Spaces:
Running
Running
""" | |
Train tab for Video Model Studio UI with improved task progress display | |
""" | |
import gradio as gr | |
import logging | |
import os | |
import json | |
import shutil | |
from typing import Dict, Any, List, Optional, Tuple | |
from pathlib import Path | |
from vms.utils import BaseTab | |
from vms.config import ( | |
OUTPUT_PATH, ASK_USER_TO_DUPLICATE_SPACE, | |
SMALL_TRAINING_BUCKETS, | |
TRAINING_PRESETS, TRAINING_TYPES, MODEL_TYPES, MODEL_VERSIONS, | |
DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P, | |
DEFAULT_LEARNING_RATE, | |
DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA, | |
DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR, | |
DEFAULT_SEED, | |
DEFAULT_NUM_GPUS, | |
DEFAULT_MAX_GPUS, | |
DEFAULT_PRECOMPUTATION_ITEMS, | |
DEFAULT_NB_TRAINING_STEPS, | |
DEFAULT_NB_LR_WARMUP_STEPS, | |
DEFAULT_AUTO_RESUME | |
) | |
logger = logging.getLogger(__name__) | |
class TrainTab(BaseTab): | |
"""Train tab for model training""" | |
def __init__(self, app_state): | |
super().__init__(app_state) | |
self.id = "train_tab" | |
self.title = "3️⃣ Train" | |
def create(self, parent=None) -> gr.TabItem: | |
"""Create the Train tab UI components""" | |
with gr.TabItem(self.title, id=self.id) as tab: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
self.components["train_title"] = gr.Markdown("## 0 files in the training dataset") | |
with gr.Row(): | |
with gr.Column(): | |
self.components["training_preset"] = gr.Dropdown( | |
choices=list(TRAINING_PRESETS.keys()), | |
label="Training Preset", | |
value=list(TRAINING_PRESETS.keys())[0] | |
) | |
self.components["preset_info"] = gr.Markdown() | |
with gr.Row(): | |
with gr.Column(): | |
# Get the default model type from the first preset | |
default_model_type = list(MODEL_TYPES.keys())[0] | |
self.components["model_type"] = gr.Dropdown( | |
choices=list(MODEL_TYPES.keys()), | |
label="Model Type", | |
value=default_model_type, | |
interactive=True | |
) | |
# Get model versions for the default model type | |
default_model_versions = self.get_model_version_choices(default_model_type) | |
default_model_version = self.get_default_model_version(default_model_type) | |
# Ensure default_model_versions is not empty | |
if not default_model_versions: | |
# If no versions found for default model, use a fallback | |
internal_type = MODEL_TYPES.get(default_model_type) | |
if internal_type in MODEL_VERSIONS: | |
default_model_versions = list(MODEL_VERSIONS[internal_type].keys()) | |
else: | |
# Last resort - collect all available versions from all models | |
default_model_versions = [] | |
for model_versions in MODEL_VERSIONS.values(): | |
default_model_versions.extend(list(model_versions.keys())) | |
# If still empty, provide a placeholder | |
if not default_model_versions: | |
default_model_versions = ["-- No versions available --"] | |
# Set default version to first in list if available | |
if default_model_versions: | |
default_model_version = default_model_versions[0] | |
else: | |
default_model_version = "" | |
self.components["model_version"] = gr.Dropdown( | |
choices=default_model_versions, | |
label="Model Version", | |
value=default_model_version, | |
interactive=True, | |
allow_custom_value=True # Add this to avoid errors with custom values | |
) | |
self.components["training_type"] = gr.Dropdown( | |
choices=list(TRAINING_TYPES.keys()), | |
label="Training Type", | |
value=list(TRAINING_TYPES.keys())[0] | |
) | |
with gr.Row(): | |
self.components["model_info"] = gr.Markdown( | |
value=self.get_model_info(list(MODEL_TYPES.keys())[0], list(TRAINING_TYPES.keys())[0]) | |
) | |
# LoRA specific parameters (will show/hide based on training type) | |
with gr.Row(visible=True) as lora_params_row: | |
self.components["lora_params_row"] = lora_params_row | |
self.components["lora_rank"] = gr.Dropdown( | |
label="LoRA Rank", | |
choices=["16", "32", "64", "128", "256", "512", "1024"], | |
value=DEFAULT_LORA_RANK_STR, | |
type="value" | |
) | |
self.components["lora_alpha"] = gr.Dropdown( | |
label="LoRA Alpha", | |
choices=["16", "32", "64", "128", "256", "512", "1024"], | |
value=DEFAULT_LORA_ALPHA_STR, | |
type="value" | |
) | |
with gr.Row(): | |
self.components["train_steps"] = gr.Number( | |
label="Number of Training Steps", | |
value=DEFAULT_NB_TRAINING_STEPS, | |
minimum=1, | |
precision=0 | |
) | |
self.components["batch_size"] = gr.Number( | |
label="Batch Size", | |
value=1, | |
minimum=1, | |
precision=0 | |
) | |
with gr.Row(): | |
self.components["learning_rate"] = gr.Number( | |
label="Learning Rate", | |
value=DEFAULT_LEARNING_RATE, | |
minimum=1e-8 | |
) | |
