VideoModelStudio / vms /utils /training_log_parser.py
jbilcke-hf's picture
jbilcke-hf HF Staff
improve doc + investigate log parsing issues
910a853
raw
history blame
14.9 kB
import re
import logging
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
@dataclass
class TrainingState:
"""Represents the current state of training"""
status: str = "idle" # idle, initializing, training, completed, error, stopped
current_step: int = 0
total_steps: int = 0
current_epoch: int = 0
total_epochs: int = 0
step_loss: float = 0.0
learning_rate: float = 0.0
grad_norm: float = 0.0
memory_allocated: float = 0.0
memory_reserved: float = 0.0
start_time: Optional[datetime] = None
last_step_time: Optional[datetime] = None
estimated_remaining: Optional[str] = None
error_message: Optional[str] = None
initialization_stage: str = ""
download_progress: float = 0.0
elapsed_time: str = "0:00:00"
# New fields for current task tracking
current_task: str = ""
current_task_progress: str = ""
task_progress_percentage: float = 0.0
task_items_processed: int = 0
task_total_items: int = 0
task_time_remaining: str = ""
task_speed: str = ""
# Store recent progress lines for task display
recent_progress_lines: List[str] = None
def __post_init__(self):
if self.recent_progress_lines is None:
self.recent_progress_lines = []
def calculate_progress(self) -> float:
"""Calculate overall progress as percentage"""
if self.total_steps == 0:
return 0.0
return (self.current_step / self.total_steps) * 100
def to_dict(self) -> Dict[str, Any]:
"""Convert state to dictionary for UI updates"""
# Use the stored elapsed time directly if it exists
elapsed = self.elapsed_time
# Use precomputed remaining time from logs if available
remaining = str(self.estimated_remaining) if self.estimated_remaining else "calculating..."
result = {
"status": self.status,
"progress": f"{self.calculate_progress():.1f}%",
"current_step": self.current_step,
"total_steps": self.total_steps,
"current_epoch": self.current_epoch,
"total_epochs": self.total_epochs,
"step_loss": f"{self.step_loss:.4f}",
"learning_rate": f"{self.learning_rate:.2e}",
"grad_norm": f"{self.grad_norm:.4f}",
"memory": f"{self.memory_allocated:.1f}GB allocated, {self.memory_reserved:.1f}GB reserved",
"elapsed": elapsed,
"remaining": remaining,
"initialization_stage": self.initialization_stage,
"error_message": self.error_message,
"download_progress": self.download_progress
}
# Add current task information
result["current_task"] = self.get_task_display()
return result
def get_task_display(self) -> str:
"""Generate a formatted display of the current task"""
if not self.recent_progress_lines:
if self.status == "training":
return "Training in progress..."
return ""
# Get the most recent progress line
latest_line = self.recent_progress_lines[-1]
# For downloading shards or loading checkpoint shards
if "Downloading shards" in latest_line or "Loading checkpoint shards" in latest_line:
# Extract just the progress bar part
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract the remaining information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_type = "Downloading shards" if "Downloading shards" in latest_line else "Loading checkpoint shards"
return f"{task_type}:\n{progress_bar}\n{time_info}"
# For "Rank 0" progress (typically training steps)
elif "Rank 0:" in latest_line:
match = re.search(r'Rank 0:\s+(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Training iteration:\n{progress_bar} {step_info}\n{time_info}"
# For Filling buffer progress
elif "Filling buffer" in latest_line:
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Filling buffer from data iterator:\n{progress_bar} {step_info}\n{time_info}"
# For other progress lines
elif "%" in latest_line and "|" in latest_line:
# Generic progress bar pattern
match = re.search(r'(\d+%\|[▏▎▍▌▋▊▉█\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Try to extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Try to extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_prefix = "Processing:"
# Try to determine task type
if "Training" in latest_line:
task_prefix = "Training:"
elif "Precomputing" in latest_line:
task_prefix = "Precomputing:"
return f"{task_prefix}\n{progress_bar} {step_info}\n{time_info}"
# If we couldn't parse it properly, just return the line
return latest_line.strip()
class TrainingLogParser:
"""Parser for training logs with state management"""
def __init__(self):
self.state = TrainingState()
self._last_update_time = None
# Maximum number of recent progress lines to store
self.max_recent_lines = 5
def reset(self):
"""Reset parser state"""
self.state = TrainingState()
self._last_update_time = None
def get_current_task_display(self) -> str:
"""Get the formatted current task display"""
return self.state.get_task_display()
def parse_line(self, line: str) -> Optional[Dict[str, Any]]:
"""Parse a single log line and update state"""
