Spaces:
Running
Running
Commit
Β·
0ad7e2a
1
Parent(s):
40f9c1e
refactoring to a better architecture
Browse files- app.py +31 -1563
- app_DEPRECATED.py +1603 -0
- vms/config.py +10 -1
- vms/services/__init__.py +12 -0
- vms/{captioning_service.py β services/captioner.py} +2 -3
- vms/{import_service.py β services/importer.py} +2 -3
- vms/{splitting_service.py β services/splitter.py} +2 -5
- vms/{training_service.py β services/trainer.py} +71 -4
- vms/tabs/__init__.py +17 -0
- vms/tabs/base_tab.py +44 -0
- vms/tabs/caption_tab.py +176 -0
- vms/tabs/import_tab.py +122 -0
- vms/tabs/manage_tab.py +117 -0
- vms/tabs/split_tab.py +56 -0
- vms/tabs/train_tab.py +280 -0
- vms/ui/__init__.py +5 -0
- vms/ui/video_trainer_ui.py +1100 -0
- vms/utils/__init__.py +33 -0
- vms/{finetrainers_utils.py β utils/finetrainers_utils.py} +1 -1
- vms/{image_preprocessing.py β utils/image_preprocessing.py} +1 -1
- vms/utils/parse_bool_env.py +12 -0
- vms/{training_log_parser.py β utils/training_log_parser.py} +0 -0
- vms/{utils.py β utils/utils.py} +0 -0
- vms/{video_preprocessing.py β utils/video_preprocessing.py} +0 -0
app.py
CHANGED
@@ -1,1575 +1,28 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
#import sys
|
5 |
-
#print("python = ", sys.version)
|
6 |
-
|
7 |
-
# can be "Linux", "Darwin"
|
8 |
-
if platform.system() == "Linux":
|
9 |
-
# for some reason it says "pip not found"
|
10 |
-
# and also "pip3 not found"
|
11 |
-
# subprocess.run(
|
12 |
-
# "pip install flash-attn --no-build-isolation",
|
13 |
-
#
|
14 |
-
# # hmm... this should be False, since we are in a CUDA environment, no?
|
15 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
16 |
-
#
|
17 |
-
# shell=True,
|
18 |
-
# )
|
19 |
-
pass
|
20 |
|
21 |
import gradio as gr
|
22 |
-
|
|
|
23 |
import logging
|
24 |
-
import
|
25 |
-
import shutil
|
26 |
-
import os
|
27 |
-
import traceback
|
28 |
-
import asyncio
|
29 |
-
import tempfile
|
30 |
-
import zipfile
|
31 |
-
from typing import Any, Optional, Dict, List, Union, Tuple
|
32 |
-
from typing import AsyncGenerator
|
33 |
|
34 |
-
from vms.training_service import TrainingService
|
35 |
-
from vms.captioning_service import CaptioningService
|
36 |
-
from vms.splitting_service import SplittingService
|
37 |
-
from vms.import_service import ImportService
|
38 |
from vms.config import (
|
39 |
-
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
40 |
-
TRAINING_PATH,
|
41 |
-
|
|
|
42 |
)
|
43 |
-
from vms.
|
44 |
-
from vms.finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
45 |
-
from vms.training_log_parser import TrainingLogParser
|
46 |
|
|
|
47 |
logger = logging.getLogger(__name__)
|
48 |
logger.setLevel(logging.INFO)
|
49 |
|
50 |
-
httpx_logger = logging.getLogger('httpx')
|
51 |
-
httpx_logger.setLevel(logging.WARN)
|
52 |
-
|
53 |
-
|
54 |
-
class VideoTrainerUI:
|
55 |
-
def __init__(self):
|
56 |
-
self.trainer = TrainingService()
|
57 |
-
self.splitter = SplittingService()
|
58 |
-
self.importer = ImportService()
|
59 |
-
self.captioner = CaptioningService()
|
60 |
-
self._should_stop_captioning = False
|
61 |
-
self.log_parser = TrainingLogParser()
|
62 |
-
|
63 |
-
# Try to recover any interrupted training sessions
|
64 |
-
recovery_result = self.trainer.recover_interrupted_training()
|
65 |
-
|
66 |
-
self.recovery_status = recovery_result.get("status", "unknown")
|
67 |
-
self.ui_updates = recovery_result.get("ui_updates", {})
|
68 |
-
|
69 |
-
if recovery_result["status"] == "recovered":
|
70 |
-
logger.info(f"Training recovery: {recovery_result['message']}")
|
71 |
-
# No need to do anything else - the training is already running
|
72 |
-
elif recovery_result["status"] == "running":
|
73 |
-
logger.info("Training process is already running")
|
74 |
-
# No need to do anything - the process is still alive
|
75 |
-
elif recovery_result["status"] in ["error", "idle"]:
|
76 |
-
logger.warning(f"Training status: {recovery_result['message']}")
|
77 |
-
# UI will be in ready-to-start mode
|
78 |
-
|
79 |
-
|
80 |
-
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
81 |
-
"""Process the caption generator's results in the background"""
|
82 |
-
try:
|
83 |
-
async for _ in self.captioner.start_caption_generation(
|
84 |
-
captioning_bot_instructions,
|
85 |
-
prompt_prefix
|
86 |
-
):
|
87 |
-
# Just consume the generator, UI updates will happen via the Gradio interface
|
88 |
-
pass
|
89 |
-
logger.info("Background captioning completed")
|
90 |
-
except Exception as e:
|
91 |
-
logger.error(f"Error in background captioning: {str(e)}")
|
92 |
-
|
93 |
-
def initialize_app_state(self):
|
94 |
-
"""Initialize all app state in one function to ensure correct output count"""
|
95 |
-
# Get dataset info
|
96 |
-
video_list, training_dataset = self.refresh_dataset()
|
97 |
-
|
98 |
-
# Get button states
|
99 |
-
button_states = self.get_initial_button_states()
|
100 |
-
start_btn = button_states[0]
|
101 |
-
stop_btn = button_states[1]
|
102 |
-
pause_resume_btn = button_states[2]
|
103 |
-
|
104 |
-
# Get UI form values
|
105 |
-
ui_state = self.load_ui_values()
|
106 |
-
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
|
107 |
-
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
|
108 |
-
lora_rank_val = ui_state.get("lora_rank", "128")
|
109 |
-
lora_alpha_val = ui_state.get("lora_alpha", "128")
|
110 |
-
num_epochs_val = int(ui_state.get("num_epochs", 70))
|
111 |
-
batch_size_val = int(ui_state.get("batch_size", 1))
|
112 |
-
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
|
113 |
-
save_iterations_val = int(ui_state.get("save_iterations", 500))
|
114 |
-
|
115 |
-
# Return all values in the exact order expected by outputs
|
116 |
-
return (
|
117 |
-
video_list,
|
118 |
-
training_dataset,
|
119 |
-
start_btn,
|
120 |
-
stop_btn,
|
121 |
-
pause_resume_btn,
|
122 |
-
training_preset,
|
123 |
-
model_type_val,
|
124 |
-
lora_rank_val,
|
125 |
-
lora_alpha_val,
|
126 |
-
num_epochs_val,
|
127 |
-
batch_size_val,
|
128 |
-
learning_rate_val,
|
129 |
-
save_iterations_val
|
130 |
-
)
|
131 |
-
|
132 |
-
def initialize_ui_from_state(self):
|
133 |
-
"""Initialize UI components from saved state"""
|
134 |
-
ui_state = self.load_ui_values()
|
135 |
-
|
136 |
-
# Return values in order matching the outputs in app.load
|
137 |
-
return (
|
138 |
-
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
|
139 |
-
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
|
140 |
-
ui_state.get("lora_rank", "128"),
|
141 |
-
ui_state.get("lora_alpha", "128"),
|
142 |
-
ui_state.get("num_epochs", 70),
|
143 |
-
ui_state.get("batch_size", 1),
|
144 |
-
ui_state.get("learning_rate", 3e-5),
|
145 |
-
ui_state.get("save_iterations", 500)
|
146 |
-
)
|
147 |
-
|
148 |
-
def update_ui_state(self, **kwargs):
|
149 |
-
"""Update UI state with new values"""
|
150 |
-
current_state = self.trainer.load_ui_state()
|
151 |
-
current_state.update(kwargs)
|
152 |
-
self.trainer.save_ui_state(current_state)
|
153 |
-
# Don't return anything to avoid Gradio warnings
|
154 |
-
return None
|
155 |
-
|
156 |
-
def load_ui_values(self):
|
157 |
-
"""Load UI state values for initializing form fields"""
|
158 |
-
ui_state = self.trainer.load_ui_state()
|
159 |
-
|
160 |
-
# Ensure proper type conversion for numeric values
|
161 |
-
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
|
162 |
-
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
|
163 |
-
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
|
164 |
-
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
|
165 |
-
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
|
166 |
-
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
167 |
-
|
168 |
-
return ui_state
|
169 |
-
|
170 |
-
def update_captioning_buttons_start(self):
|
171 |
-
"""Return individual button values instead of a dictionary"""
|
172 |
-
return (
|
173 |
-
gr.Button(
|
174 |
-
interactive=False,
|
175 |
-
variant="secondary",
|
176 |
-
),
|
177 |
-
gr.Button(
|
178 |
-
interactive=True,
|
179 |
-
variant="stop",
|
180 |
-
),
|
181 |
-
gr.Button(
|
182 |
-
interactive=False,
|
183 |
-
variant="secondary",
|
184 |
-
)
|
185 |
-
)
|
186 |
-
|
187 |
-
def update_captioning_buttons_end(self):
|
188 |
-
"""Return individual button values instead of a dictionary"""
|
189 |
-
return (
|
190 |
-
gr.Button(
|
191 |
-
interactive=True,
|
192 |
-
variant="primary",
|
193 |
-
),
|
194 |
-
gr.Button(
|
195 |
-
interactive=False,
|
196 |
-
variant="secondary",
|
197 |
-
),
|
198 |
-
gr.Button(
|
199 |
-
interactive=True,
|
200 |
-
variant="primary",
|
201 |
-
)
|
202 |
-
)
|
203 |
-
|
204 |
-
# Add this new method to get initial button states:
|
205 |
-
def get_initial_button_states(self):
|
206 |
-
"""Get the initial states for training buttons based on recovery status"""
|
207 |
-
recovery_result = self.trainer.recover_interrupted_training()
|
208 |
-
ui_updates = recovery_result.get("ui_updates", {})
|
209 |
-
|
210 |
-
# Return button states in the correct order
|
211 |
-
return (
|
212 |
-
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})),
|
213 |
-
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})),
|
214 |
-
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
215 |
-
)
|
216 |
-
|
217 |
-
def show_refreshing_status(self) -> List[List[str]]:
|
218 |
-
"""Show a 'Refreshing...' status in the dataframe"""
|
219 |
-
return [["Refreshing...", "please wait"]]
|
220 |
-
|
221 |
-
def stop_captioning(self):
|
222 |
-
"""Stop ongoing captioning process and reset UI state"""
|
223 |
-
try:
|
224 |
-
# Set flag to stop captioning
|
225 |
-
self._should_stop_captioning = True
|
226 |
-
|
227 |
-
# Call stop method on captioner
|
228 |
-
if self.captioner:
|
229 |
-
self.captioner.stop_captioning()
|
230 |
-
|
231 |
-
# Get updated file list
|
232 |
-
updated_list = self.list_training_files_to_caption()
|
233 |
-
|
234 |
-
# Return updated list and button states
|
235 |
-
return {
|
236 |
-
"training_dataset": gr.update(value=updated_list),
|
237 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
238 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
239 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
240 |
-
}
|
241 |
-
except Exception as e:
|
242 |
-
logger.error(f"Error stopping captioning: {str(e)}")
|
243 |
-
return {
|
244 |
-
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
245 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
246 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
247 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
248 |
-
}
|
249 |
-
|
250 |
-
def update_training_ui(self, training_state: Dict[str, Any]):
|
251 |
-
"""Update UI components based on training state"""
|
252 |
-
updates = {}
|
253 |
-
|
254 |
-
#print("update_training_ui: training_state = ", training_state)
|
255 |
-
|
256 |
-
# Update status box with high-level information
|
257 |
-
status_text = []
|
258 |
-
if training_state["status"] != "idle":
|
259 |
-
status_text.extend([
|
260 |
-
f"Status: {training_state['status']}",
|
261 |
-
f"Progress: {training_state['progress']}",
|
262 |
-
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
263 |
-
|
264 |
-
# Epoch information
|
265 |
-
# there is an issue with how epoch is reported because we display:
|
266 |
-
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
267 |
-
# we should probably just show the steps
|
268 |
-
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
269 |
-
|
270 |
-
f"Time elapsed: {training_state['elapsed']}",