self.components["save_iterations"] = gr.Number( | |
label="Save checkpoint every N iterations", | |
value=DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
minimum=1, | |
precision=0, | |
info="Model will be saved periodically after these many steps" | |
) | |
with gr.Row(): | |
self.components["num_gpus"] = gr.Slider( | |
label="Number of GPUs to use", | |
value=DEFAULT_NUM_GPUS, | |
minimum=1, | |
maximum=DEFAULT_MAX_GPUS, | |
step=1, | |
info="Number of GPUs to use for training" | |
) | |
self.components["precomputation_items"] = gr.Number( | |
label="Precomputation Items", | |
value=DEFAULT_PRECOMPUTATION_ITEMS, | |
minimum=1, | |
precision=0, | |
info="Should be more or less the number of total items (ex: 200 videos), divided by the number of GPUs" | |
) | |
with gr.Row(): | |
self.components["lr_warmup_steps"] = gr.Number( | |
label="Learning Rate Warmup Steps", | |
value=DEFAULT_NB_LR_WARMUP_STEPS, | |
minimum=0, | |
precision=0, | |
info="Number of warmup steps (typically 20-40% of total training steps). This helps reducing the impact of early training examples as well as giving time to optimizers to compute accurate statistics." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
# Add description of the training buttons | |
self.components["training_buttons_info"] = gr.Markdown(""" | |
## ⚗️ Train your model on your dataset | |
- **🚀 Start new training**: Begins training from scratch (clears previous checkpoints) | |
- **🛸 Start from latest checkpoint**: Continues training from the most recent checkpoint | |
""") | |
with gr.Row(): | |
# Check for existing checkpoints to determine button text | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
has_checkpoints = len(checkpoints) > 0 | |
self.components["start_btn"] = gr.Button( | |
"🚀 Start new training", | |
variant="primary", | |
interactive=not ASK_USER_TO_DUPLICATE_SPACE | |
) | |
# Add new button for continuing from checkpoint | |
self.components["resume_btn"] = gr.Button( | |
"🛸 Start from latest checkpoint", | |
variant="primary", | |
interactive=has_checkpoints and not ASK_USER_TO_DUPLICATE_SPACE | |
) | |
with gr.Row(): | |
# Just use stop and pause buttons for now to ensure compatibility | |
self.components["stop_btn"] = gr.Button( | |
"Stop at Last Checkpoint", | |
variant="primary", | |
interactive=False | |
) | |
self.components["pause_resume_btn"] = gr.Button( | |
"Resume Training", | |
variant="secondary", | |
interactive=False, | |
visible=False | |
) | |
# Add delete checkpoints button | |
self.components["delete_checkpoints_btn"] = gr.Button( | |
"Delete All Checkpoints", | |
variant="stop", | |
interactive=has_checkpoints | |
) | |
with gr.Row(): | |
self.components["auto_resume"] = gr.Checkbox( | |
label="Automatically continue training in case of server reboot.", | |
value=DEFAULT_AUTO_RESUME, | |
info="When enabled, training will automatically resume from the latest checkpoint after app restart" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
self.components["status_box"] = gr.Textbox( | |
label="Training Status", | |
interactive=False, | |
lines=4 | |
) | |
# Add new component for current task progress | |
self.components["current_task_box"] = gr.Textbox( | |
label="Current Task Progress", | |
interactive=False, | |
lines=3, | |
elem_id="current_task_display" | |
) | |
with gr.Accordion("Finetrainers output (or see app logs for more details)", open=False): | |
self.components["log_box"] = gr.TextArea( | |
#label="", | |
interactive=False, | |
lines=60, | |
max_lines=600, | |
autoscroll=True | |
) | |
return tab | |
def update_model_type_and_version(self, model_type: str, model_version: str): | |
"""Update both model type and version together to keep them in sync""" | |
# Get internal model type | |
internal_type = MODEL_TYPES.get(model_type) | |
# Make sure model_version is valid for this model type | |
if internal_type and internal_type in MODEL_VERSIONS: | |
valid_versions = list(MODEL_VERSIONS[internal_type].keys()) | |
if not model_version or model_version not in valid_versions: | |
if valid_versions: | |
model_version = valid_versions[0] | |
# Update UI state with both values to keep them in sync | |
self.app.update_ui_state(model_type=model_type, model_version=model_version) | |
return None | |
def save_model_version(self, model_type: str, model_version: str): | |
"""Save model version ensuring it's consistent with model type""" | |
internal_type = MODEL_TYPES.get(model_type) | |
# Verify the model_version is compatible with the current model_type | |
if internal_type and internal_type in MODEL_VERSIONS: | |
valid_versions = MODEL_VERSIONS[internal_type].keys() | |
