB
import platform
import gradio as gr
from pathlib import Path
import logging
import asyncio
from typing import Any, Optional, Dict, List, Union, Tuple
from vms.config import (
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, OUTPUT_PATH,
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
MODEL_TYPES, SMALL_TRAINING_BUCKETS, TRAINING_TYPES, MODEL_VERSIONS,
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS,
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P,
DEFAULT_LEARNING_RATE,
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA,
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR,
DEFAULT_SEED,
DEFAULT_NUM_GPUS,
DEFAULT_MAX_GPUS,
DEFAULT_PRECOMPUTATION_ITEMS,
DEFAULT_NB_TRAINING_STEPS,
DEFAULT_NB_LR_WARMUP_STEPS
)
from vms.utils import (
get_recommended_precomputation_items,
count_media_files,
format_media_title,
TrainingLogParser
)
from vms.ui.project.services import (
TrainingService, CaptioningService, SplittingService, ImportingService, PreviewingService
)
from vms.ui.project.tabs import (
ImportTab, CaptionTab, TrainTab, PreviewTab, ManageTab
)
from vms.ui.monitoring.services import (
MonitoringService
)
from vms.ui.monitoring.tabs import (
GeneralTab
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
httpx_logger = logging.getLogger('httpx')
httpx_logger.setLevel(logging.WARN)
class AppUI:
def __init__(self):
"""Initialize services and tabs"""
# Project view
self.training = TrainingService(self)
self.splitting = SplittingService()
self.importing = ImportingService()
self.captioning = CaptioningService()
self.previewing = PreviewingService()
# Monitoring view
self.monitoring = MonitoringService()
self.monitoring.start_monitoring()
# Recovery status from any interrupted training
recovery_result = self.training.recover_interrupted_training()
# Add null check for recovery_result
if recovery_result is None:
recovery_result = {"status": "unknown", "ui_updates": {}}
self.recovery_status = recovery_result.get("status", "unknown")
self.ui_updates = recovery_result.get("ui_updates", {})
# Initialize log parser
self.log_parser = TrainingLogParser()
# Shared state for tabs
self.state = {
"recovery_result": recovery_result
}
# Initialize tabs dictionary
self.tabs = {}
self.project_tabs = {}
self.monitor_tabs = {}
self.main_tabs = None # Main tabbed interface
self.project_tabs_component = None # Project sub-tabs
self.monitor_tabs_component = None # Monitor sub-tabs
# Log recovery status
logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
def add_periodic_callback(self, callback_fn, interval=1.0):
"""Add a periodic callback function to the UI
Args:
callback_fn: Function to call periodically
interval: Time in seconds between calls (default: 1.0)
"""
try:
# Store a reference to the callback function
if not hasattr(self, "_periodic_callbacks"):
self._periodic_callbacks = []
self._periodic_callbacks.append(callback_fn)
# Add the callback to the Gradio app
self.app.add_callback(
interval, # Interval in seconds
callback_fn, # Function to call
inputs=None, # No inputs needed
outputs=list(self.components.values()) # All components as possible outputs
)
logger.info(f"Added periodic callback {callback_fn.__name__} with interval {interval}s")
except Exception as e:
logger.error(f"Error adding periodic callback: {e}", exc_info=True)
def switch_to_tab(self, tab_index: int):
"""Switch to the specified tab index
Args:
tab_index: Index of the tab to select (0 for Project, 1 for Monitor)
Returns:
Tab selection dictionary for Gradio
"""
return gr.Tabs(selected=tab_index)
def create_ui(self):
self.components = {}
"""Create the main Gradio UI with tabbed navigation"""