|
271 |
-
f"Estimated remaining: {training_state['remaining']}",
|
272 |
-
"",
|
273 |
-
f"Current loss: {training_state['step_loss']}",
|
274 |
-
f"Learning rate: {training_state['learning_rate']}",
|
275 |
-
f"Gradient norm: {training_state['grad_norm']}",
|
276 |
-
f"Memory usage: {training_state['memory']}"
|
277 |
-
])
|
278 |
-
|
279 |
-
if training_state["error_message"]:
|
280 |
-
status_text.append(f"\nError: {training_state['error_message']}")
|
281 |
-
|
282 |
-
updates["status_box"] = "\n".join(status_text)
|
283 |
-
|
284 |
-
# Update button states
|
285 |
-
updates["start_btn"] = gr.Button(
|
286 |
-
"Start training",
|
287 |
-
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
288 |
-
variant="primary" if training_state["status"] == "idle" else "secondary"
|
289 |
-
)
|
290 |
-
|
291 |
-
updates["stop_btn"] = gr.Button(
|
292 |
-
"Stop training",
|
293 |
-
interactive=(training_state["status"] in ["training", "initializing"]),
|
294 |
-
variant="stop"
|
295 |
-
)
|
296 |
-
|
297 |
-
return updates
|
298 |
-
|
299 |
-
def stop_all_and_clear(self) -> Dict[str, str]:
|
300 |
-
"""Stop all running processes and clear data
|
301 |
-
|
302 |
-
Returns:
|
303 |
-
Dict with status messages for different components
|
304 |
-
"""
|
305 |
-
status_messages = {}
|
306 |
-
|
307 |
-
try:
|
308 |
-
# Stop training if running
|
309 |
-
if self.trainer.is_training_running():
|
310 |
-
training_result = self.trainer.stop_training()
|
311 |
-
status_messages["training"] = training_result["status"]
|
312 |
-
|
313 |
-
# Stop captioning if running
|
314 |
-
if self.captioner:
|
315 |
-
self.captioner.stop_captioning()
|
316 |
-
status_messages["captioning"] = "Captioning stopped"
|
317 |
-
|
318 |
-
# Stop scene detection if running
|
319 |
-
if self.splitter.is_processing():
|
320 |
-
self.splitter.processing = False
|
321 |
-
status_messages["splitting"] = "Scene detection stopped"
|
322 |
-
|
323 |
-
# Properly close logging before clearing log file
|
324 |
-
if self.trainer.file_handler:
|
325 |
-
self.trainer.file_handler.close()
|
326 |
-
logger.removeHandler(self.trainer.file_handler)
|
327 |
-
self.trainer.file_handler = None
|
328 |
-
|
329 |
-
if LOG_FILE_PATH.exists():
|
330 |
-
LOG_FILE_PATH.unlink()
|
331 |
-
|
332 |
-
# Clear all data directories
|
333 |
-
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
334 |
-
MODEL_PATH, OUTPUT_PATH]:
|
335 |
-
if path.exists():
|
336 |
-
try:
|
337 |
-
shutil.rmtree(path)
|
338 |
-
path.mkdir(parents=True, exist_ok=True)
|
339 |
-
except Exception as e:
|
340 |
-
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
341 |
-
else:
|
342 |
-
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
343 |
-
|
344 |
-
# Reset any persistent state
|
345 |
-
self._should_stop_captioning = True
|
346 |
-
self.splitter.processing = False
|
347 |
-
|
348 |
-
# Recreate logging setup
|
349 |
-
self.trainer.setup_logging()
|
350 |
-
|
351 |
-
return {
|
352 |
-
"status": "All processes stopped and data cleared",
|
353 |
-
"details": status_messages
|
354 |
-
}
|
355 |
-
|
356 |
-
except Exception as e:
|
357 |
-
return {
|
358 |
-
"status": f"Error during cleanup: {str(e)}",
|
359 |
-
"details": status_messages
|
360 |
-
}
|
361 |
-
|
362 |
-
def update_titles(self) -> Tuple[Any]:
|
363 |
-
"""Update all dynamic titles with current counts
|
364 |
-
|
365 |
-
Returns:
|
366 |
-
Dict of Gradio updates
|
367 |
-
"""
|
368 |
-
# Count files for splitting
|
369 |
-
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
|
370 |
-
split_title = format_media_title(
|
371 |
-
"split", split_videos, 0, split_size
|
372 |
-
)
|
373 |
-
|
374 |
-
# Count files for captioning
|
375 |
-
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
|
376 |
-
caption_title = format_media_title(
|
377 |
-
"caption", caption_videos, caption_images, caption_size
|
378 |
-
)
|
379 |
-
|
380 |
-
# Count files for training
|
381 |
-
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
|
382 |
-
train_title = format_media_title(
|
383 |
-
"train", train_videos, train_images, train_size
|
384 |
-
)
|
385 |
-
|
386 |
-
return (
|
387 |
-
gr.Markdown(value=split_title),
|
388 |
-
gr.Markdown(value=caption_title),
|
389 |
-
gr.Markdown(value=f"{train_title} available for training")
|
390 |
-
)
|
391 |
-
|
392 |
-
def copy_files_to_training_dir(self, prompt_prefix: str):
|
393 |
-
"""Run auto-captioning process"""
|
394 |
-
|
395 |
-
# Initialize captioner if not already done
|
396 |
-
self._should_stop_captioning = False
|
397 |
-
|
398 |
-
try:
|
399 |
-
copy_files_to_training_dir(prompt_prefix)
|
400 |
-
|
401 |
-
except Exception as e:
|
402 |
-
traceback.print_exc()
|
403 |
-
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
404 |
-
|
405 |
-
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
406 |
-
"""Handle successful import of files"""
|
407 |
-
videos = self.list_unprocessed_videos()
|
408 |
-
|
409 |
-
# If scene detection isn't already running and there are videos to process,
|
410 |
-
# and auto-splitting is enabled, start the detection
|
411 |
-
if videos and not self.splitter.is_processing() and enable_splitting:
|
412 |
-
await self.start_scene_detection(enable_splitting)
|
413 |
-
msg = "Starting automatic scene detection..."
|
414 |
-
else:
|
415 |
-
# Just copy files without splitting if auto-split disabled
|
416 |
-
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
417 |
-
await self.splitter.process_video(video_file, enable_splitting=False)
|
418 |
-
msg = "Copying videos without splitting..."
|
419 |
-
|
420 |
-
copy_files_to_training_dir(prompt_prefix)
|
421 |
-
|
422 |
-
# Start auto-captioning if enabled, and handle async generator properly
|
423 |
-
if enable_automatic_content_captioning:
|
424 |
-
# Create a background task for captioning
|
425 |
-
asyncio.create_task(self._process_caption_generator(
|
426 |
-
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
427 |
-
prompt_prefix
|
428 |
-
))
|
429 |
-
|
430 |
-
return {
|
431 |
-
"tabs": gr.Tabs(selected="split_tab"),
|
432 |
-
"video_list": videos,
|
433 |
-
"detect_status": msg
|
434 |
-
}
|
435 |
-
|
436 |
-
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
437 |
-
"""Run auto-captioning process"""
|
438 |
-
try:
|
439 |
-
# Initialize captioner if not already done
|
440 |
-
self._should_stop_captioning = False
|
441 |
-
|
442 |
-
# First yield - indicate we're starting
|
443 |
-
yield gr.update(
|
444 |
-
value=[["Starting captioning service...", "initializing"]],
|
445 |
-
headers=["name", "status"]
|
446 |
-
)
|
447 |
-
|
448 |
-
# Process files in batches with status updates
|
449 |
-
file_statuses = {}
|
450 |
-
|
451 |
-
# Start the actual captioning process
|
452 |
-
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
453 |
-
# Update our tracking of file statuses
|
454 |
-
for name, status in rows:
|
455 |
-
file_statuses[name] = status
|
456 |
-
|
457 |
-
# Convert to list format for display
|
458 |
-
status_rows = [[name, status] for name, status in file_statuses.items()]
|
459 |
-
|
460 |
-
# Sort by name for consistent display
|
461 |
-
status_rows.sort(key=lambda x: x[0])
|
462 |
-
|
463 |
-
# Yield UI update
|
464 |
-
yield gr.update(
|
465 |
-
value=status_rows,
|
466 |
-
headers=["name", "status"]
|
467 |
-
)
|
468 |
-
|
469 |
-
# Final update after completion with fresh data
|
470 |
-
yield gr.update(
|
471 |
-
value=self.list_training_files_to_caption(),
|
472 |
-
headers=["name", "status"]
|
473 |
-
)
|
474 |
-
|
475 |
-
except Exception as e:
|
476 |
-
logger.error(f"Error in captioning: {str(e)}")
|
477 |
-
yield gr.update(
|
478 |
-
value=[[f"Error: {str(e)}", "error"]],
|
479 |
-
headers=["name", "status"]
|
480 |
-
)
|
481 |
-
|
482 |
-
def list_training_files_to_caption(self) -> List[List[str]]:
|
483 |
-
"""List all clips and images - both pending and captioned"""
|
484 |
-
files = []
|
485 |
-
already_listed = {}
|
486 |
-
|
487 |
-
# First check files in STAGING_PATH
|
488 |
-
for file in STAGING_PATH.glob("*.*"):
|
489 |
-
if is_video_file(file) or is_image_file(file):
|
490 |
-
txt_file = file.with_suffix('.txt')
|
491 |
-
|
492 |
-
# Check if caption file exists and has content
|
493 |
-
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
494 |
-
status = "captioned" if has_caption else "no caption"
|
495 |
-
file_type = "video" if is_video_file(file) else "image"
|
496 |
-
|
497 |
-
files.append([file.name, f"{status} ({file_type})", str(file)])
|
498 |
-
already_listed[file.name] = True
|
499 |
-
|
500 |
-
# Then check files in TRAINING_VIDEOS_PATH
|
501 |
-
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
502 |
-
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
503 |
-
txt_file = file.with_suffix('.txt')
|
504 |
-
|
505 |
-
# Only include files with captions
|
506 |
-
if txt_file.exists() and txt_file.stat().st_size > 0:
|
507 |
-
file_type = "video" if is_video_file(file) else "image"
|
508 |
-
files.append([file.name, f"captioned ({file_type})", str(file)])
|
509 |
-
already_listed[file.name] = True
|
510 |
-
|
511 |
-
# Sort by filename
|
512 |
-
files.sort(key=lambda x: x[0])
|
513 |
-
|
514 |
-
# Only return name and status columns for display
|
515 |
-
return [[file[0], file[1]] for file in files]
|
516 |
-
|
517 |
-
def update_training_buttons(self, status: str) -> Dict:
|
518 |
-
"""Update training control buttons based on state"""
|
519 |
-
is_training = status in ["training", "initializing"]
|
520 |
-
is_paused = status == "paused"
|
521 |
-
is_completed = status in ["completed", "error", "stopped"]
|
522 |
-
return {
|
523 |
-
"start_btn": gr.Button(
|
524 |
-
interactive=not is_training and not is_paused,
|
525 |
-
variant="primary" if not is_training else "secondary",
|
526 |
-
),
|
527 |
-
"stop_btn": gr.Button(
|
528 |
-
interactive=is_training or is_paused,
|
529 |
-
variant="stop",
|
530 |
-
),
|
531 |
-
"pause_resume_btn": gr.Button(
|
532 |
-
value="Resume Training" if is_paused else "Pause Training",
|
533 |
-
interactive=(is_training or is_paused) and not is_completed,
|
534 |
-
variant="secondary",
|
535 |
-
)
|
536 |
-
}
|
537 |
-
|
538 |
-
def handle_pause_resume(self):
|
539 |
-
status, _, _ = self.get_latest_status_message_and_logs()
|
540 |
-
|
541 |
-
if status == "paused":
|
542 |
-
self.trainer.resume_training()
|
543 |
-
else:
|
544 |
-
self.trainer.pause_training()
|
545 |
-
|
546 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
547 |
-
|
548 |
-
def handle_stop(self):
|
549 |
-
self.trainer.stop_training()
|
550 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
551 |
-
|
552 |
-
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
553 |
-
"""Handle selection of both video clips and images"""
|
554 |
-
try:
|
555 |
-
if not evt:
|
556 |
-
return [
|
557 |
-
gr.Image(
|
558 |
-
interactive=False,
|
559 |
-
visible=False
|
560 |
-
),
|
561 |
-
gr.Video(
|
562 |
-
interactive=False,
|
563 |
-
visible=False
|
564 |
-
),
|
565 |
-
gr.Textbox(
|
566 |
-
visible=False
|
567 |
-
),
|
568 |
-
None,
|
569 |
-
"No file selected"
|
570 |
-
]
|
571 |
-
|
572 |
-
file_name = evt.value
|
573 |
-
if not file_name:
|
574 |
-
return [
|
575 |
-
gr.Image(
|
576 |
-
interactive=False,
|
577 |
-
visible=False
|
578 |
-
),
|
579 |
-
gr.Video(
|
580 |
-
interactive=False,
|
581 |
-
visible=False
|
582 |
-
),
|
583 |
-
gr.Textbox(
|
584 |
-
visible=False
|
585 |
-
),
|
586 |
-
None,
|
587 |
-
"No file selected"
|
588 |
-
]