if model_version not in valid_versions: | |
# Don't save incompatible version | |
return None | |
# Save the model version along with current model type to ensure consistency | |
self.app.update_ui_state(model_type=model_type, model_version=model_version) | |
return None | |
def handle_new_training_start( | |
self, preset, model_type, model_version, training_type, | |
lora_rank, lora_alpha, train_steps, batch_size, learning_rate, | |
save_iterations, repo_id, progress=gr.Progress() | |
): | |
"""Handle new training start with checkpoint cleanup""" | |
# Clear output directory to start fresh | |
# Delete all checkpoint directories | |
for checkpoint in OUTPUT_PATH.glob("finetrainers_step_*"): | |
if checkpoint.is_dir(): | |
shutil.rmtree(checkpoint) | |
# Also delete session.json which contains previous training info | |
session_file = OUTPUT_PATH / "session.json" | |
if session_file.exists(): | |
session_file.unlink() | |
self.app.training.append_log("Cleared previous checkpoints for new training session") | |
# Start training normally | |
return self.handle_training_start( | |
preset, model_type, model_version, training_type, | |
lora_rank, lora_alpha, train_steps, batch_size, learning_rate, | |
save_iterations, repo_id, progress | |
) | |
def handle_resume_training( | |
self, preset, model_type, model_version, training_type, | |
lora_rank, lora_alpha, train_steps, batch_size, learning_rate, | |
save_iterations, repo_id, progress=gr.Progress() | |
): | |
"""Handle resuming training from the latest checkpoint""" | |
# Find the latest checkpoint | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
if not checkpoints: | |
return "No checkpoints found to resume from", "Please start a new training session instead" | |
self.app.training.append_log(f"Resuming training from latest checkpoint") | |
# Start training with the checkpoint | |
return self.handle_training_start( | |
preset, model_type, model_version, training_type, | |
lora_rank, lora_alpha, train_steps, batch_size, learning_rate, | |
save_iterations, repo_id, progress, | |
resume_from_checkpoint="latest" | |
) | |
def connect_events(self) -> None: | |
"""Connect event handlers to UI components""" | |
# Model type change event - Update model version dropdown choices | |
self.components["model_type"].change( | |
fn=self.update_model_versions, | |
inputs=[self.components["model_type"]], | |
outputs=[self.components["model_version"]] | |
).then( | |
fn=self.update_model_type_and_version, # Add this new function | |
inputs=[self.components["model_type"], self.components["model_version"]], | |
outputs=[] | |
).then( | |
# Use get_model_info instead of update_model_info | |
fn=self.get_model_info, | |
inputs=[self.components["model_type"], self.components["training_type"]], | |
outputs=[self.components["model_info"]] | |
) | |
# Model version change event | |
self.components["model_version"].change( | |
fn=self.save_model_version, # Replace with this new function | |
inputs=[self.components["model_type"], self.components["model_version"]], | |
outputs=[] | |
) | |
# Training type change event | |
self.components["training_type"].change( | |
fn=lambda v: self.app.update_ui_state(training_type=v), | |
inputs=[self.components["training_type"]], | |
outputs=[] | |
).then( | |
fn=self.update_model_info, | |
inputs=[self.components["model_type"], self.components["training_type"]], | |
outputs=[ | |
self.components["model_info"], | |
self.components["train_steps"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.components["lora_params_row"] | |
] | |
) | |
self.components["auto_resume"].change( | |
fn=lambda v: self.app.update_ui_state(auto_resume=v), | |
inputs=[self.components["auto_resume"]], | |
outputs=[] | |
) | |
# Add in the connect_events() method: | |
self.components["num_gpus"].change( | |
fn=lambda v: self.app.update_ui_state(num_gpus=v), | |
inputs=[self.components["num_gpus"]], | |
outputs=[] | |
) | |
self.components["precomputation_items"].change( | |
fn=lambda v: self.app.update_ui_state(precomputation_items=v), | |
inputs=[self.components["precomputation_items"]], | |
outputs=[] | |
) | |
self.components["lr_warmup_steps"].change( | |
fn=lambda v: self.app.update_ui_state(lr_warmup_steps=v), | |
inputs=[self.components["lr_warmup_steps"]], | |
outputs=[] | |
) | |
# Training parameters change events | |
self.components["lora_rank"].change( | |
fn=lambda v: self.app.update_ui_state(lora_rank=v), | |
inputs=[self.components["lora_rank"]], | |
outputs=[] | |
) | |
self.components["lora_alpha"].change( | |
fn=lambda v: self.app.update_ui_state(lora_alpha=v), | |
inputs=[self.components["lora_alpha"]], | |
outputs=[] | |
) | |