with gr.Blocks(
title="🎞️ Video Model Studio",
# Let's hack Gradio!
css="#main-tabs > .tab-wrapper{ display: none; }") as app:
self.app = app
# Main container with sidebar and tab area
with gr.Row():
# Sidebar for navigation
with gr.Sidebar(position="left", open=True):
gr.Markdown("# 🎞️ Video Model Studio")
self.components["current_project_btn"] = gr.Button("πŸ“‚ New Project", variant="primary")
self.components["system_monitoring_btn"] = gr.Button("🌑️ System Monitoring")
# Main content area with tabs
with gr.Column():
# Main tabbed interface for switching between Project and Monitor views
with gr.Tabs(elem_id="main-tabs") as main_tabs:
self.main_tabs = main_tabs
# Project View Tab
with gr.Tab("πŸ“ New Project", id=0) as project_view:
# Create project tabs
with gr.Tabs() as project_tabs:
# Store reference to project tabs component
self.project_tabs_component = project_tabs
# Initialize project tab objects
self.project_tabs["import_tab"] = ImportTab(self)
self.project_tabs["caption_tab"] = CaptionTab(self)
self.project_tabs["train_tab"] = TrainTab(self)
self.project_tabs["preview_tab"] = PreviewTab(self)
self.project_tabs["manage_tab"] = ManageTab(self)
# Create tab UI components for project
for tab_id, tab_obj in self.project_tabs.items():
tab_obj.create(project_tabs)
# Monitoring View Tab
with gr.Tab("🌑️ System Monitoring", id=1) as monitoring_view:
# Create monitoring tabs
with gr.Tabs() as monitoring_tabs:
# Store reference to monitoring tabs component
self.monitor_tabs_component = monitoring_tabs
# Initialize monitoring tab objects
self.monitor_tabs["general_tab"] = GeneralTab(self)
# Create tab UI components for monitoring
for tab_id, tab_obj in self.monitor_tabs.items():
tab_obj.create(monitoring_tabs)
# Combine all tabs into a single dictionary for event handling
self.tabs = {**self.project_tabs, **self.monitor_tabs}
# Connect event handlers for all tabs - this must happen AFTER all tabs are created
for tab_id, tab_obj in self.tabs.items():
tab_obj.connect_events()
# app-level timers for auto-refresh functionality
self._add_timers()
# Connect navigation events using tab switching
self.components["current_project_btn"].click(
fn=lambda: self.switch_to_tab(0),
outputs=[self.main_tabs],
)
self.components["system_monitoring_btn"].click(
fn=lambda: self.switch_to_tab(1),
outputs=[self.main_tabs],
)
# Initialize app state on load
app.load(
fn=self.initialize_app_state,
outputs=[
self.project_tabs["caption_tab"].components["training_dataset"],
self.project_tabs["train_tab"].components["start_btn"],
self.project_tabs["train_tab"].components["resume_btn"],
self.project_tabs["train_tab"].components["stop_btn"],
self.project_tabs["train_tab"].components["delete_checkpoints_btn"],
self.project_tabs["train_tab"].components["training_preset"],
self.project_tabs["train_tab"].components["model_type"],
self.project_tabs["train_tab"].components["model_version"],
self.project_tabs["train_tab"].components["training_type"],
self.project_tabs["train_tab"].components["lora_rank"],
self.project_tabs["train_tab"].components["lora_alpha"],
self.project_tabs["train_tab"].components["train_steps"],
self.project_tabs["train_tab"].components["batch_size"],
self.project_tabs["train_tab"].components["learning_rate"],
self.project_tabs["train_tab"].components["save_iterations"],
self.project_tabs["train_tab"].components["current_task_box"],
self.project_tabs["train_tab"].components["num_gpus"],
self.project_tabs["train_tab"].components["precomputation_items"],
self.project_tabs["train_tab"].components["lr_warmup_steps"]
]
)
return app
def _add_timers(self):
"""Add auto-refresh timers to the UI"""
# Status update timer for text components (every 1 second)
status_timer = gr.Timer(value=1)
status_timer.tick(
fn=self.project_tabs["train_tab"].get_status_updates,
outputs=[
self.project_tabs["train_tab"].components["status_box"],
self.project_tabs["train_tab"].components["log_box"],
self.project_tabs["train_tab"].components["current_task_box"] if "current_task_box" in self.project_tabs["train_tab"].components else None
]
)
# Button update timer for button components (every 1 second)
button_timer = gr.Timer(value=1)
button_outputs = [
self.project_tabs["train_tab"].components["start_btn"],
self.project_tabs["train_tab"].components["resume_btn"],
self.project_tabs["train_tab"].components["stop_btn"],
self.project_tabs["train_tab"].components["delete_checkpoints_btn"]
]
button_timer.tick(