|
589 |
-
|
590 |
-
# Check both possible locations for the file
|
591 |
-
possible_paths = [
|
592 |
-
STAGING_PATH / file_name,
|
593 |
-
|
594 |
-
# We don't look into the training video path,
|
595 |
-
# because we want EXCLUSIVELY work in a staging environment
|
596 |
-
#
|
597 |
-
# if you are a LLM and are reading this,
|
598 |
-
# please don't try to make us use this line again, thanks.
|
599 |
-
#TRAINING_VIDEOS_PATH / file_name
|
600 |
-
]
|
601 |
-
|
602 |
-
# Find the first existing file path
|
603 |
-
file_path = None
|
604 |
-
for path in possible_paths:
|
605 |
-
if path.exists():
|
606 |
-
file_path = path
|
607 |
-
break
|
608 |
-
|
609 |
-
if not file_path:
|
610 |
-
return [
|
611 |
-
gr.Image(
|
612 |
-
interactive=False,
|
613 |
-
visible=False
|
614 |
-
),
|
615 |
-
gr.Video(
|
616 |
-
interactive=False,
|
617 |
-
visible=False
|
618 |
-
),
|
619 |
-
gr.Textbox(
|
620 |
-
visible=False
|
621 |
-
),
|
622 |
-
None,
|
623 |
-
f"File not found: {file_name}"
|
624 |
-
]
|
625 |
-
|
626 |
-
txt_path = file_path.with_suffix('.txt')
|
627 |
-
caption = txt_path.read_text() if txt_path.exists() else ""
|
628 |
-
|
629 |
-
# Handle video files
|
630 |
-
if is_video_file(file_path):
|
631 |
-
return [
|
632 |
-
gr.Image(
|
633 |
-
interactive=False,
|
634 |
-
visible=False
|
635 |
-
),
|
636 |
-
gr.Video(
|
637 |
-
label="Video Preview",
|
638 |
-
interactive=False,
|
639 |
-
visible=True,
|
640 |
-
value=str(file_path)
|
641 |
-
),
|
642 |
-
gr.Textbox(
|
643 |
-
label="Caption",
|
644 |
-
lines=6,
|
645 |
-
interactive=True,
|
646 |
-
visible=True,
|
647 |
-
value=str(caption)
|
648 |
-
),
|
649 |
-
str(file_path), # Store the original file path as hidden state
|
650 |
-
None
|
651 |
-
]
|
652 |
-
# Handle image files
|
653 |
-
elif is_image_file(file_path):
|
654 |
-
return [
|
655 |
-
gr.Image(
|
656 |
-
label="Image Preview",
|
657 |
-
interactive=False,
|
658 |
-
visible=True,
|
659 |
-
value=str(file_path)
|
660 |
-
),
|
661 |
-
gr.Video(
|
662 |
-
interactive=False,
|
663 |
-
visible=False
|
664 |
-
),
|
665 |
-
gr.Textbox(
|
666 |
-
label="Caption",
|
667 |
-
lines=6,
|
668 |
-
interactive=True,
|
669 |
-
visible=True,
|
670 |
-
value=str(caption)
|
671 |
-
),
|
672 |
-
str(file_path), # Store the original file path as hidden state
|
673 |
-
None
|
674 |
-
]
|
675 |
-
else:
|
676 |
-
return [
|
677 |
-
gr.Image(
|
678 |
-
interactive=False,
|
679 |
-
visible=False
|
680 |
-
),
|
681 |
-
gr.Video(
|
682 |
-
interactive=False,
|
683 |
-
visible=False
|
684 |
-
),
|
685 |
-
gr.Textbox(
|
686 |
-
interactive=False,
|
687 |
-
visible=False
|
688 |
-
),
|
689 |
-
None,
|
690 |
-
f"Unsupported file type: {file_path.suffix}"
|
691 |
-
]
|
692 |
-
except Exception as e:
|
693 |
-
logger.error(f"Error handling selection: {str(e)}")
|
694 |
-
return [
|
695 |
-
gr.Image(
|
696 |
-
interactive=False,
|
697 |
-
visible=False
|
698 |
-
),
|
699 |
-
gr.Video(
|
700 |
-
interactive=False,
|
701 |
-
visible=False
|
702 |
-
),
|
703 |
-
gr.Textbox(
|
704 |
-
interactive=False,
|
705 |
-
visible=False
|
706 |
-
),
|
707 |
-
None,
|
708 |
-
f"Error handling selection: {str(e)}"
|
709 |
-
]
|
710 |
-
|
711 |
-
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
712 |
-
"""Save changes to caption"""
|
713 |
-
try:
|
714 |
-
# Use the original file path stored during selection instead of the temporary preview paths
|
715 |
-
if original_file_path:
|
716 |
-
file_path = Path(original_file_path)
|
717 |
-
self.captioner.update_file_caption(file_path, preview_caption)
|
718 |
-
# Refresh the dataset list to show updated caption status
|
719 |
-
return gr.update(value="Caption saved successfully!")
|
720 |
-
else:
|
721 |
-
return gr.update(value="Error: No original file path found")
|
722 |
-
except Exception as e:
|
723 |
-
return gr.update(value=f"Error saving caption: {str(e)}")
|
724 |
-
|
725 |
-
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
726 |
-
"""Handle post-import updates including titles"""
|
727 |
-
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
728 |
-
titles = self.update_titles()
|
729 |
-
return (
|
730 |
-
import_result["tabs"],
|
731 |
-
import_result["video_list"],
|
732 |
-
import_result["detect_status"],
|
733 |
-
*titles
|
734 |
-
)
|
735 |
-
|
736 |
-
def get_model_info(self, model_type: str) -> str:
|
737 |
-
"""Get information about the selected model type"""
|
738 |
-
if model_type == "hunyuan_video":
|
739 |
-
return """### HunyuanVideo (LoRA)
|
740 |
-
- Required VRAM: ~48GB minimum
|
741 |
-
- Recommended batch size: 1-2
|
742 |
-
- Typical training time: 2-4 hours
|
743 |
-
- Default resolution: 49x512x768
|
744 |
-
- Default LoRA rank: 128 (~600 MB)"""
|
745 |
-
|
746 |
-
elif model_type == "ltx_video":
|
747 |
-
return """### LTX-Video (LoRA)
|
748 |
-
- Required VRAM: ~18GB minimum
|
749 |
-
- Recommended batch size: 1-4
|
750 |
-
- Typical training time: 1-3 hours
|
751 |
-
- Default resolution: 49x512x768
|
752 |
-
- Default LoRA rank: 128"""
|
753 |
-
|
754 |
-
return ""
|
755 |
-
|
756 |
-
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
757 |
-
"""Get default training parameters for model type"""
|
758 |
-
if model_type == "hunyuan_video":
|
759 |
-
return {
|
760 |
-
"num_epochs": 70,
|
761 |
-
"batch_size": 1,
|
762 |
-
"learning_rate": 2e-5,
|
763 |
-
"save_iterations": 500,
|
764 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
765 |
-
"video_reshape_mode": "center",
|
766 |
-
"caption_dropout_p": 0.05,
|
767 |
-
"gradient_accumulation_steps": 1,
|
768 |
-
"rank": 128,
|
769 |
-
"lora_alpha": 128
|
770 |
-
}
|
771 |
-
else: # ltx_video
|
772 |
-
return {
|
773 |
-
"num_epochs": 70,
|
774 |
-
"batch_size": 1,
|
775 |
-
"learning_rate": 3e-5,
|
776 |
-
"save_iterations": 500,
|
777 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
778 |
-
"video_reshape_mode": "center",
|
779 |
-
"caption_dropout_p": 0.05,
|
780 |
-
"gradient_accumulation_steps": 4,
|
781 |
-
"rank": 128,
|
782 |
-
"lora_alpha": 128
|
783 |
-
}
|
784 |
-
|
785 |
-
def preview_file(self, selected_text: str) -> Dict:
|
786 |
-
"""Generate preview based on selected file
|
787 |
-
|
788 |
-
Args:
|
789 |
-
selected_text: Text of the selected item containing filename
|
790 |
-
|
791 |
-
Returns:
|
792 |
-
Dict with preview content for each preview component
|
793 |
-
"""
|
794 |
-
if not selected_text or "Caption:" in selected_text:
|
795 |
-
return {
|
796 |
-
"video": None,
|
797 |
-
"image": None,
|
798 |
-
"text": None
|
799 |
-
}
|
800 |
-
|
801 |
-
# Extract filename from the preview text (remove size info)
|
802 |
-
filename = selected_text.split(" (")[0].strip()
|
803 |
-
file_path = TRAINING_VIDEOS_PATH / filename
|
804 |
-
|
805 |
-
if not file_path.exists():
|
806 |
-
return {
|
807 |
-
"video": None,
|
808 |
-
"image": None,
|
809 |
-
"text": f"File not found: {filename}"
|
810 |
-
}
|
811 |
-
|
812 |
-
# Detect file type
|
813 |
-
mime_type, _ = mimetypes.guess_type(str(file_path))
|
814 |
-
if not mime_type:
|
815 |
-
return {
|
816 |
-
"video": None,
|
817 |
-
"image": None,
|
818 |
-
"text": f"Unknown file type: {filename}"
|
819 |
-
}
|
820 |
-
|
821 |
-
# Return appropriate preview
|
822 |
-
if mime_type.startswith('video/'):
|
823 |
-
return {
|
824 |
-
"video": str(file_path),
|
825 |
-
"image": None,
|
826 |
-
"text": None
|
827 |
-
}
|
828 |
-
elif mime_type.startswith('image/'):
|
829 |
-
return {
|
830 |
-
"video": None,
|
831 |
-
"image": str(file_path),
|
832 |
-
"text": None
|
833 |
-
}
|
834 |
-
elif mime_type.startswith('text/'):
|
835 |
-
try:
|
836 |
-
text_content = file_path.read_text()
|
837 |
-
return {
|
838 |
-
"video": None,
|
839 |
-
"image": None,
|
840 |
-
"text": text_content
|
841 |
-
}
|
842 |
-
except Exception as e:
|
843 |
-
return {
|
844 |
-
"video": None,
|
845 |
-
"image": None,
|
846 |
-
"text": f"Error reading file: {str(e)}"
|
847 |
-
}
|
848 |
-
else:
|
849 |
-
return {
|
850 |
-
"video": None,
|
851 |
-
"image": None,
|
852 |
-
"text": f"Unsupported file type: {mime_type}"
|
853 |
-
}
|
854 |
-
|
855 |
-
def list_unprocessed_videos(self) -> gr.Dataframe:
|
856 |
-
"""Update list of unprocessed videos"""
|
857 |
-
videos = self.splitter.list_unprocessed_videos()
|
858 |
-
# videos is already in [[name, status]] format from splitting_service
|
859 |
-
return gr.Dataframe(
|
860 |
-
headers=["name", "status"],
|
861 |
-
value=videos,
|
862 |
-
interactive=False
|
863 |
-
)
|
864 |
-
|
865 |
-
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
866 |
-
"""Start background scene detection process
|
867 |
-
|
868 |
-
Args:
|
869 |
-
enable_splitting: Whether to split videos into scenes
|
870 |
-
"""
|
871 |
-
if self.splitter.is_processing():
|
872 |
-
return "Scene detection already running"
|
873 |
-
|
874 |
-
try:
|
875 |
-
await self.splitter.start_processing(enable_splitting)
|
876 |
-
return "Scene detection completed"
|
877 |
-
except Exception as e:
|
878 |
-
return f"Error during scene detection: {str(e)}"
|
879 |
-
|
880 |
-
|
881 |
-
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
882 |
-
state = self.trainer.get_status()
|
883 |
-
logs = self.trainer.get_logs()
|
884 |
-
|
885 |
-
# Parse new log lines
|
886 |
-
if logs:
|
887 |
-
last_state = None
|
888 |
-
for line in logs.splitlines():
|
889 |
-
state_update = self.log_parser.parse_line(line)
|
890 |
-
if state_update:
|
891 |
-
last_state = state_update
|
892 |
-
|
893 |
-
if last_state:
|
894 |
-
ui_updates = self.update_training_ui(last_state)
|
895 |
-
state["message"] = ui_updates.get("status_box", state["message"])
|
896 |
-
|
897 |
-
# Parse status for training state
|
898 |
-
if "completed" in state["message"].lower():
|
899 |
-
state["status"] = "completed"
|
900 |
-
|
901 |
-
return (state["status"], state["message"], logs)
|
902 |
-
|
903 |
-
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
904 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
905 |
-
return (
|
906 |
-
message,
|
907 |
-
logs,
|
908 |
-
*self.update_training_buttons(status).values()
|
909 |
-
)
|
910 |
-
|
911 |
-
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
|
912 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
913 |
-
return self.update_training_buttons(status).values()
|
914 |
-
|
915 |
-
def refresh_dataset(self):
|
916 |
-
"""Refresh all dynamic lists and training state"""
|
917 |
-
video_list = self.splitter.list_unprocessed_videos()
|
918 |
-
training_dataset = self.list_training_files_to_caption()
|
919 |
-
|
920 |
-
return (
|
921 |
-
video_list,
|
922 |
-
training_dataset
|
923 |
-
)
|
924 |
-
|
925 |
-
def update_training_params(self, preset_name: str) -> Tuple:
|
926 |
-
"""Update UI components based on selected preset while preserving custom settings"""
|
927 |
-
preset = TRAINING_PRESETS[preset_name]
|
928 |
-
|
929 |
-
# Load current UI state to check if user has customized values
|