self.components["train_steps"].change( | |
fn=lambda v: self.app.update_ui_state(train_steps=v), | |
inputs=[self.components["train_steps"]], | |
outputs=[] | |
) | |
self.components["batch_size"].change( | |
fn=lambda v: self.app.update_ui_state(batch_size=v), | |
inputs=[self.components["batch_size"]], | |
outputs=[] | |
) | |
self.components["learning_rate"].change( | |
fn=lambda v: self.app.update_ui_state(learning_rate=v), | |
inputs=[self.components["learning_rate"]], | |
outputs=[] | |
) | |
self.components["save_iterations"].change( | |
fn=lambda v: self.app.update_ui_state(save_iterations=v), | |
inputs=[self.components["save_iterations"]], | |
outputs=[] | |
) | |
# Training preset change event | |
self.components["training_preset"].change( | |
fn=lambda v: self.app.update_ui_state(training_preset=v), | |
inputs=[self.components["training_preset"]], | |
outputs=[] | |
).then( | |
fn=self.update_training_params, | |
inputs=[self.components["training_preset"]], | |
outputs=[ | |
self.components["model_type"], | |
self.components["training_type"], | |
self.components["lora_rank"], | |
self.components["lora_alpha"], | |
self.components["train_steps"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.components["preset_info"], | |
self.components["lora_params_row"], | |
self.components["num_gpus"], | |
self.components["precomputation_items"], | |
self.components["lr_warmup_steps"], | |
# Add model_version to the outputs | |
self.components["model_version"] | |
] | |
) | |
# Training control events | |
self.components["start_btn"].click( | |
fn=self.handle_new_training_start, | |
inputs=[ | |
self.components["training_preset"], | |
self.components["model_type"], | |
self.components["model_version"], | |
self.components["training_type"], | |
self.components["lora_rank"], | |
self.components["lora_alpha"], | |
self.components["train_steps"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.app.tabs["manage_tab"].components["repo_id"] | |
], | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"] | |
] | |
) | |
self.components["resume_btn"].click( | |
fn=self.handle_resume_training, | |
inputs=[ | |
self.components["training_preset"], | |
self.components["model_type"], | |
self.components["model_version"], | |
self.components["training_type"], | |
self.components["lora_rank"], | |
self.components["lora_alpha"], | |
self.components["train_steps"], | |
self.components["batch_size"], | |
self.components["learning_rate"], | |
self.components["save_iterations"], | |
self.app.tabs["manage_tab"].components["repo_id"] | |
], | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"] | |
] | |
) | |
# Use simplified event handlers for pause/resume and stop | |
third_btn = self.components["delete_checkpoints_btn"] if "delete_checkpoints_btn" in self.components else self.components["pause_resume_btn"] | |
self.components["pause_resume_btn"].click( | |
fn=self.handle_pause_resume, | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"], | |
self.components["current_task_box"], | |
self.components["start_btn"], | |
self.components["stop_btn"], | |
third_btn | |
] | |
) | |
self.components["stop_btn"].click( | |
fn=self.handle_stop, | |
outputs=[ | |
self.components["status_box"], | |
self.components["log_box"], | |
self.components["current_task_box"], | |
self.components["start_btn"], | |
self.components["stop_btn"], | |
third_btn | |
] | |
) | |
# Add an event handler for delete_checkpoints_btn | |
self.components["delete_checkpoints_btn"].click( | |
fn=lambda: self.app.training.delete_all_checkpoints(), | |
outputs=[self.components["status_box"]] | |
) | |
def update_model_versions(self, model_type: str) -> Dict: | |
"""Update model version choices based on selected model type""" | |
try: | |
# Get version choices for this model type | |
model_versions = self.get_model_version_choices(model_type) | |
# Get default version | |
default_version = self.get_default_model_version(model_type) | |
logger.info(f"update_model_versions({model_type}): default_version = {default_version}, available versions: {model_versions}") | |
# Update UI state with proper model_type first | |
self.app.update_ui_state(model_type=model_type) | |
# Ensure model_versions is a simple list of strings | |
model_versions = [str(version) for version in model_versions] | |
# Create a new dropdown with the updated choices | |
if not model_versions: | |
logger.warning(f"No model versions available for {model_type}, using empty list") | |
# Return empty dropdown to avoid errors | |
return gr.Dropdown(choices=[], value=None) | |
# Ensure default_version is in model_versions | |
if default_version not in model_versions and model_versions: | |