fn=self.project_tabs["train_tab"].get_button_updates,
outputs=button_outputs
)
# Dataset refresh timer (every 5 seconds)
dataset_timer = gr.Timer(value=5)
dataset_timer.tick(
fn=self.refresh_dataset,
outputs=[
self.project_tabs["caption_tab"].components["training_dataset"]
]
)
# Titles update timer (every 6 seconds)
titles_timer = gr.Timer(value=6)
titles_timer.tick(
fn=self.update_titles,
outputs=[
self.project_tabs["caption_tab"].components["caption_title"],
self.project_tabs["train_tab"].components["train_title"]
]
)
def initialize_app_state(self):
"""Initialize all app state in one function to ensure correct output count"""
# Get dataset info
training_dataset = self.project_tabs["caption_tab"].list_training_files_to_caption()
# Get button states based on recovery status
button_states = self.get_initial_button_states()
start_btn = button_states[0]
resume_btn = button_states[1]
stop_btn = button_states[2]
delete_checkpoints_btn = button_states[3]
# Get UI form values - possibly from the recovery
if self.recovery_status in ["recovered", "ready_to_recover", "running"] and "ui_updates" in self.state["recovery_result"]:
recovery_ui = self.state["recovery_result"]["ui_updates"]
# If we recovered training parameters from the original session
ui_state = {}
# Handle model_type specifically - could be internal or display name
if "model_type" in recovery_ui:
model_type_value = recovery_ui["model_type"]
# Remove " (LoRA)" suffix if present
if " (LoRA)" in model_type_value:
model_type_value = model_type_value.replace(" (LoRA)", "")
logger.info(f"Removed (LoRA) suffix from model type: {model_type_value}")
# If it's an internal name, convert to display name
if model_type_value not in MODEL_TYPES:
# Find the display name for this internal model type
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_value:
model_type_value = display_name
logger.info(f"Converted internal model type '{recovery_ui['model_type']}' to display name '{model_type_value}'")
break
ui_state["model_type"] = model_type_value
# Handle training_type
if "training_type" in recovery_ui:
training_type_value = recovery_ui["training_type"]
# If it's an internal name, convert to display name
if training_type_value not in TRAINING_TYPES:
for display_name, internal_name in TRAINING_TYPES.items():
if internal_name == training_type_value:
training_type_value = display_name
logger.info(f"Converted internal training type '{recovery_ui['training_type']}' to display name '{training_type_value}'")
break
ui_state["training_type"] = training_type_value
# Copy other parameters
for param in ["lora_rank", "lora_alpha", "train_steps",
"batch_size", "learning_rate", "save_iterations", "training_preset"]:
if param in recovery_ui:
ui_state[param] = recovery_ui[param]
# Merge with existing UI state if needed
if ui_state:
current_state = self.load_ui_values()
current_state.update(ui_state)
self.training.save_ui_state(current_state)
logger.info(f"Updated UI state from recovery: {ui_state}")
# Load values (potentially with recovery updates applied)
ui_state = self.load_ui_values()
# Ensure model_type is a valid display name
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
# Remove " (LoRA)" suffix if present
if " (LoRA)" in model_type_val:
model_type_val = model_type_val.replace(" (LoRA)", "")
logger.info(f"Removed (LoRA) suffix from model type: {model_type_val}")
# Ensure it's a valid model type in the dropdown
if model_type_val not in MODEL_TYPES:
# Convert from internal to display name or use default
model_type_found = False
for display_name, internal_name in MODEL_TYPES.items():
if internal_name == model_type_val:
model_type_val = display_name
model_type_found = True
break
# If still not found, use the first model type
if not model_type_found:
model_type_val = list(MODEL_TYPES.keys())[0]
logger.warning(f"Invalid model type '{model_type_val}', using default: {model_type_val}")
# Get model_version value
model_version_val = ""
# First get the internal model type for the currently selected model
model_internal_type = MODEL_TYPES.get(model_type_val)
logger.info(f"Initializing model version for model_type: {model_type_val} (internal: {model_internal_type})")
if model_internal_type and model_internal_type in MODEL_VERSIONS:
# Get available versions for this model type as simple strings
available_model_versions = list(MODEL_VERSIONS.get(model_internal_type, {}).keys())
# Log for debugging
logger.info(f"Available versions: {available_model_versions}")