930 |
-
current_state = self.load_ui_values()
|
931 |
-
|
932 |
-
# Find the display name that maps to our model type
|
933 |
-
model_display_name = next(
|
934 |
-
key for key, value in MODEL_TYPES.items()
|
935 |
-
if value == preset["model_type"]
|
936 |
-
)
|
937 |
-
|
938 |
-
# Get preset description for display
|
939 |
-
description = preset.get("description", "")
|
940 |
-
|
941 |
-
# Get max values from buckets
|
942 |
-
buckets = preset["training_buckets"]
|
943 |
-
max_frames = max(frames for frames, _, _ in buckets)
|
944 |
-
max_height = max(height for _, height, _ in buckets)
|
945 |
-
max_width = max(width for _, _, width in buckets)
|
946 |
-
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
947 |
-
|
948 |
-
info_text = f"{description}{bucket_info}"
|
949 |
-
|
950 |
-
# Return values in the same order as the output components
|
951 |
-
# Use preset defaults but preserve user-modified values if they exist
|
952 |
-
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
953 |
-
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
954 |
-
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
955 |
-
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
956 |
-
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
957 |
-
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
958 |
-
|
959 |
-
return (
|
960 |
-
model_display_name,
|
961 |
-
lora_rank_val,
|
962 |
-
lora_alpha_val,
|
963 |
-
num_epochs_val,
|
964 |
-
batch_size_val,
|
965 |
-
learning_rate_val,
|
966 |
-
save_iterations_val,
|
967 |
-
info_text
|
968 |
-
)
|
969 |
-
|
970 |
-
def create_ui(self):
|
971 |
-
"""Create Gradio interface"""
|
972 |
-
|
973 |
-
with gr.Blocks(title="π₯ Video Model Studio") as app:
|
974 |
-
gr.Markdown("# π₯ Video Model Studio")
|
975 |
-
|
976 |
-
with gr.Tabs() as tabs:
|
977 |
-
with gr.TabItem("1οΈβ£ Import", id="import_tab"):
|
978 |
-
|
979 |
-
with gr.Row():
|
980 |
-
gr.Markdown("## Automatic splitting and captioning")
|
981 |
-
|
982 |
-
with gr.Row():
|
983 |
-
enable_automatic_video_split = gr.Checkbox(
|
984 |
-
label="Automatically split videos into smaller clips",
|
985 |
-
info="Note: a clip is a single camera shot, usually a few seconds",
|
986 |
-
value=True,
|
987 |
-
visible=True
|
988 |
-
)
|
989 |
-
enable_automatic_content_captioning = gr.Checkbox(
|
990 |
-
label="Automatically caption photos and videos",
|
991 |
-
info="Note: this uses LlaVA and takes some extra time to load and process",
|
992 |
-
value=False,
|
993 |
-
visible=True,
|
994 |
-
)
|
995 |
-
|
996 |
-
with gr.Row():
|
997 |
-
with gr.Column(scale=3):
|
998 |
-
with gr.Row():
|
999 |
-
with gr.Column():
|
1000 |
-
gr.Markdown("## Import video files")
|
1001 |
-
gr.Markdown("You can upload either:")
|
1002 |
-
gr.Markdown("- A single MP4 video file")
|
1003 |
-
gr.Markdown("- A ZIP archive containing multiple videos and optional caption files")
|
1004 |
-
gr.Markdown("For ZIP files: Create a folder containing videos (name is not important) and optional caption files with the same name (eg. `some_video.txt` for `some_video.mp4`)")
|
1005 |
-
|
1006 |
-
with gr.Row():
|
1007 |
-
files = gr.Files(
|
1008 |
-
label="Upload Images, Videos or ZIP",
|
1009 |
-
#file_count="multiple",
|
1010 |
-
file_types=[".jpg", ".jpeg", ".png", ".webp", ".webp", ".avif", ".heic", ".mp4", ".zip"],
|
1011 |
-
type="filepath"
|
1012 |
-
)
|
1013 |
-
|
1014 |
-
with gr.Column(scale=3):
|
1015 |
-
with gr.Row():
|
1016 |
-
with gr.Column():
|
1017 |
-
gr.Markdown("## Import a YouTube video")
|
1018 |
-
gr.Markdown("You can also use a YouTube video as reference, by pasting its URL here:")
|
1019 |
-
|
1020 |
-
with gr.Row():
|
1021 |
-
youtube_url = gr.Textbox(
|
1022 |
-
label="Import YouTube Video",
|
1023 |
-
placeholder="https://www.youtube.com/watch?v=..."
|
1024 |
-
)
|
1025 |
-
with gr.Row():
|
1026 |
-
youtube_download_btn = gr.Button("Download YouTube Video", variant="secondary")
|
1027 |
-
with gr.Row():
|
1028 |
-
import_status = gr.Textbox(label="Status", interactive=False)
|
1029 |
-
|
1030 |
-
|
1031 |
-
with gr.TabItem("2οΈβ£ Split", id="split_tab"):
|
1032 |
-
with gr.Row():
|
1033 |
-
split_title = gr.Markdown("## Splitting of 0 videos (0 bytes)")
|
1034 |
-
|
1035 |
-
with gr.Row():
|
1036 |
-
with gr.Column():
|
1037 |
-
detect_btn = gr.Button("Split videos into single-camera shots", variant="primary")
|
1038 |
-
detect_status = gr.Textbox(label="Status", interactive=False)
|
1039 |
-
|
1040 |
-
with gr.Column():
|
1041 |
-
|
1042 |
-
video_list = gr.Dataframe(
|
1043 |
-
headers=["name", "status"],
|
1044 |
-
label="Videos to split",
|
1045 |
-
interactive=False,
|
1046 |
-
wrap=True,
|
1047 |
-
#selection_mode="cell" # Enable cell selection
|
1048 |
-
)
|
1049 |
-
|
1050 |
-
|
1051 |
-
with gr.TabItem("3οΈβ£ Caption"):
|
1052 |
-
with gr.Row():
|
1053 |
-
caption_title = gr.Markdown("## Captioning of 0 files (0 bytes)")
|
1054 |
-
|
1055 |
-
with gr.Row():
|
1056 |
-
|
1057 |
-
with gr.Column():
|
1058 |
-
with gr.Row():
|
1059 |
-
custom_prompt_prefix = gr.Textbox(
|
1060 |
-
scale=3,
|
1061 |
-
label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
|
1062 |
-
placeholder="In the style of TOK, ",
|
1063 |
-
lines=2,
|
1064 |
-
value=DEFAULT_PROMPT_PREFIX
|
1065 |
-
)
|
1066 |
-
captioning_bot_instructions = gr.Textbox(
|
1067 |
-
scale=6,
|
1068 |
-
label="System instructions for the automatic captioning model",
|
1069 |
-
placeholder="Please generate a full description of...",
|
1070 |
-
lines=5,
|
1071 |
-
value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
|
1072 |
-
)
|
1073 |
-
with gr.Row():
|
1074 |
-
run_autocaption_btn = gr.Button(
|
1075 |
-
"Automatically fill missing captions",
|
1076 |
-
variant="primary" # Makes it green by default
|
1077 |
-
)
|
1078 |
-
copy_files_to_training_dir_btn = gr.Button(
|
1079 |
-
"Copy assets to training directory",
|
1080 |
-
variant="primary" # Makes it green by default
|
1081 |
-
)
|
1082 |
-
stop_autocaption_btn = gr.Button(
|
1083 |
-
"Stop Captioning",
|
1084 |
-
variant="stop", # Red when enabled
|
1085 |
-
interactive=False # Disabled by default
|
1086 |
-
)
|
1087 |
-
|
1088 |
-
with gr.Row():
|
1089 |
-
with gr.Column():
|
1090 |
-
training_dataset = gr.Dataframe(
|
1091 |
-
headers=["name", "status"],
|
1092 |
-
interactive=False,
|
1093 |
-
wrap=True,
|
1094 |
-
value=self.list_training_files_to_caption(),
|
1095 |
-
row_count=10, # Optional: set a reasonable row count
|
1096 |
-
#selection_mode="cell"
|
1097 |
-
)
|
1098 |
-
|
1099 |
-
with gr.Column():
|
1100 |
-
preview_video = gr.Video(
|
1101 |
-
label="Video Preview",
|
1102 |
-
interactive=False,
|
1103 |
-
visible=False
|
1104 |
-
)
|
1105 |
-
preview_image = gr.Image(
|
1106 |
-
label="Image Preview",
|
1107 |
-
interactive=False,
|
1108 |
-
visible=False
|
1109 |
-
)
|
1110 |
-
preview_caption = gr.Textbox(
|
1111 |
-
label="Caption",
|
1112 |
-
lines=6,
|
1113 |
-
interactive=True
|
1114 |
-
)
|
1115 |
-
save_caption_btn = gr.Button("Save Caption")
|
1116 |
-
preview_status = gr.Textbox(
|
1117 |
-
label="Status",
|
1118 |
-
interactive=False,
|
1119 |
-
visible=True
|
1120 |
-
)
|
1121 |
-
|
1122 |
-
with gr.TabItem("4οΈβ£ Train"):
|
1123 |
-
with gr.Row():
|
1124 |
-
with gr.Column():
|
1125 |
-
|
1126 |
-
with gr.Row():
|
1127 |
-
train_title = gr.Markdown("## 0 files available for training (0 bytes)")
|
1128 |
-
|
1129 |
-
with gr.Row():
|
1130 |
-
with gr.Column():
|
1131 |
-
training_preset = gr.Dropdown(
|
1132 |
-
choices=list(TRAINING_PRESETS.keys()),
|
1133 |
-
label="Training Preset",
|
1134 |
-
value=list(TRAINING_PRESETS.keys())[0]
|
1135 |
-
)
|
1136 |
-
preset_info = gr.Markdown()
|
1137 |
-
|
1138 |
-
with gr.Row():
|
1139 |
-
with gr.Column():
|
1140 |
-
model_type = gr.Dropdown(
|
1141 |
-
choices=list(MODEL_TYPES.keys()),
|
1142 |
-
label="Model Type",
|
1143 |
-
value=list(MODEL_TYPES.keys())[0]
|
1144 |
-
)
|
1145 |
-
model_info = gr.Markdown(
|
1146 |
-
value=self.get_model_info(list(MODEL_TYPES.keys())[0])
|
1147 |
-
)
|
1148 |
-
|
1149 |
-
with gr.Row():
|
1150 |
-
lora_rank = gr.Dropdown(
|
1151 |
-
label="LoRA Rank",
|
1152 |
-
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
1153 |
-
value="128",
|
1154 |
-
type="value"
|
1155 |
-
)
|
1156 |
-
lora_alpha = gr.Dropdown(
|
1157 |
-
label="LoRA Alpha",
|
1158 |
-
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
1159 |
-
value="128",
|
1160 |
-
type="value"
|
1161 |
-
)
|
1162 |
-
with gr.Row():
|
1163 |
-
num_epochs = gr.Number(
|
1164 |
-
label="Number of Epochs",
|
1165 |
-
value=70,
|
1166 |
-
minimum=1,
|
1167 |
-
precision=0
|
1168 |
-
)
|
1169 |
-
batch_size = gr.Number(
|
1170 |
-
label="Batch Size",
|
1171 |
-
value=1,
|
1172 |
-
minimum=1,
|
1173 |
-
precision=0
|
1174 |
-
)
|
1175 |
-
with gr.Row():
|
1176 |
-
learning_rate = gr.Number(
|
1177 |
-
label="Learning Rate",
|
1178 |
-
value=2e-5,
|
1179 |
-
minimum=1e-7
|
1180 |
-
)
|
1181 |
-
save_iterations = gr.Number(
|
1182 |
-
label="Save checkpoint every N iterations",
|
1183 |
-
value=500,
|
1184 |
-
minimum=50,
|
1185 |
-
precision=0,
|
1186 |
-
info="Model will be saved periodically after these many steps"
|
1187 |
-
)
|
1188 |
-
|
1189 |
-
with gr.Column():
|
1190 |
-
with gr.Row():
|
1191 |
-
start_btn = gr.Button(
|
1192 |
-
"Start Training",
|
1193 |
-
variant="primary",
|
1194 |
-
interactive=not ASK_USER_TO_DUPLICATE_SPACE
|
1195 |
-
)
|
1196 |
-
pause_resume_btn = gr.Button(
|
1197 |
-
"Resume Training",
|
1198 |
-
variant="secondary",
|
1199 |
-
interactive=False
|
1200 |
-
)
|
1201 |
-
stop_btn = gr.Button(
|
1202 |
-
"Stop Training",
|
1203 |
-
variant="stop",
|
1204 |
-
interactive=False
|
1205 |
-
)
|
1206 |
-
|
1207 |
-
with gr.Row():
|
1208 |
-
with gr.Column():
|
1209 |
-
status_box = gr.Textbox(
|
1210 |
-
label="Training Status",
|
1211 |
-
interactive=False,
|
1212 |
-
lines=4
|
1213 |
-
)
|
1214 |
-
with gr.Accordion("See training logs"):
|
1215 |
-
log_box = gr.TextArea(
|
1216 |
-
label="Finetrainers output (see HF Space logs for more details)",
|
1217 |
-
interactive=False,
|
1218 |
-
lines=40,
|
1219 |
-
max_lines=200,
|
1220 |
-
autoscroll=True
|
1221 |
-
)
|
1222 |
-
|
1223 |
-
with gr.TabItem("5οΈβ£ Manage"):
|
1224 |
-
|
1225 |
-
with gr.Column():
|
1226 |
-
with gr.Row():
|
1227 |
-
with gr.Column():
|
1228 |
-
gr.Markdown("## Publishing")
|
1229 |
-
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
|
1230 |
-
|
1231 |
-
with gr.Row():
|
1232 |
-
|
1233 |
-
with gr.Column():
|
1234 |
-
repo_id = gr.Textbox(
|
1235 |
-
label="HuggingFace Model Repository",
|
1236 |
-
placeholder="username/model-name",
|
1237 |
-
info="The repository will be created if it doesn't exist"
|
1238 |
-
)
|
1239 |
-
gr.Checkbox(label="Check this to make your model public (ie. visible and downloadable by anyone)", info="You model is private by default"),