default_version = model_versions[0] | |
logger.info(f"Default version not in choices, using first available: {default_version}") | |
# Return the updated dropdown | |
logger.info(f"Returning dropdown with {len(model_versions)} choices") | |
return gr.Dropdown(choices=model_versions, value=default_version) | |
except Exception as e: | |
# Log any exceptions for debugging | |
logger.error(f"Error in update_model_versions: {str(e)}") | |
# Return empty dropdown to avoid errors | |
return gr.Dropdown(choices=[], value=None) | |
def handle_training_start( | |
self, preset, model_type, model_version, training_type, | |
lora_rank, lora_alpha, train_steps, batch_size, learning_rate, | |
save_iterations, repo_id, | |
progress=gr.Progress(), | |
resume_from_checkpoint=None, | |
): | |
"""Handle training start with proper log parser reset and checkpoint detection""" | |
# Safely reset log parser if it exists | |
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None: | |
self.app.log_parser.reset() | |
else: | |
logger.warning("Log parser not initialized, creating a new one") | |
from ..utils import TrainingLogParser | |
self.app.log_parser = TrainingLogParser() | |
# Check for latest checkpoint | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
has_checkpoints = len(checkpoints) > 0 | |
resume_from = resume_from_checkpoint # Use the passed parameter | |
if resume_from and checkpoints: | |
# Find the latest checkpoint | |
latest_checkpoint = max(checkpoints, key=os.path.getmtime) | |
resume_from = str(latest_checkpoint) | |
logger.info(f"Found checkpoint at {resume_from}, note from @julian: right now let's just resume training at 'latest'") | |
result_from = "latest" | |
# Convert model_type display name to internal name | |
model_internal_type = MODEL_TYPES.get(model_type) | |
if not model_internal_type: | |
logger.error(f"Invalid model type: {model_type}") | |
return f"Error: Invalid model type '{model_type}'", "Model type not recognized" | |
# Convert training_type display name to internal name | |
training_internal_type = TRAINING_TYPES.get(training_type) | |
if not training_internal_type: | |
logger.error(f"Invalid training type: {training_type}") | |
return f"Error: Invalid training type '{training_type}'", "Training type not recognized" | |
# Get other parameters from UI form | |
num_gpus = int(self.components["num_gpus"].value) | |
precomputation_items = int(self.components["precomputation_items"].value) | |
lr_warmup_steps = int(self.components["lr_warmup_steps"].value) | |
# Start training (it will automatically use the checkpoint if provided) | |
try: | |
return self.app.training.start_training( | |
model_internal_type, | |
lora_rank, | |
lora_alpha, | |
train_steps, | |
batch_size, | |
learning_rate, | |
save_iterations, | |
repo_id, | |
preset_name=preset, | |
training_type=training_internal_type, | |
model_version=model_version, # Pass the model version from dropdown | |
resume_from_checkpoint=resume_from, | |
num_gpus=num_gpus, | |
precomputation_items=precomputation_items, | |
lr_warmup_steps=lr_warmup_steps, | |
progress=progress | |
) | |
except Exception as e: | |
logger.exception("Error starting training") | |
return f"Error starting training: {str(e)}", f"Exception: {str(e)}\n\nCheck the logs for more details." | |
def get_model_version_choices(self, model_type: str) -> List[str]: | |
"""Get model version choices based on model type""" | |
# Convert UI display name to internal name | |
internal_type = MODEL_TYPES.get(model_type) | |
if not internal_type or internal_type not in MODEL_VERSIONS: | |
logger.warning(f"No model versions found for {model_type} (internal type: {internal_type})") | |
return [] | |
# Return just the model IDs as a list of simple strings | |
version_ids = list(MODEL_VERSIONS.get(internal_type, {}).keys()) | |
logger.info(f"Found {len(version_ids)} versions for {model_type}: {version_ids}") | |
# Ensure they're all strings | |
return [str(version) for version in version_ids] | |
def get_default_model_version(self, model_type: str) -> str: | |
"""Get default model version for the given model type""" | |
# Convert UI display name to internal name | |
internal_type = MODEL_TYPES.get(model_type) | |
logger.debug(f"get_default_model_version({model_type}) = {internal_type}") | |
if not internal_type or internal_type not in MODEL_VERSIONS: | |
logger.warning(f"No valid model versions found for {model_type}") | |
return "" | |
# Get the first version available for this model type | |
versions = list(MODEL_VERSIONS.get(internal_type, {}).keys()) | |
if versions: | |
default_version = versions[0] | |