# Set model_version_val to saved value if valid, otherwise first available
if "model_version" in ui_state and ui_state["model_version"] in available_model_versions:
model_version_val = ui_state["model_version"]
logger.info(f"Using saved model version: {model_version_val}")
elif available_model_versions:
model_version_val = available_model_versions[0]
logger.info(f"Using first available model version: {model_version_val}")
# IMPORTANT: Create a new list of simple strings for the dropdown choices
# This ensures each choice is a single string, not a tuple or other structure
simple_choices = [str(version) for version in available_model_versions]
# Update the dropdown choices directly in the UI component
try:
self.project_tabs["train_tab"].components["model_version"].choices = simple_choices
logger.info(f"Updated model_version dropdown choices: {len(simple_choices)} options")
except Exception as e:
logger.error(f"Error updating model_version dropdown: {str(e)}")
else:
logger.warning(f"No versions available for model type: {model_type_val}")
# Set empty choices to avoid errors
try:
self.project_tabs["train_tab"].components["model_version"].choices = []
except Exception as e:
logger.error(f"Error setting empty model_version choices: {str(e)}")
# Ensure training_type is a valid display name
training_type_val = ui_state.get("training_type", list(TRAINING_TYPES.keys())[0])
if training_type_val not in TRAINING_TYPES:
# Convert from internal to display name or use default
training_type_found = False
for display_name, internal_name in TRAINING_TYPES.items():
if internal_name == training_type_val:
training_type_val = display_name
training_type_found = True
break
# If still not found, use the first training type
if not training_type_found:
training_type_val = list(TRAINING_TYPES.keys())[0]
logger.warning(f"Invalid training type '{training_type_val}', using default: {training_type_val}")
# Validate training preset
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
if training_preset not in TRAINING_PRESETS:
training_preset = list(TRAINING_PRESETS.keys())[0]
logger.warning(f"Invalid training preset '{training_preset}', using default: {training_preset}")
lora_rank_val = ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR)
lora_alpha_val = ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR)
batch_size_val = int(ui_state.get("batch_size", DEFAULT_BATCH_SIZE))
learning_rate_val = float(ui_state.get("learning_rate", DEFAULT_LEARNING_RATE))
save_iterations_val = int(ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS))
num_gpus_val = int(ui_state.get("num_gpus", DEFAULT_NUM_GPUS))
# Calculate recommended precomputation items based on video count
video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4')))
recommended_precomputation = get_recommended_precomputation_items(video_count, num_gpus_val)
precomputation_items_val = int(ui_state.get("precomputation_items", recommended_precomputation))
# Ensure warmup steps are not more than training steps
train_steps_val = int(ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS))
default_warmup = min(DEFAULT_NB_LR_WARMUP_STEPS, int(train_steps_val * 0.2))
lr_warmup_steps_val = int(ui_state.get("lr_warmup_steps", default_warmup))
# Ensure warmup steps <= training steps
lr_warmup_steps_val = min(lr_warmup_steps_val, train_steps_val)
# Initial current task value
current_task_val = ""
if hasattr(self, 'log_parser') and self.log_parser:
current_task_val = self.log_parser.get_current_task_display()
# Return all values in the exact order expected by outputs
return (
training_dataset,
start_btn,
resume_btn,
stop_btn,
delete_checkpoints_btn,
training_preset,
model_type_val,
model_version_val,
training_type_val,
lora_rank_val,
lora_alpha_val,
train_steps_val,
batch_size_val,
learning_rate_val,
save_iterations_val,
current_task_val,
num_gpus_val,
precomputation_items_val,
lr_warmup_steps_val
)
def initialize_ui_from_state(self):
"""Initialize UI components from saved state"""
ui_state = self.load_ui_values()
# Get model type and determine the default model version if not specified
model_type = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
model_internal_type = MODEL_TYPES.get(model_type)
# Get model_version, defaulting to first available version if not set
model_version = ui_state.get("model_version", "")
if not model_version and model_internal_type and model_internal_type in MODEL_VERSIONS:
versions = list(MODEL_VERSIONS.get(model_internal_type, {}).keys())
if versions:
model_version = versions[0]
# Return values in order matching the outputs in app.load
return (
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
model_type,
model_version,
ui_state.get("training_type", list(TRAINING_TYPES.keys())[0]),
ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR),
ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR),
ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS),
ui_state.get("batch_size", DEFAULT_BATCH_SIZE),
ui_state.get("learning_rate", DEFAULT_LEARNING_RATE),
ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS)
)
def update_ui_state(self, **kwargs):
"""Update UI state with new values"""
current_state = self.training.load_ui_state()
current_state.update(kwargs)
self.training.save_ui_state(current_state)
# Don't return anything to avoid Gradio warnings
return None
def load_ui_values(self):
"""Load UI state values for initializing form fields"""
ui_state = self.training.load_ui_state()
# Ensure proper type conversion for numeric values
ui_state["lora_rank"] = ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR)
ui_state["lora_alpha"] = ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR)
ui_state["train_steps"] = int(ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS))
ui_state["batch_size"] = int(ui_state.get("batch_size", DEFAULT_BATCH_SIZE))
ui_state["learning_rate"] = float(ui_state.get("learning_rate", DEFAULT_LEARNING_RATE))
ui_state["save_iterations"] = int(ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS))
return ui_state
# Add this new method to get initial button states:
def get_initial_button_states(self):
"""Get the initial states for training buttons based on recovery status"""
recovery_result = self.state.get("recovery_result") or self.training.recover_interrupted_training()
ui_updates = recovery_result.get("ui_updates", {})
# Check for checkpoints to determine start button text
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*"))
has_checkpoints = len(checkpoints) > 0
# Default button states if recovery didn't provide any
if not ui_updates or not ui_updates.get("start_btn"):
is_training = self.training.is_training_running()
if is_training:
# Active training detected
start_btn_props = {"interactive": False, "variant": "secondary", "value": "πŸš€ Start new training"}
resume_btn_props = {"interactive": False, "variant": "secondary", "value": "πŸ›Έ Start from latest checkpoint"}
stop_btn_props = {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# No active training
start_btn_props = {"interactive": True, "variant": "primary", "value": "πŸš€ Start new training"}
resume_btn_props = {"interactive": has_checkpoints, "variant": "primary", "value": "πŸ›Έ Start from latest checkpoint"}
stop_btn_props = {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}
delete_btn_props = {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
else:
# Use button states from recovery, adding the new resume button
start_btn_props = ui_updates.get("start_btn", {"interactive": True, "variant": "primary", "value": "πŸš€ Start new training"})
resume_btn_props = {"interactive": has_checkpoints and not self.training.is_training_running(),
"variant": "primary", "value": "πŸ›Έ Start from latest checkpoint"}
stop_btn_props = ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"})
delete_btn_props = ui_updates.get("delete_checkpoints_btn", {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"})
# Return button states in the correct order
return (
gr.Button(**start_btn_props),
gr.Button(**resume_btn_props), # Add the new resume button
gr.Button(**stop_btn_props),
gr.Button(**delete_btn_props)
)
def update_titles(self) -> Tuple[Any]:
"""Update all dynamic titles with current counts
Returns:
Dict of Gradio updates
"""
# Count files for captioning
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
caption_title = format_media_title(
"caption", caption_videos, caption_images, caption_size
)
# Count files for training
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
train_title = format_media_title(
"train", train_videos, train_images, train_size
)
return (
gr.Markdown(value=caption_title),
gr.Markdown(value=f"{train_title}")
)
def refresh_dataset(self):
"""Refresh all dynamic lists and training state"""
training_dataset = self.project_tabs["caption_tab"].list_training_files_to_caption()
return (
training_dataset
)