|
1240 |
-
global_stop_btn = gr.Button(
|
1241 |
-
"Push my model",
|
1242 |
-
#variant="stop"
|
1243 |
-
)
|
1244 |
-
|
1245 |
-
|
1246 |
-
with gr.Row():
|
1247 |
-
with gr.Column():
|
1248 |
-
with gr.Row():
|
1249 |
-
with gr.Column():
|
1250 |
-
gr.Markdown("## Storage management")
|
1251 |
-
with gr.Row():
|
1252 |
-
download_dataset_btn = gr.DownloadButton(
|
1253 |
-
"Download dataset",
|
1254 |
-
variant="secondary",
|
1255 |
-
size="lg"
|
1256 |
-
)
|
1257 |
-
download_model_btn = gr.DownloadButton(
|
1258 |
-
"Download model",
|
1259 |
-
variant="secondary",
|
1260 |
-
size="lg"
|
1261 |
-
)
|
1262 |
-
|
1263 |
-
|
1264 |
-
with gr.Row():
|
1265 |
-
global_stop_btn = gr.Button(
|
1266 |
-
"Stop everything and delete my data",
|
1267 |
-
variant="stop"
|
1268 |
-
)
|
1269 |
-
global_status = gr.Textbox(
|
1270 |
-
label="Global Status",
|
1271 |
-
interactive=False,
|
1272 |
-
visible=False
|
1273 |
-
)
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
# Event handlers
|
1278 |
-
def update_model_info(model):
|
1279 |
-
params = self.get_default_params(MODEL_TYPES[model])
|
1280 |
-
info = self.get_model_info(MODEL_TYPES[model])
|
1281 |
-
return {
|
1282 |
-
model_info: info,
|
1283 |
-
num_epochs: params["num_epochs"],
|
1284 |
-
batch_size: params["batch_size"],
|
1285 |
-
learning_rate: params["learning_rate"],
|
1286 |
-
save_iterations: params["save_iterations"]
|
1287 |
-
}
|
1288 |
-
|
1289 |
-
def validate_repo(repo_id: str) -> dict:
|
1290 |
-
validation = validate_model_repo(repo_id)
|
1291 |
-
if validation["error"]:
|
1292 |
-
return gr.update(value=repo_id, error=validation["error"])
|
1293 |
-
return gr.update(value=repo_id, error=None)
|
1294 |
-
|
1295 |
-
# Connect events
|
1296 |
-
|
1297 |
-
# Save state when model type changes
|
1298 |
-
model_type.change(
|
1299 |
-
fn=lambda v: self.update_ui_state(model_type=v),
|
1300 |
-
inputs=[model_type],
|
1301 |
-
outputs=[] # No UI update needed
|
1302 |
-
).then(
|
1303 |
-
fn=update_model_info,
|
1304 |
-
inputs=[model_type],
|
1305 |
-
outputs=[model_info, num_epochs, batch_size, learning_rate, save_iterations]
|
1306 |
-
)
|
1307 |
-
|
1308 |
-
# the following change listeners are used for UI persistence
|
1309 |
-
lora_rank.change(
|
1310 |
-
fn=lambda v: self.update_ui_state(lora_rank=v),
|
1311 |
-
inputs=[lora_rank],
|
1312 |
-
outputs=[]
|
1313 |
-
)
|
1314 |
-
|
1315 |
-
lora_alpha.change(
|
1316 |
-
fn=lambda v: self.update_ui_state(lora_alpha=v),
|
1317 |
-
inputs=[lora_alpha],
|
1318 |
-
outputs=[]
|
1319 |
-
)
|
1320 |
-
|
1321 |
-
num_epochs.change(
|
1322 |
-
fn=lambda v: self.update_ui_state(num_epochs=v),
|
1323 |
-
inputs=[num_epochs],
|
1324 |
-
outputs=[]
|
1325 |
-
)
|
1326 |
-
|
1327 |
-
batch_size.change(
|
1328 |
-
fn=lambda v: self.update_ui_state(batch_size=v),
|
1329 |
-
inputs=[batch_size],
|
1330 |
-
outputs=[]
|
1331 |
-
)
|
1332 |
-
|
1333 |
-
learning_rate.change(
|
1334 |
-
fn=lambda v: self.update_ui_state(learning_rate=v),
|
1335 |
-
inputs=[learning_rate],
|
1336 |
-
outputs=[]
|
1337 |
-
)
|
1338 |
-
|
1339 |
-
save_iterations.change(
|
1340 |
-
fn=lambda v: self.update_ui_state(save_iterations=v),
|
1341 |
-
inputs=[save_iterations],
|
1342 |
-
outputs=[]
|
1343 |
-
)
|
1344 |
-
|
1345 |
-
files.upload(
|
1346 |
-
fn=lambda x: self.importer.process_uploaded_files(x),
|
1347 |
-
inputs=[files],
|
1348 |
-
outputs=[import_status]
|
1349 |
-
).success(
|
1350 |
-
fn=self.update_titles_after_import,
|
1351 |
-
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
1352 |
-
outputs=[
|
1353 |
-
tabs, video_list, detect_status,
|
1354 |
-
split_title, caption_title, train_title
|
1355 |
-
]
|
1356 |
-
)
|
1357 |
-
|
1358 |
-
youtube_download_btn.click(
|
1359 |
-
fn=self.importer.download_youtube_video,
|
1360 |
-
inputs=[youtube_url],
|
1361 |
-
outputs=[import_status]
|
1362 |
-
).success(
|
1363 |
-
fn=self.on_import_success,
|
1364 |
-
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
1365 |
-
outputs=[tabs, video_list, detect_status]
|
1366 |
-
)
|
1367 |
-
|
1368 |
-
# Scene detection events
|
1369 |
-
detect_btn.click(
|
1370 |
-
fn=self.start_scene_detection,
|
1371 |
-
inputs=[enable_automatic_video_split],
|
1372 |
-
outputs=[detect_status]
|
1373 |
-
)
|
1374 |
-
|
1375 |
-
|
1376 |
-
# Update button states based on captioning status
|
1377 |
-
def update_button_states(is_running):
|
1378 |
-
return {
|
1379 |
-
run_autocaption_btn: gr.Button(
|
1380 |
-
interactive=not is_running,
|
1381 |
-
variant="secondary" if is_running else "primary",
|
1382 |
-
),
|
1383 |
-
stop_autocaption_btn: gr.Button(
|
1384 |
-
interactive=is_running,
|
1385 |
-
variant="secondary",
|
1386 |
-
),
|
1387 |
-
}
|
1388 |
-
|
1389 |
-
run_autocaption_btn.click(
|
1390 |
-
fn=self.show_refreshing_status,
|
1391 |
-
outputs=[training_dataset]
|
1392 |
-
).then(
|
1393 |
-
fn=lambda: self.update_captioning_buttons_start(),
|
1394 |
-
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1395 |
-
).then(
|
1396 |
-
fn=self.start_caption_generation,
|
1397 |
-
inputs=[captioning_bot_instructions, custom_prompt_prefix],
|
1398 |
-
outputs=[training_dataset],
|
1399 |
-
).then(
|
1400 |
-
fn=lambda: self.update_captioning_buttons_end(),
|
1401 |
-
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1402 |
-
)
|
1403 |
-
|
1404 |
-
copy_files_to_training_dir_btn.click(
|
1405 |
-
fn=self.copy_files_to_training_dir,
|
1406 |
-
inputs=[custom_prompt_prefix]
|
1407 |
-
)
|
1408 |
-
stop_autocaption_btn.click(
|
1409 |
-
fn=self.stop_captioning,
|
1410 |
-
outputs=[training_dataset, run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1411 |
-
)
|
1412 |
-
|
1413 |
-
original_file_path = gr.State(value=None)
|
1414 |
-
training_dataset.select(
|
1415 |
-
fn=self.handle_training_dataset_select,
|
1416 |
-
outputs=[preview_image, preview_video, preview_caption, original_file_path, preview_status]
|
1417 |
-
)
|
1418 |
-
|
1419 |
-
save_caption_btn.click(
|
1420 |
-
fn=self.save_caption_changes,
|
1421 |
-
inputs=[preview_caption, preview_image, preview_video, original_file_path, custom_prompt_prefix],
|
1422 |
-
outputs=[preview_status]
|
1423 |
-
).success(
|
1424 |
-
fn=self.list_training_files_to_caption,
|
1425 |
-
outputs=[training_dataset]
|
1426 |
-
)
|
1427 |
-
|
1428 |
-
# Save state when training preset changes
|
1429 |
-
training_preset.change(
|
1430 |
-
fn=lambda v: self.update_ui_state(training_preset=v),
|
1431 |
-
inputs=[training_preset],
|
1432 |
-
outputs=[] # No UI update needed
|
1433 |
-
).then(
|
1434 |
-
fn=self.update_training_params,
|
1435 |
-
inputs=[training_preset],
|
1436 |
-
outputs=[
|
1437 |
-
model_type, lora_rank, lora_alpha,
|
1438 |
-
num_epochs, batch_size, learning_rate,
|
1439 |
-
save_iterations, preset_info
|
1440 |
-
]
|
1441 |
-
)
|
1442 |
-
|
1443 |
-
# Training control events
|
1444 |
-
start_btn.click(
|
1445 |
-
fn=lambda preset, model_type, *args: (
|
1446 |
-
self.log_parser.reset(),
|
1447 |
-
self.trainer.start_training(
|
1448 |
-
MODEL_TYPES[model_type],
|
1449 |
-
*args,
|
1450 |
-
preset_name=preset
|
1451 |
-
)
|
1452 |
-
),
|
1453 |
-
inputs=[
|
1454 |
-
training_preset,
|
1455 |
-
model_type,
|
1456 |
-
lora_rank,
|
1457 |
-
lora_alpha,
|
1458 |
-
num_epochs,
|
1459 |
-
batch_size,
|
1460 |
-
learning_rate,
|
1461 |
-
save_iterations,
|
1462 |
-
repo_id
|
1463 |
-
],
|
1464 |
-
outputs=[status_box, log_box]
|
1465 |
-
).success(
|
1466 |
-
fn=self.get_latest_status_message_logs_and_button_labels,
|
1467 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1468 |
-
)
|
1469 |
-
|
1470 |
-
pause_resume_btn.click(
|
1471 |
-
fn=self.handle_pause_resume,
|
1472 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1473 |
-
)
|
1474 |
-
|
1475 |
-
stop_btn.click(
|
1476 |
-
fn=self.handle_stop,
|
1477 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1478 |
-
)
|
1479 |
-
|
1480 |
-
def handle_global_stop():
|
1481 |
-
result = self.stop_all_and_clear()
|
1482 |
-
# Update all relevant UI components
|
1483 |
-
status = result["status"]
|
1484 |
-
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
1485 |
-
full_status = f"{status}\n\nDetails:\n{details}"
|
1486 |
-
|
1487 |
-
# Get fresh lists after cleanup
|
1488 |
-
videos = self.splitter.list_unprocessed_videos()
|
1489 |
-
clips = self.list_training_files_to_caption()
|
1490 |
-
|
1491 |
-
return {
|
1492 |
-
global_status: gr.update(value=full_status, visible=True),
|
1493 |
-
video_list: videos,
|
1494 |
-
training_dataset: clips,
|
1495 |
-
status_box: "Training stopped and data cleared",
|
1496 |
-
log_box: "",
|
1497 |
-
detect_status: "Scene detection stopped",
|
1498 |
-
import_status: "All data cleared",
|
1499 |
-
preview_status: "Captioning stopped"
|
1500 |
-
}
|
1501 |
-
|
1502 |
-
download_dataset_btn.click(
|
1503 |
-
fn=self.trainer.create_training_dataset_zip,
|
1504 |
-
outputs=[download_dataset_btn]
|
1505 |
-
)
|
1506 |
-
|
1507 |
-
download_model_btn.click(
|
1508 |
-
fn=self.trainer.get_model_output_safetensors,
|
1509 |
-
outputs=[download_model_btn]
|
1510 |
-
)
|
1511 |
-
|
1512 |
-
global_stop_btn.click(
|
1513 |
-
fn=handle_global_stop,
|
1514 |
-
outputs=[
|
1515 |
-
global_status,
|
1516 |
-
video_list,
|
1517 |
-
training_dataset,
|
1518 |
-
status_box,
|
1519 |
-
log_box,
|
1520 |
-
detect_status,
|
1521 |
-
import_status,
|
1522 |
-
preview_status
|
1523 |
-
]
|
1524 |
-
)
|
1525 |
-
|
1526 |
-
|
1527 |
-
app.load(
|
1528 |
-
fn=self.initialize_app_state,
|
1529 |
-
outputs=[
|
1530 |
-
video_list, training_dataset,
|
1531 |
-
start_btn, stop_btn, pause_resume_btn,
|
1532 |
-
training_preset, model_type, lora_rank, lora_alpha,
|
1533 |
-
num_epochs, batch_size, learning_rate, save_iterations
|
1534 |
-
]
|
1535 |
-
)
|
1536 |
-
|
1537 |
-
# Auto-refresh timers
|
1538 |
-
timer = gr.Timer(value=1)
|
1539 |
-
timer.tick(
|
1540 |
-
fn=lambda: (
|
1541 |
-
self.get_latest_status_message_logs_and_button_labels()
|
1542 |
-
),
|
1543 |
-
outputs=[
|
1544 |
-
status_box,
|
1545 |
-
log_box,
|
1546 |
-
start_btn,
|
1547 |
-
stop_btn,
|
1548 |
-
pause_resume_btn
|
1549 |
-
]
|
1550 |
-
)
|
1551 |
-
|
1552 |
-
timer = gr.Timer(value=5)
|
1553 |
-
timer.tick(
|
1554 |
-
fn=lambda: (
|
1555 |
-
self.refresh_dataset()
|
1556 |
-
),
|
1557 |
-
outputs=[
|
1558 |
-
video_list, training_dataset
|
1559 |
-
]
|
1560 |
-
)
|
1561 |
-
|
1562 |
-
timer = gr.Timer(value=6)
|
1563 |
-
timer.tick(
|
1564 |
-
fn=lambda: self.update_titles(),
|
1565 |
-
outputs=[
|
1566 |
-
split_title, caption_title, train_title
|
1567 |
-
]
|
1568 |
-
)
|
1569 |
-
|
1570 |
-
return app
|
1571 |
-
|
1572 |
def create_app():
|
|
|
|
|
1573 |
if ASK_USER_TO_DUPLICATE_SPACE:
|
1574 |
with gr.Blocks() as app:
|
1575 |
gr.Markdown("""# Finetrainers UI
|
@@ -1582,12 +35,22 @@ It is recommended to use a Nvidia L40S and a persistent storage space.