logger.debug(f"Default version for {model_type}: {default_version}") | |
return default_version | |
return "" | |
def update_model_info(self, model_type: str, training_type: str) -> Dict: | |
"""Update model info and related UI components based on model type and training type""" | |
# Get model info text | |
model_info = self.get_model_info(model_type, training_type) | |
# Get default parameters for this model type and training type | |
params = self.get_default_params(MODEL_TYPES.get(model_type), TRAINING_TYPES.get(training_type)) | |
# Check if LoRA params should be visible | |
show_lora_params = training_type == "LoRA Finetune" | |
# Return updates for UI components | |
return { | |
self.components["model_info"]: model_info, | |
self.components["train_steps"]: params["train_steps"], | |
self.components["batch_size"]: params["batch_size"], | |
self.components["learning_rate"]: params["learning_rate"], | |
self.components["save_iterations"]: params["save_iterations"], | |
self.components["lora_params_row"]: gr.Row(visible=show_lora_params) | |
} | |
def get_model_info(self, model_type: str, training_type: str) -> str: | |
"""Get information about the selected model type and training method""" | |
if model_type == "HunyuanVideo": | |
base_info = """### HunyuanVideo | |
- Required VRAM: ~48GB minimum | |
- Recommended batch size: 1-2 | |
- Typical training time: 2-4 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "LoRA Finetune": | |
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)" | |
else: | |
return base_info + "\n- Required VRAM: ~48GB minimum\n- **Full finetune not recommended due to VRAM requirements**" | |
elif model_type == "LTX-Video": | |
base_info = """### LTX-Video | |
- Recommended batch size: 1-4 | |
- Typical training time: 1-3 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "LoRA Finetune": | |
return base_info + "\n- Required VRAM: ~18GB minimum\n- Default LoRA rank: 128 (~400 MB)" | |
else: | |
return base_info + "\n- Required VRAM: ~21GB minimum\n- Full model size: ~8GB" | |
elif model_type == "Wan": | |
base_info = """### Wan | |
- Recommended batch size: 1-4 | |
- Typical training time: 1-3 hours | |
- Default resolution: 49x512x768""" | |
if training_type == "LoRA Finetune": | |
return base_info + "\n- Required VRAM: ~16GB minimum\n- Default LoRA rank: 32 (~120 MB)" | |
else: | |
return base_info + "\n- **Full finetune not recommended due to VRAM requirements**" | |
# Default fallback | |
return f"### {model_type}\nPlease check documentation for VRAM requirements and recommended settings." | |
def get_default_params(self, model_type: str, training_type: str) -> Dict[str, Any]: | |
"""Get default training parameters for model type""" | |
# Find preset that matches model type and training type | |
matching_presets = [ | |
preset for preset_name, preset in TRAINING_PRESETS.items() | |
if preset["model_type"] == model_type and preset["training_type"] == training_type | |
] | |
if matching_presets: | |
# Use the first matching preset | |
preset = matching_presets[0] | |
return { | |
"train_steps": preset.get("train_steps", DEFAULT_NB_TRAINING_STEPS), | |
"batch_size": preset.get("batch_size", DEFAULT_BATCH_SIZE), | |
"learning_rate": preset.get("learning_rate", DEFAULT_LEARNING_RATE), | |
"save_iterations": preset.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
"lora_rank": preset.get("lora_rank", DEFAULT_LORA_RANK_STR), | |
"lora_alpha": preset.get("lora_alpha", DEFAULT_LORA_ALPHA_STR) | |
} | |
# Default fallbacks | |
if model_type == "hunyuan_video": | |
return { | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": 2e-5, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR | |
} | |
elif model_type == "ltx_video": | |
return { | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR | |
} | |
elif model_type == "wan": | |
return { | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": 5e-5, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"lora_rank": "32", | |
"lora_alpha": "32" | |
} | |
else: | |
# Generic defaults | |
return { | |
"train_steps": DEFAULT_NB_TRAINING_STEPS, | |
"batch_size": DEFAULT_BATCH_SIZE, | |
"learning_rate": DEFAULT_LEARNING_RATE, | |
"save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
"lora_rank": DEFAULT_LORA_RANK_STR, | |
"lora_alpha": DEFAULT_LORA_ALPHA_STR | |
} | |
def update_training_params(self, preset_name: str) -> Tuple: | |
"""Update UI components based on selected preset while preserving custom settings""" | |
preset = TRAINING_PRESETS[preset_name] | |
# Load current UI state to check if user has customized values | |
current_state = self.app.load_ui_values() | |
# Find the display name that maps to our model type | |
model_display_name = next( | |
