VideoModelStudio / vms /tabs /manage_tab.py
jbilcke-hf's picture
jbilcke-hf HF Staff
small fix
e8c26e7
raw
history blame
10.2 kB
"""
Manage tab for Video Model Studio UI
"""
import gradio as gr
import logging
import shutil
from pathlib import Path
from typing import Dict, Any, List, Optional
from .base_tab import BaseTab
from ..config import (
HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH,
TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH
)
from ..utils import validate_model_repo
logger = logging.getLogger(__name__)
class ManageTab(BaseTab):
"""Manage tab for storage management and model publication"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "manage_tab"
self.title = "5️⃣ Manage"
def create(self, parent=None) -> gr.TabItem:
"""Create the Manage tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Publishing")
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
with gr.Row():
with gr.Column():
self.components["repo_id"] = gr.Textbox(
label="HuggingFace Model Repository",
placeholder="username/model-name",
info="The repository will be created if it doesn't exist"
)
self.components["make_public"] = gr.Checkbox(
label="Check this to make your model public (ie. visible and downloadable by anyone)",
info="You model is private by default"
)
self.components["push_model_btn"] = gr.Button(
"Push my model"
)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Storage management")
with gr.Row():
self.components["download_dataset_btn"] = gr.DownloadButton(
"Download dataset (click again if DL doesn't start)",
variant="secondary",
size="lg"
)
self.components["download_model_btn"] = gr.DownloadButton(
"Download model (click again if DL doesn't start)",
variant="secondary",
size="lg"
)
with gr.Row():
self.components["global_stop_btn"] = gr.Button(
"Stop everything and delete my data",
variant="stop"
)
self.components["global_status"] = gr.Textbox(
label="Global Status",
interactive=False,
visible=False
)
return tab
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Repository ID validation
self.components["repo_id"].change(
fn=self.validate_repo,
inputs=[self.components["repo_id"]],
outputs=[self.components["repo_id"]]
)
# Download buttons
self.components["download_dataset_btn"].click(
fn=self.app.trainer.create_training_dataset_zip,
outputs=[self.components["download_dataset_btn"]]
)
self.components["download_model_btn"].click(
fn=self.app.trainer.get_model_output_safetensors,
outputs=[self.components["download_model_btn"]]
)
# Global stop button
self.components["global_stop_btn"].click(
fn=self.handle_global_stop,
outputs=[
self.components["global_status"],
self.app.tabs["split_tab"].components["video_list"],
self.app.tabs["caption_tab"].components["training_dataset"],
self.app.tabs["train_tab"].components["status_box"],
self.app.tabs["train_tab"].components["log_box"],
self.app.tabs["split_tab"].components["detect_status"],
self.app.tabs["import_tab"].components["import_status"],
self.app.tabs["caption_tab"].components["preview_status"]
]
)
# Push model button
self.components["push_model_btn"].click(
fn=lambda repo_id: self.upload_to_hub(repo_id),
inputs=[self.components["repo_id"]],
outputs=[self.components["global_status"]]
)
def validate_repo(self, repo_id: str) -> gr.update:
"""Validate repository ID for HuggingFace Hub"""
validation = validate_model_repo(repo_id)
if validation["error"]:
return gr.update(value=repo_id, error=validation["error"])
return gr.update(value=repo_id, error=None)
def upload_to_hub(self, repo_id: str) -> str:
"""Upload model to HuggingFace Hub"""
if not repo_id:
return "Error: Repository ID is required"
# Validate repository name
validation = validate_model_repo(repo_id)
if validation["error"]:
return f"Error: {validation['error']}"
# Check if we have a model to upload
if not self.app.trainer.get_model_output_safetensors():
return "Error: No model found to upload"
# Upload model to hub
success = self.app.trainer.upload_to_hub(OUTPUT_PATH, repo_id)
if success:
return f"Successfully uploaded model to {repo_id}"
else:
return f"Failed to upload model to {repo_id}"
def handle_global_stop(self):
"""Handle the global stop button click"""
result = self.stop_all_and_clear()
# Format the details for display
status = result["status"]
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
full_status = f"{status}\n\nDetails:\n{details}"
# Get fresh lists after cleanup
videos = self.app.tabs["split_tab"].list_unprocessed_videos()
clips = self.app.tabs["caption_tab"].list_training_files_to_caption()
return {
self.components["global_status"]: gr.update(value=full_status, visible=True),
self.app.tabs["split_tab"].components["video_list"]: videos,
self.app.tabs["caption_tab"].components["training_dataset"]: clips,
self.app.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
self.app.tabs["train_tab"].components["log_box"]: "",
self.app.tabs["split_tab"].components["detect_status"]: "Scene detection stopped",
self.app.tabs["import_tab"].components["import_status"]: "All data cleared",
self.app.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
}
def stop_all_and_clear(self) -> Dict[str, str]:
"""Stop all running processes and clear data
Returns:
Dict with status messages for different components
"""
status_messages = {}
try:
# Stop training if running
if self.app.trainer.is_training_running():
training_result = self.app.trainer.stop_training()
status_messages["training"] = training_result["status"]
# Stop captioning if running
if self.app.captioner:
self.app.captioner.stop_captioning()
status_messages["captioning"] = "Captioning stopped"
# Stop scene detection if running
if self.app.splitter.is_processing():
self.app.splitter.processing = False
status_messages["splitting"] = "Scene detection stopped"
# Properly close logging before clearing log file
if self.app.trainer.file_handler:
self.app.trainer.file_handler.close()
logger.removeHandler(self.app.trainer.file_handler)
self.app.trainer.file_handler = None
if LOG_FILE_PATH.exists():
LOG_FILE_PATH.unlink()
# Clear all data directories
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
MODEL_PATH, OUTPUT_PATH]:
if path.exists():
try:
shutil.rmtree(path)
path.mkdir(parents=True, exist_ok=True)
except Exception as e:
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
else:
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
# Reset any persistent state
self.app.tabs["caption_tab"]._should_stop_captioning = True
self.app.splitter.processing = False
# Recreate logging setup
self.app.trainer.setup_logging()
return {
"status": "All processes stopped and data cleared",
"details": status_messages
}
except Exception as e:
return {
"status": f"Error during cleanup: {str(e)}",
"details": status_messages
}