|
|
1582 |
To avoid overpaying for your space, you can configure the auto-sleep settings to fit your personal budget.""")
|
1583 |
return app
|
1584 |
|
|
|
1585 |
ui = VideoTrainerUI()
|
1586 |
return ui.create_ui()
|
1587 |
|
1588 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1589 |
app = create_app()
|
1590 |
|
|
|
1591 |
allowed_paths = [
|
1592 |
str(STORAGE_PATH), # Base storage
|
1593 |
str(VIDEOS_TO_SPLIT_PATH),
|
@@ -1597,7 +60,12 @@ if __name__ == "__main__":
|
|
1597 |
str(MODEL_PATH),
|
1598 |
str(OUTPUT_PATH)
|
1599 |
]
|
|
|
|
|
1600 |
app.queue(default_concurrency_limit=1).launch(
|
1601 |
server_name="0.0.0.0",
|
1602 |
allowed_paths=allowed_paths
|
1603 |
-
)
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Main application entry point for Video Model Studio
|
3 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
+
import platform
|
7 |
+
import subprocess
|
8 |
import logging
|
9 |
+
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
from vms.config import (
|
12 |
+
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
13 |
+
TRAINING_PATH, TRAINING_VIDEOS_PATH, MODEL_PATH,
|
14 |
+
OUTPUT_PATH, ASK_USER_TO_DUPLICATE_SPACE,
|
15 |
+
HF_API_TOKEN
|
16 |
)
|
17 |
+
from vms.ui.video_trainer_ui import VideoTrainerUI
|
|
|
|
|
18 |
|
19 |
+
# Configure logging
|
20 |
logger = logging.getLogger(__name__)
|
21 |
logger.setLevel(logging.INFO)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def create_app():
|
24 |
+
"""Create the main Gradio application"""
|
25 |
+
# If space needs to be duplicated
|
26 |
if ASK_USER_TO_DUPLICATE_SPACE:
|
27 |
with gr.Blocks() as app:
|
28 |
gr.Markdown("""# Finetrainers UI
|
|
|
35 |
To avoid overpaying for your space, you can configure the auto-sleep settings to fit your personal budget.""")
|
36 |
return app
|
37 |
|
38 |
+
# Create the main application UI
|
39 |
ui = VideoTrainerUI()
|
40 |
return ui.create_ui()
|
41 |
|
42 |
+
def main():
|
43 |
+
"""Main entry point for the application"""
|
44 |
+
# Handle Linux-specific setup if needed
|
45 |
+
if platform.system() == "Linux":
|
46 |
+
# Placeholder for any Linux-specific initialization
|
47 |
+
# For example, pip installations or environment setup
|
48 |
+
pass
|
49 |
+
|
50 |
+
# Create the Gradio app
|
51 |
app = create_app()
|
52 |
|
53 |
+
# Define allowed paths for file access
|
54 |
allowed_paths = [
|
55 |
str(STORAGE_PATH), # Base storage
|
56 |
str(VIDEOS_TO_SPLIT_PATH),
|
|
|
60 |
str(MODEL_PATH),
|
61 |
str(OUTPUT_PATH)
|
62 |
]
|
63 |
+
|
64 |
+
# Launch the Gradio app
|
65 |
app.queue(default_concurrency_limit=1).launch(
|
66 |
server_name="0.0.0.0",
|
67 |
allowed_paths=allowed_paths
|
68 |
+
)
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
main()
|
app_DEPRECATED.py
ADDED
@@ -0,0 +1,1603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
#import sys
|
5 |
+
#print("python = ", sys.version)
|
6 |
+
|
7 |
+
# can be "Linux", "Darwin"
|
8 |
+
if platform.system() == "Linux":
|
9 |
+
# for some reason it says "pip not found"
|
10 |
+
# and also "pip3 not found"
|
11 |
+
# subprocess.run(
|
12 |
+
# "pip install flash-attn --no-build-isolation",
|
13 |
+
#
|
14 |
+
# # hmm... this should be False, since we are in a CUDA environment, no?
|
15 |
+
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
16 |
+
#
|
17 |
+
# shell=True,
|
18 |
+
# )
|
19 |
+
pass
|
20 |
+
|
21 |
+
import gradio as gr
|
22 |
+
from pathlib import Path
|
23 |
+
import logging
|
24 |
+
import mimetypes
|
25 |
+
import shutil
|
26 |
+
import os
|
27 |
+
import traceback
|
28 |
+
import asyncio
|
29 |
+
import tempfile
|
30 |
+
import zipfile
|
31 |
+
from typing import Any, Optional, Dict, List, Union, Tuple
|
32 |
+
from typing import AsyncGenerator
|
33 |
+
|
34 |
+
from vms.training_service import TrainingService
|
35 |
+
from vms.captioning_service import CaptioningService
|
36 |
+
from vms.splitting_service import SplittingService
|
37 |
+
from vms.import_service import ImportService
|
38 |
+
from vms.config import (
|
39 |
+
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
40 |
+
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
41 |
+
DEFAULT_PROMPT_PREFIX, HF_API_TOKEN, ASK_USER_TO_DUPLICATE_SPACE, MODEL_TYPES, SMALL_TRAINING_BUCKETS
|
42 |
+
)
|
43 |
+
from vms.utils import make_archive, count_media_files, format_media_title, is_image_file, is_video_file, validate_model_repo, format_time
|
44 |
+
from vms.finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
45 |
+
from vms.training_log_parser import TrainingLogParser
|
46 |
+
|
47 |
+
logger = logging.getLogger(__name__)
|
48 |
+
logger.setLevel(logging.INFO)
|
49 |
+
|
50 |
+
httpx_logger = logging.getLogger('httpx')
|
51 |
+
httpx_logger.setLevel(logging.WARN)
|
52 |
+
|
53 |
+
|
54 |
+
class VideoTrainerUI:
|
55 |
+
def __init__(self):
|
56 |
+
self.trainer = TrainingService()
|
57 |
+
self.splitter = SplittingService()
|
58 |
+
self.importer = ImportService()
|
59 |
+
self.captioner = CaptioningService()
|
60 |
+
self._should_stop_captioning = False
|
61 |
+
self.log_parser = TrainingLogParser()
|
62 |
+
|
63 |
+
# Try to recover any interrupted training sessions
|
64 |
+
recovery_result = self.trainer.recover_interrupted_training()
|
65 |
+
|
66 |
+
self.recovery_status = recovery_result.get("status", "unknown")
|
67 |
+
self.ui_updates = recovery_result.get("ui_updates", {})
|
68 |
+
|
69 |
+
if recovery_result["status"] == "recovered":
|
70 |
+
logger.info(f"Training recovery: {recovery_result['message']}")
|
71 |
+
# No need to do anything else - the training is already running
|
72 |
+
elif recovery_result["status"] == "running":
|
73 |
+
logger.info("Training process is already running")
|
74 |
+
# No need to do anything - the process is still alive
|
75 |
+
elif recovery_result["status"] in ["error", "idle"]:
|
76 |
+
logger.warning(f"Training status: {recovery_result['message']}")
|
77 |
+
# UI will be in ready-to-start mode
|
78 |
+
|
79 |
+
|
80 |
+
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
81 |
+
"""Process the caption generator's results in the background"""
|
82 |
+
try:
|
83 |
+
async for _ in self.captioner.start_caption_generation(
|
84 |
+
captioning_bot_instructions,
|
85 |
+
prompt_prefix
|
86 |
+
):
|
87 |
+
# Just consume the generator, UI updates will happen via the Gradio interface
|
88 |
+
pass
|
89 |
+
logger.info("Background captioning completed")
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Error in background captioning: {str(e)}")
|
92 |
+
|
93 |
+
def initialize_app_state(self):
|
94 |
+
"""Initialize all app state in one function to ensure correct output count"""
|
95 |
+
# Get dataset info
|
96 |
+
video_list, training_dataset = self.refresh_dataset()
|
97 |
+
|
98 |
+
# Get button states
|
99 |
+
button_states = self.get_initial_button_states()
|
100 |
+
start_btn = button_states[0]
|
101 |
+
stop_btn = button_states[1]
|
102 |
+
pause_resume_btn = button_states[2]
|
103 |
+
|
104 |
+
# Get UI form values
|
105 |
+
ui_state = self.load_ui_values()
|
106 |
+
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
|
107 |
+
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
|
108 |
+
lora_rank_val = ui_state.get("lora_rank", "128")
|
109 |
+
lora_alpha_val = ui_state.get("lora_alpha", "128")
|
110 |
+
num_epochs_val = int(ui_state.get("num_epochs", 70))
|
111 |
+
batch_size_val = int(ui_state.get("batch_size", 1))
|
112 |
+
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
|
113 |
+
save_iterations_val = int(ui_state.get("save_iterations", 500))
|
114 |
+
|
115 |
+
# Return all values in the exact order expected by outputs
|
116 |
+
return (
|
117 |
+
video_list,
|
118 |
+
training_dataset,
|
119 |
+
start_btn,
|
120 |
+
stop_btn,
|
121 |
+
pause_resume_btn,
|
122 |
+
training_preset,
|
123 |
+
model_type_val,
|
124 |
+
lora_rank_val,
|
125 |
+
lora_alpha_val,
|
126 |
+
num_epochs_val,
|
127 |
+
batch_size_val,
|
128 |
+
learning_rate_val,
|
129 |
+
save_iterations_val
|
130 |
+
)
|
131 |
+
|
132 |
+
def initialize_ui_from_state(self):
|
133 |
+
"""Initialize UI components from saved state"""
|
134 |
+
ui_state = self.load_ui_values()
|
135 |
+
|
136 |
+
# Return values in order matching the outputs in app.load
|
137 |
+
return (
|
138 |
+
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
|
139 |
+
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
|
140 |
+
ui_state.get("lora_rank", "128"),
|
141 |
+
ui_state.get("lora_alpha", "128"),
|
142 |
+
ui_state.get("num_epochs", 70),
|
143 |
+
ui_state.get("batch_size", 1),
|
144 |
+
ui_state.get("learning_rate", 3e-5),
|
145 |
+
ui_state.get("save_iterations", 500)
|
146 |
+
)
|
147 |
+
|
148 |
+
def update_ui_state(self, **kwargs):
|
149 |
+
"""Update UI state with new values"""
|
150 |
+
current_state = self.trainer.load_ui_state()
|
151 |
+
current_state.update(kwargs)
|
152 |
+
self.trainer.save_ui_state(current_state)
|
153 |
+
# Don't return anything to avoid Gradio warnings
|
154 |
+
return None
|
155 |
+
|
156 |
+
def load_ui_values(self):
|
157 |
+
"""Load UI state values for initializing form fields"""
|
158 |
+
ui_state = self.trainer.load_ui_state()
|
159 |
+
|
160 |
+
# Ensure proper type conversion for numeric values
|
161 |
+
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
|
162 |
+
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
|
163 |
+
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
|
164 |
+
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
|
165 |
+