try:
# Check if this is a progress line
if any(pattern in line for pattern in ["Downloading shards:", "Loading checkpoint shards:", "Rank 0:", "Filling buffer", "|"]) and "%" in line:
# Add to recent progress lines, maintaining order and max length
self.state.recent_progress_lines.append(line)
if len(self.state.recent_progress_lines) > self.max_recent_lines:
self.state.recent_progress_lines.pop(0)
# Parse the Training steps line for additional information
if "Training steps:" in line:
# Set status to training if we see this
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
# Extract step numbers from the format: Training steps: 4%|▍ | 44/1000 [41:57<17:22:32, 65.43s/it]
steps_match = re.search(r"\|\s*(\d+)/(\d+)", line)
if steps_match:
self.state.current_step = int(steps_match.group(1))
self.state.total_steps = int(steps_match.group(2))
# Extract elapsed time - Format example: [41:57<17:22:32, 65.43s/it]
elapsed_match = re.search(r"\[(\d+:\d+)(:\d+)?<", line)
if elapsed_match:
if elapsed_match.group(2): # has hours:minutes:seconds format
self.state.elapsed_time = elapsed_match.group(1) + elapsed_match.group(2)
else: # has minutes:seconds format
self.state.elapsed_time = elapsed_match.group(1)
# Extract remaining time - Format example: [41:57<17:22:32, 65.43s/it]
remaining_match = re.search(r"<([\d:]+)", line)
if remaining_match:
self.state.estimated_remaining = remaining_match.group(1)
# Extract metrics with different patterns
# Pattern 1: grad_norm=0.113, global_avg_loss=0.15, global_max_loss=0.15
grad_norm_match = re.search(r"grad_norm=([0-9.e-]+)", line)
if grad_norm_match:
self.state.grad_norm = float(grad_norm_match.group(1))
# Try global_avg_loss as the main loss metric
loss_match = re.search(r"global_avg_loss=([0-9.e-]+)", line)
if loss_match:
self.state.step_loss = float(loss_match.group(1))
elif "step_loss=" in line:
# Fall back to step_loss if global_avg_loss not found
loss_match = re.search(r"step_loss=([0-9.e-]+)", line)
if loss_match:
self.state.step_loss = float(loss_match.group(1))
# Extract learning rate if available
lr_match = re.search(r"lr=([0-9.e-]+)", line)
if lr_match:
self.state.learning_rate = float(lr_match.group(1))
# Update last processing time
self.state.last_step_time = datetime.now()
# Return updated state
return self.state.to_dict()
# Parse "Starting training step" lines to extract step/total info if not already parsed
step_match = re.search(r"Starting training step \((\d+)/(\d+)\)", line)
if step_match:
current_step = int(step_match.group(1))
total_steps = int(step_match.group(2))
# Only update if we don't already have a value or if this is more recent
if self.state.total_steps == 0 or current_step > self.state.current_step:
self.state.current_step = current_step
self.state.total_steps = total_steps
self.state.status = "training" # Ensure status is set to training
logger.info(f"Updated training step: {current_step}/{total_steps}")
return self.state.to_dict()
if ("Started training" in line) or ("Starting training" in line):
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
return self.state.to_dict()
# Epoch information
epoch_match = re.search(r"Starting epoch \((\d+)/(\d+)\)", line)
if epoch_match:
self.state.current_epoch = int(epoch_match.group(1))
self.state.total_epochs = int(epoch_match.group(2))
logger.info(f"Updated epoch: {self.state.current_epoch}/{self.state.total_epochs}")
return self.state.to_dict()
# Initialization stages
if "Initializing" in line:
self.state.status = "initializing"
self.state.initialization_stage = line.split("Initializing")[1].strip()
logger.info(f"Initialization stage: {self.state.initialization_stage}")
return self.state.to_dict()
# Memory usage
if "memory_allocated" in line:
mem_match = re.search(r'"memory_allocated":\s*([0-9.]+)', line)
if mem_match:
self.state.memory_allocated = float(mem_match.group(1))
reserved_match = re.search(r'"memory_reserved":\s*([0-9.]+)', line)
if reserved_match:
self.state.memory_reserved = float(reserved_match.group(1))
logger.info(f"Updated memory: allocated={self.state.memory_allocated}GB, reserved={self.state.memory_reserved}GB")
return self.state.to_dict()
# Completion states
if "Training completed successfully" in line:
self.state.status = "completed"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training completed")
return self.state.to_dict()
if any(x in line for x in ["Training process stopped", "Training stopped"]):
self.state.status = "stopped"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training stopped")
return self.state.to_dict()
if "Error during training:" in line:
self.state.status = "error"
self.state.error_message = line.split("Error during training:")[1].strip()
logger.info(f"Training error: {self.state.error_message}")
return self.state.to_dict()
except Exception as e:
logger.error(f"Error parsing line: {str(e)}")
return None