key for key, value in MODEL_TYPES.items() | |
if value == preset["model_type"] | |
) | |
# Find the display name that maps to our training type | |
training_display_name = next( | |
key for key, value in TRAINING_TYPES.items() | |
if value == preset["training_type"] | |
) | |
# Get preset description for display | |
description = preset.get("description", "") | |
# Get max values from buckets | |
buckets = preset["training_buckets"] | |
max_frames = max(frames for frames, _, _ in buckets) | |
max_height = max(height for _, height, _ in buckets) | |
max_width = max(width for _, _, width in buckets) | |
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution" | |
info_text = f"{description}{bucket_info}" | |
# Check if LoRA params should be visible | |
show_lora_params = preset["training_type"] == "lora" | |
# Use preset defaults but preserve user-modified values if they exist | |
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", DEFAULT_LORA_RANK_STR) else preset.get("lora_rank", DEFAULT_LORA_RANK_STR) | |
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", DEFAULT_LORA_ALPHA_STR) else preset.get("lora_alpha", DEFAULT_LORA_ALPHA_STR) | |
train_steps_val = current_state.get("train_steps") if current_state.get("train_steps") != preset.get("train_steps", DEFAULT_NB_TRAINING_STEPS) else preset.get("train_steps", DEFAULT_NB_TRAINING_STEPS) | |
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", DEFAULT_BATCH_SIZE) else preset.get("batch_size", DEFAULT_BATCH_SIZE) | |
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", DEFAULT_LEARNING_RATE) else preset.get("learning_rate", DEFAULT_LEARNING_RATE) | |
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS) else preset.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS) | |
num_gpus_val = current_state.get("num_gpus") if current_state.get("num_gpus") != preset.get("num_gpus", DEFAULT_NUM_GPUS) else preset.get("num_gpus", DEFAULT_NUM_GPUS) | |
precomputation_items_val = current_state.get("precomputation_items") if current_state.get("precomputation_items") != preset.get("precomputation_items", DEFAULT_PRECOMPUTATION_ITEMS) else preset.get("precomputation_items", DEFAULT_PRECOMPUTATION_ITEMS) | |
lr_warmup_steps_val = current_state.get("lr_warmup_steps") if current_state.get("lr_warmup_steps") != preset.get("lr_warmup_steps", DEFAULT_NB_LR_WARMUP_STEPS) else preset.get("lr_warmup_steps", DEFAULT_NB_LR_WARMUP_STEPS) | |
# Get the appropriate model version for the selected model type | |
model_versions = self.get_model_version_choices(model_display_name) | |
default_model_version = self.get_default_model_version(model_display_name) | |
# Ensure we have valid choices and values | |
if not model_versions: | |
logger.warning(f"No versions found for {model_display_name}, using empty list") | |
model_versions = [] | |
default_model_version = None | |
elif default_model_version not in model_versions and model_versions: | |
default_model_version = model_versions[0] | |
logger.info(f"Reset default version to first available: {default_model_version}") | |
# Ensure model_versions is a simple list of strings | |
model_versions = [str(version) for version in model_versions] | |
# Create the model version dropdown update | |
model_version_update = gr.Dropdown(choices=model_versions, value=default_model_version) | |
# Return values in the same order as the output components | |
return ( | |
model_display_name, | |
training_display_name, | |
lora_rank_val, | |
lora_alpha_val, | |
train_steps_val, | |
batch_size_val, | |
learning_rate_val, | |
save_iterations_val, | |
info_text, | |
gr.Row(visible=show_lora_params), | |
num_gpus_val, | |
precomputation_items_val, | |
lr_warmup_steps_val, | |
model_version_update, | |
) | |
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]: | |
"""Get latest status message, log content, and status code in a safer way""" | |
state = self.app.training.get_status() | |
logs = self.app.training.get_logs() | |
# Check if training process died unexpectedly | |
training_died = False | |
if state["status"] == "training" and not self.app.training.is_training_running(): | |
state["status"] = "error" | |
state["message"] = "Training process terminated unexpectedly." | |
training_died = True | |
# Look for error in logs | |
error_lines = [] | |
for line in logs.splitlines(): | |
if "Error:" in line or "Exception:" in line or "Traceback" in line: | |
error_lines.append(line) | |
if error_lines: | |
state["message"] += f"\n\nPossible error: {error_lines[-1]}" | |
# Ensure log parser is initialized | |
if not hasattr(self.app, 'log_parser') or self.app.log_parser is None: | |