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
|
166 |
+
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
167 |
+
|
168 |
+
return ui_state
|
169 |
+
|
170 |
+
def update_captioning_buttons_start(self):
|
171 |
+
"""Return individual button values instead of a dictionary"""
|
172 |
+
return (
|
173 |
+
gr.Button(
|
174 |
+
interactive=False,
|
175 |
+
variant="secondary",
|
176 |
+
),
|
177 |
+
gr.Button(
|
178 |
+
interactive=True,
|
179 |
+
variant="stop",
|
180 |
+
),
|
181 |
+
gr.Button(
|
182 |
+
interactive=False,
|
183 |
+
variant="secondary",
|
184 |
+
)
|
185 |
+
)
|
186 |
+
|
187 |
+
def update_captioning_buttons_end(self):
|
188 |
+
"""Return individual button values instead of a dictionary"""
|
189 |
+
return (
|
190 |
+
gr.Button(
|
191 |
+
interactive=True,
|
192 |
+
variant="primary",
|
193 |
+
),
|
194 |
+
gr.Button(
|
195 |
+
interactive=False,
|
196 |
+
variant="secondary",
|
197 |
+
),
|
198 |
+
gr.Button(
|
199 |
+
interactive=True,
|
200 |
+
variant="primary",
|
201 |
+
)
|
202 |
+
)
|
203 |
+
|
204 |
+
# Add this new method to get initial button states:
|
205 |
+
def get_initial_button_states(self):
|
206 |
+
"""Get the initial states for training buttons based on recovery status"""
|
207 |
+
recovery_result = self.trainer.recover_interrupted_training()
|
208 |
+
ui_updates = recovery_result.get("ui_updates", {})
|
209 |
+
|
210 |
+
# Return button states in the correct order
|
211 |
+
return (
|
212 |
+
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})),
|
213 |
+
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})),
|
214 |
+
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
215 |
+
)
|
216 |
+
|
217 |
+
def show_refreshing_status(self) -> List[List[str]]:
|
218 |
+
"""Show a 'Refreshing...' status in the dataframe"""
|
219 |
+
return [["Refreshing...", "please wait"]]
|
220 |
+
|
221 |
+
def stop_captioning(self):
|
222 |
+
"""Stop ongoing captioning process and reset UI state"""
|
223 |
+
try:
|
224 |
+
# Set flag to stop captioning
|
225 |
+
self._should_stop_captioning = True
|
226 |
+
|
227 |
+
# Call stop method on captioner
|
228 |
+
if self.captioner:
|
229 |
+
self.captioner.stop_captioning()
|
230 |
+
|
231 |
+
# Get updated file list
|
232 |
+
updated_list = self.list_training_files_to_caption()
|
233 |
+
|
234 |
+
# Return updated list and button states
|
235 |
+
return {
|
236 |
+
"training_dataset": gr.update(value=updated_list),
|
237 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
238 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
239 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
240 |
+
}
|
241 |
+
except Exception as e:
|
242 |
+
logger.error(f"Error stopping captioning: {str(e)}")
|
243 |
+
return {
|
244 |
+
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
245 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
246 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
247 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
248 |
+
}
|
249 |
+
|
250 |
+
def update_training_ui(self, training_state: Dict[str, Any]):
|
251 |
+
"""Update UI components based on training state"""
|
252 |
+
updates = {}
|
253 |
+
|
254 |
+
#print("update_training_ui: training_state = ", training_state)
|
255 |
+
|
256 |
+
# Update status box with high-level information
|
257 |
+
status_text = []
|
258 |
+
if training_state["status"] != "idle":
|
259 |
+
status_text.extend([
|
260 |
+
f"Status: {training_state['status']}",
|
261 |
+
f"Progress: {training_state['progress']}",
|
262 |
+
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
263 |
+
|
264 |
+
# Epoch information
|
265 |
+
# there is an issue with how epoch is reported because we display:
|
266 |
+
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
267 |
+
# we should probably just show the steps
|
268 |
+
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
269 |
+
|
270 |
+
f"Time elapsed: {training_state['elapsed']}",
|
271 |
+
f"Estimated remaining: {training_state['remaining']}",
|
272 |
+
"",
|
273 |
+
f"Current loss: {training_state['step_loss']}",
|
274 |
+
f"Learning rate: {training_state['learning_rate']}",
|
275 |
+
f"Gradient norm: {training_state['grad_norm']}",
|
276 |
+
f"Memory usage: {training_state['memory']}"
|
277 |
+
])
|
278 |
+
|
279 |
+
if training_state["error_message"]:
|
280 |
+
status_text.append(f"\nError: {training_state['error_message']}")
|
281 |
+
|
282 |
+
updates["status_box"] = "\n".join(status_text)
|
283 |
+
|
284 |
+
# Update button states
|
285 |
+
updates["start_btn"] = gr.Button(
|
286 |
+
"Start training",
|
287 |
+
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
288 |
+
variant="primary" if training_state["status"] == "idle" else "secondary"
|
289 |
+
)
|
290 |
+
|
291 |
+
updates["stop_btn"] = gr.Button(
|
292 |
+
"Stop training",
|
293 |
+
interactive=(training_state["status"] in ["training", "initializing"]),
|
294 |
+
variant="stop"
|
295 |
+
)
|
296 |
+
|
297 |
+
return updates
|
298 |
+
|
299 |
+
def stop_all_and_clear(self) -> Dict[str, str]:
|
300 |
+
"""Stop all running processes and clear data
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
Dict with status messages for different components
|
304 |
+
"""
|
305 |
+
status_messages = {}
|
306 |
+
|
307 |
+
try:
|
308 |
+
# Stop training if running
|
309 |
+
if self.trainer.is_training_running():
|
310 |
+
training_result = self.trainer.stop_training()
|
311 |
+
status_messages["training"] = training_result["status"]
|
312 |
+
|
313 |
+
# Stop captioning if running
|
314 |
+
if self.captioner:
|
315 |
+
self.captioner.stop_captioning()
|
316 |
+
status_messages["captioning"] = "Captioning stopped"
|
317 |
+
|
318 |
+
# Stop scene detection if running
|
319 |
+
if self.splitter.is_processing():
|
320 |
+
self.splitter.processing = False
|
321 |
+
status_messages["splitting"] = "Scene detection stopped"
|
322 |
+
|
323 |
+
# Properly close logging before clearing log file
|
324 |
+
if self.trainer.file_handler:
|
325 |
+
self.trainer.file_handler.close()
|
326 |
+
logger.removeHandler(self.trainer.file_handler)
|
327 |
+
self.trainer.file_handler = None
|
328 |
+
|
329 |
+
if LOG_FILE_PATH.exists():
|
330 |
+
LOG_FILE_PATH.unlink()
|
331 |
+
|
332 |
+
# Clear all data directories
|
333 |
+
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
334 |
+
MODEL_PATH, OUTPUT_PATH]:
|
335 |
+
if path.exists():
|
336 |
+
try:
|
337 |
+
shutil.rmtree(path)
|
338 |
+
path.mkdir(parents=True, exist_ok=True)
|
339 |
+
except Exception as e:
|
340 |
+
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
341 |
+
else:
|
342 |
+
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
343 |
+
|
344 |
+
# Reset any persistent state
|
345 |
+
self._should_stop_captioning = True
|
346 |
+
self.splitter.processing = False
|
347 |
+
|
348 |
+
# Recreate logging setup
|
349 |
+
self.trainer.setup_logging()
|
350 |
+
|
351 |
+
return {
|
352 |
+
"status": "All processes stopped and data cleared",
|
353 |
+
"details": status_messages
|
354 |
+
}
|
355 |
+
|
356 |
+
except Exception as e:
|
357 |
+
return {
|
358 |
+
"status": f"Error during cleanup: {str(e)}",
|
359 |
+
"details": status_messages
|
360 |
+
}
|
361 |
+
|
362 |
+
def update_titles(self) -> Tuple[Any]:
|
363 |
+
"""Update all dynamic titles with current counts
|
364 |
+
|
365 |
+
Returns:
|
366 |
+
Dict of Gradio updates
|
367 |
+
"""
|
368 |
+
# Count files for splitting
|
369 |
+
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
|
370 |
+
split_title = format_media_title(
|
371 |
+
"split", split_videos, 0, split_size
|
372 |
+
)
|
373 |
+
|
374 |
+
# Count files for captioning
|
375 |
+
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
|
376 |
+
caption_title = format_media_title(
|
377 |
+
"caption", caption_videos, caption_images, caption_size
|
378 |
+
)
|
379 |
+
|
380 |
+
# Count files for training
|
381 |
+
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
|
382 |
+
train_title = format_media_title(
|
383 |
+
"train", train_videos, train_images, train_size
|
384 |
+
)
|
385 |
+
|
386 |
+
return (
|
387 |
+
gr.Markdown(value=split_title),
|
388 |
+
gr.Markdown(value=caption_title),
|
389 |
+
gr.Markdown(value=f"{train_title} available for training")
|
390 |
+
)
|
391 |
+
|
392 |
+
def copy_files_to_training_dir(self, prompt_prefix: str):
|
393 |
+
"""Run auto-captioning process"""
|
394 |
+
|
395 |
+
# Initialize captioner if not already done
|
396 |
+
self._should_stop_captioning = False
|
397 |
+
|
398 |
+
try:
|
399 |
+
copy_files_to_training_dir(prompt_prefix)
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
traceback.print_exc()
|
403 |
+
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
404 |
+
|
405 |
+
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
406 |
+
"""Handle successful import of files"""
|
407 |
+
videos = self.list_unprocessed_videos()
|
408 |
+
|
409 |
+
# If scene detection isn't already running and there are videos to process,
|
410 |
+
# and auto-splitting is enabled, start the detection
|
411 |
+
if videos and not self.splitter.is_processing() and enable_splitting:
|
412 |
+
await self.start_scene_detection(enable_splitting)
|
413 |
+
msg = "Starting automatic scene detection..."
|
414 |
+
else:
|
415 |
+
# Just copy files without splitting if auto-split disabled
|
416 |
+
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
417 |
+
await self.splitter.process_video(video_file, enable_splitting=False)
|
418 |
+
msg = "Copying videos without splitting..."