from ..utils import TrainingLogParser | |
self.app.log_parser = TrainingLogParser() | |
logger.info("Initialized missing log parser") | |
# Parse new log lines | |
if logs and not training_died: | |
last_state = None | |
for line in logs.splitlines(): | |
try: | |
state_update = self.app.log_parser.parse_line(line) | |
if state_update: | |
last_state = state_update | |
except Exception as e: | |
logger.error(f"Error parsing log line: {str(e)}") | |
continue | |
if last_state: | |
ui_updates = self.update_training_ui(last_state) | |
state["message"] = ui_updates.get("status_box", state["message"]) | |
# Parse status for training state | |
if "completed" in state["message"].lower(): | |
state["status"] = "completed" | |
elif "error" in state["message"].lower(): | |
state["status"] = "error" | |
elif "failed" in state["message"].lower(): | |
state["status"] = "error" | |
elif "stopped" in state["message"].lower(): | |
state["status"] = "stopped" | |
# Add the current task info if available | |
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None: | |
state["current_task"] = self.app.log_parser.get_current_task_display() | |
return (state["status"], state["message"], logs) | |
def get_status_updates(self): | |
"""Get status updates for text components (no variant property)""" | |
status, message, logs = self.get_latest_status_message_and_logs() | |
# Get current task if available | |
current_task = "" | |
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None: | |
current_task = self.app.log_parser.get_current_task_display() | |
return message, logs, current_task | |
def get_button_updates(self): | |
"""Get button updates (with variant property)""" | |
status, _, _ = self.get_latest_status_message_and_logs() | |
# Add checkpoints detection | |
checkpoints = list(OUTPUT_PATH.glob("finetrainers_step_*")) | |
has_checkpoints = len(checkpoints) > 0 | |
is_training = status in ["training", "initializing"] | |
is_completed = status in ["completed", "error", "stopped"] | |
# Create button updates | |
start_btn = gr.Button( | |
value="🚀 Start new training", | |
interactive=not is_training, | |
variant="primary" if not is_training else "secondary" | |
) | |
resume_btn = gr.Button( | |
value="🛸 Start from latest checkpoint", | |
interactive=has_checkpoints and not is_training, | |
variant="primary" if not is_training else "secondary" | |
) | |
stop_btn = gr.Button( | |
value="Stop at Last Checkpoint", | |
interactive=is_training, | |
variant="primary" if is_training else "secondary" | |
) | |
# Add delete_checkpoints_btn | |
delete_checkpoints_btn = gr.Button( | |
"Delete All Checkpoints", | |
interactive=has_checkpoints and not is_training, | |
variant="stop" | |
) | |
return start_btn, resume_btn, stop_btn, delete_checkpoints_btn | |
def update_training_ui(self, training_state: Dict[str, Any]): | |
"""Update UI components based on training state""" | |
updates = {} | |
# Update status box with high-level information | |
status_text = [] | |
if training_state["status"] != "idle": | |
status_text.extend([ | |
f"Status: {training_state['status']}", | |
f"Progress: {training_state['progress']}", | |
f"Step: {training_state['current_step']}/{training_state['total_steps']}", | |
f"Time elapsed: {training_state['elapsed']}", | |
f"Estimated remaining: {training_state['remaining']}", | |
"", | |
f"Current loss: {training_state['step_loss']}", | |
f"Learning rate: {training_state['learning_rate']}", | |
f"Gradient norm: {training_state['grad_norm']}", | |
f"Memory usage: {training_state['memory']}" | |
]) | |
if training_state["error_message"]: | |
status_text.append(f"\nError: {training_state['error_message']}") | |
updates["status_box"] = "\n".join(status_text) | |
# Add current task information to the dedicated box | |
if training_state.get("current_task"): | |
updates["current_task_box"] = training_state["current_task"] | |
else: | |
updates["current_task_box"] = "No active task" if training_state["status"] != "training" else "Waiting for task information..." | |
return updates | |
def handle_pause_resume(self): | |
"""Handle pause/resume button click""" | |
status, _, _ = self.get_latest_status_message_and_logs() | |
if status == "paused": | |
self.app.training.resume_training() | |
else: | |
self.app.training.pause_training() | |
# Return the updates separately for text and buttons | |
return (*self.get_status_updates(), *self.get_button_updates()) | |
def handle_stop(self): | |
"""Handle stop button click""" | |
self.app.training.stop_training() | |
# Return the updates separately for text and buttons | |
return (*self.get_status_updates(), *self.get_button_updates()) |