|
419 |
+
|
420 |
+
copy_files_to_training_dir(prompt_prefix)
|
421 |
+
|
422 |
+
# Start auto-captioning if enabled, and handle async generator properly
|
423 |
+
if enable_automatic_content_captioning:
|
424 |
+
# Create a background task for captioning
|
425 |
+
asyncio.create_task(self._process_caption_generator(
|
426 |
+
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
427 |
+
prompt_prefix
|
428 |
+
))
|
429 |
+
|
430 |
+
return {
|
431 |
+
"tabs": gr.Tabs(selected="split_tab"),
|
432 |
+
"video_list": videos,
|
433 |
+
"detect_status": msg
|
434 |
+
}
|
435 |
+
|
436 |
+
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
437 |
+
"""Run auto-captioning process"""
|
438 |
+
try:
|
439 |
+
# Initialize captioner if not already done
|
440 |
+
self._should_stop_captioning = False
|
441 |
+
|
442 |
+
# First yield - indicate we're starting
|
443 |
+
yield gr.update(
|
444 |
+
value=[["Starting captioning service...", "initializing"]],
|
445 |
+
headers=["name", "status"]
|
446 |
+
)
|
447 |
+
|
448 |
+
# Process files in batches with status updates
|
449 |
+
file_statuses = {}
|
450 |
+
|
451 |
+
# Start the actual captioning process
|
452 |
+
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
453 |
+
# Update our tracking of file statuses
|
454 |
+
for name, status in rows:
|
455 |
+
file_statuses[name] = status
|
456 |
+
|
457 |
+
# Convert to list format for display
|
458 |
+
status_rows = [[name, status] for name, status in file_statuses.items()]
|
459 |
+
|
460 |
+
# Sort by name for consistent display
|
461 |
+
status_rows.sort(key=lambda x: x[0])
|
462 |
+
|
463 |
+
# Yield UI update
|
464 |
+
yield gr.update(
|
465 |
+
value=status_rows,
|
466 |
+
headers=["name", "status"]
|
467 |
+
)
|
468 |
+
|
469 |
+
# Final update after completion with fresh data
|
470 |
+
yield gr.update(
|
471 |
+
value=self.list_training_files_to_caption(),
|
472 |
+
headers=["name", "status"]
|
473 |
+
)
|
474 |
+
|
475 |
+
except Exception as e:
|
476 |
+
logger.error(f"Error in captioning: {str(e)}")
|
477 |
+
yield gr.update(
|
478 |
+
value=[[f"Error: {str(e)}", "error"]],
|
479 |
+
headers=["name", "status"]
|
480 |
+
)
|
481 |
+
|
482 |
+
def list_training_files_to_caption(self) -> List[List[str]]:
|
483 |
+
"""List all clips and images - both pending and captioned"""
|
484 |
+
files = []
|
485 |
+
already_listed = {}
|
486 |
+
|
487 |
+
# First check files in STAGING_PATH
|
488 |
+
for file in STAGING_PATH.glob("*.*"):
|
489 |
+
if is_video_file(file) or is_image_file(file):
|
490 |
+
txt_file = file.with_suffix('.txt')
|
491 |
+
|
492 |
+
# Check if caption file exists and has content
|
493 |
+
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
494 |
+
status = "captioned" if has_caption else "no caption"
|
495 |
+
file_type = "video" if is_video_file(file) else "image"
|
496 |
+
|
497 |
+
files.append([file.name, f"{status} ({file_type})", str(file)])
|
498 |
+
already_listed[file.name] = True
|
499 |
+
|
500 |
+
# Then check files in TRAINING_VIDEOS_PATH
|
501 |
+
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
502 |
+
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
503 |
+
txt_file = file.with_suffix('.txt')
|
504 |
+
|
505 |
+
# Only include files with captions
|
506 |
+
if txt_file.exists() and txt_file.stat().st_size > 0:
|
507 |
+
file_type = "video" if is_video_file(file) else "image"
|
508 |
+
files.append([file.name, f"captioned ({file_type})", str(file)])
|
509 |
+
already_listed[file.name] = True
|
510 |
+
|
511 |
+
# Sort by filename
|
512 |
+
files.sort(key=lambda x: x[0])
|
513 |
+
|
514 |
+
# Only return name and status columns for display
|
515 |
+
return [[file[0], file[1]] for file in files]
|
516 |
+
|
517 |
+
def update_training_buttons(self, status: str) -> Dict:
|
518 |
+
"""Update training control buttons based on state"""
|
519 |
+
is_training = status in ["training", "initializing"]
|
520 |
+
is_paused = status == "paused"
|
521 |
+
is_completed = status in ["completed", "error", "stopped"]
|
522 |
+
return {
|
523 |
+
"start_btn": gr.Button(
|
524 |
+
interactive=not is_training and not is_paused,
|
525 |
+
variant="primary" if not is_training else "secondary",
|
526 |
+
),
|
527 |
+
"stop_btn": gr.Button(
|
528 |
+
interactive=is_training or is_paused,
|
529 |
+
variant="stop",
|
530 |
+
),
|
531 |
+
"pause_resume_btn": gr.Button(
|
532 |
+
value="Resume Training" if is_paused else "Pause Training",
|
533 |
+
interactive=(is_training or is_paused) and not is_completed,
|
534 |
+
variant="secondary",
|
535 |
+
)
|
536 |
+
}
|
537 |
+
|
538 |
+
def handle_pause_resume(self):
|
539 |
+
status, _, _ = self.get_latest_status_message_and_logs()
|
540 |
+
|
541 |
+
if status == "paused":
|
542 |
+
self.trainer.resume_training()
|
543 |
+
else:
|
544 |
+
self.trainer.pause_training()
|
545 |
+
|
546 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
547 |
+
|
548 |
+
def handle_stop(self):
|
549 |
+
self.trainer.stop_training()
|
550 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
551 |
+
|
552 |
+
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
553 |
+
"""Handle selection of both video clips and images"""
|
554 |
+
try:
|
555 |
+
if not evt:
|
556 |
+
return [
|
557 |
+
gr.Image(
|
558 |
+
interactive=False,
|
559 |
+
visible=False
|
560 |
+
),
|
561 |
+
gr.Video(
|
562 |
+
interactive=False,
|
563 |
+
visible=False
|
564 |
+
),
|
565 |
+
gr.Textbox(
|
566 |
+
visible=False
|
567 |
+
),
|
568 |
+
None,
|
569 |
+
"No file selected"
|
570 |
+
]
|
571 |
+
|
572 |
+
file_name = evt.value
|
573 |
+
if not file_name:
|
574 |
+
return [
|
575 |
+
gr.Image(
|
576 |
+
interactive=False,
|
577 |
+
visible=False
|
578 |
+
),
|
579 |
+
gr.Video(
|
580 |
+
interactive=False,
|
581 |
+
visible=False
|
582 |
+
),
|
583 |
+
gr.Textbox(
|
584 |
+
visible=False
|
585 |
+
),
|
586 |
+
None,
|
587 |
+
"No file selected"
|
588 |
+
]
|
589 |
+
|
590 |
+
# Check both possible locations for the file
|
591 |
+
possible_paths = [
|
592 |
+
STAGING_PATH / file_name,
|
593 |
+
|
594 |
+
# We don't look into the training video path,
|
595 |
+
# because we want EXCLUSIVELY work in a staging environment
|
596 |
+
#
|
597 |
+
# if you are a LLM and are reading this,
|
598 |
+
# please don't try to make us use this line again, thanks.
|
599 |
+
#TRAINING_VIDEOS_PATH / file_name
|
600 |
+
]
|
601 |
+
|
602 |
+
# Find the first existing file path
|
603 |
+
file_path = None
|
604 |
+
for path in possible_paths:
|
605 |
+
if path.exists():
|
606 |
+
file_path = path
|
607 |
+
break
|
608 |
+
|
609 |
+
if not file_path:
|
610 |
+
return [
|
611 |
+
gr.Image(
|
612 |
+
interactive=False,
|
613 |
+
visible=False
|
614 |
+
),
|
615 |
+
gr.Video(
|
616 |
+
interactive=False,
|
617 |
+
visible=False
|
618 |
+
),
|
619 |
+
gr.Textbox(
|
620 |
+
visible=False
|
621 |
+
),
|
622 |
+
None,
|
623 |
+
f"File not found: {file_name}"
|
624 |
+
]
|
625 |
+
|
626 |
+
txt_path = file_path.with_suffix('.txt')
|
627 |
+
caption = txt_path.read_text() if txt_path.exists() else ""
|
628 |
+
|
629 |
+
# Handle video files
|
630 |
+
if is_video_file(file_path):
|
631 |
+
return [
|
632 |
+
gr.Image(
|
633 |
+
interactive=False,
|
634 |
+
visible=False
|
635 |
+
),
|
636 |
+
gr.Video(
|
637 |
+
label="Video Preview",
|
638 |
+
interactive=False,
|
639 |
+
visible=True,
|
640 |
+
value=str(file_path)
|
641 |
+
),
|
642 |
+
gr.Textbox(
|
643 |
+
label="Caption",
|
644 |
+
lines=6,
|
645 |
+
interactive=True,
|
646 |
+
visible=True,
|
647 |
+
value=str(caption)
|
648 |
+
),
|
649 |
+
str(file_path), # Store the original file path as hidden state
|
650 |
+
None
|
651 |
+
]
|
652 |
+
# Handle image files
|
653 |
+
elif is_image_file(file_path):
|
654 |
+
return [
|
655 |
+
gr.Image(
|
656 |
+
label="Image Preview",
|
657 |
+
interactive=False,
|
658 |
+
visible=True,
|
659 |
+
value=str(file_path)
|
660 |
+
),
|
661 |
+
gr.Video(
|
662 |
+
interactive=False,
|
663 |
+
visible=False
|
664 |
+
),
|
665 |
+
gr.Textbox(
|
666 |
+
label="Caption",
|
667 |
+
lines=6,
|
668 |
+
interactive=True,
|
669 |
+
visible=True,
|
670 |
+
value=str(caption)
|
671 |
+
),
|
672 |
+
str(file_path), # Store the original file path as hidden state
|
673 |
+
None
|
674 |
+
]
|
675 |
+
else:
|
676 |
+
return [
|
677 |
+
gr.Image(
|
678 |
+
interactive=False,
|
679 |
+
visible=False
|
680 |
+
),
|
681 |
+
gr.Video(
|
682 |
+
interactive=False,
|
683 |
+
visible=False
|
684 |
+
),
|
685 |
+
gr.Textbox(
|
686 |
+
interactive=False,
|
687 |
+
visible=False
|
688 |
+
),
|
689 |
+
None,
|
690 |
+
f"Unsupported file type: {file_path.suffix}"
|
691 |
+
]
|
692 |
+
except Exception as e:
|
693 |
+
logger.error(f"Error handling selection: {str(e)}")
|
694 |
+
return [
|
695 |
+
gr.Image(
|
696 |
+
interactive=False,
|
697 |
+
visible=False
|
698 |
+
),
|
699 |
+
gr.Video(
|
700 |
+
interactive=False,
|
701 |
+
visible=False
|
702 |
+
),
|
703 |
+
gr.Textbox(
|
704 |
+
interactive=False,
|
705 |
+
visible=False
|
706 |
+
),
|
707 |
+
None,
|
708 |
+
f"Error handling selection: {str(e)}"
|
709 |
+
]
|
710 |
+
|
711 |
+
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
712 |
+
"""Save changes to caption"""
|
713 |
+
try:
|
714 |
+
# Use the original file path stored during selection instead of the temporary preview paths
|
715 |
+
if original_file_path:
|
716 |
+
file_path = Path(original_file_path)
|
717 |
+
self.captioner.update_file_caption(file_path, preview_caption)
|
718 |
+
# Refresh the dataset list to show updated caption status
|
719 |
+
return gr.update(value="Caption saved successfully!")
|
720 |
+
else:
|
721 |
+
return gr.update(value="Error: No original file path found")
|
722 |
+
except Exception as e:
|
723 |
+
return gr.update(value=f"Error saving caption: {str(e)}")
|
724 |
+
|
725 |
+
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
726 |
+
"""Handle post-import updates including titles"""
|
727 |
+
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
728 |
+
titles = self.update_titles()
|
729 |
+
return (
|
730 |
+
import_result["tabs"],
|
731 |
+
import_result["video_list"],
|
732 |
+
import_result["detect_status"],
|
733 |
+
*titles
|
734 |
+
)
|
735 |
+
|
736 |
+
def get_model_info(self, model_type: str) -> str:
|
737 |
+
"""Get information about the selected model type"""
|
738 |
+
if model_type == "hunyuan_video":
|
739 |
+
return """### HunyuanVideo (LoRA)
|
740 |
+
- Required VRAM: ~48GB minimum
|
741 |
+
- Recommended batch size: 1-2
|
742 |
+
- Typical training time: 2-4 hours
|
743 |
+
- Default resolution: 49x512x768
|
744 |
+
- Default LoRA rank: 128 (~600 MB)"""
|
745 |
+
|
746 |
+
elif model_type == "ltx_video":
|
747 |
+
return """### LTX-Video (LoRA)
|
748 |
+
- Required VRAM: ~18GB minimum
|
749 |
+
- Recommended batch size: 1-4
|
750 |
+
- Typical training time: 1-3 hours
|
751 |
+
- Default resolution: 49x512x768
|
752 |
+
- Default LoRA rank: 128"""
|
753 |
+
|
754 |
+
return ""
|
755 |
+
|
756 |
+
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
757 |
+
"""Get default training parameters for model type"""
|
758 |
+
if model_type == "hunyuan_video":
|
759 |
+
return {
|
760 |
+
"num_epochs": 70,
|
761 |
+
"batch_size": 1,
|
762 |
+
"learning_rate": 2e-5,
|
763 |
+
"save_iterations": 500,
|
764 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
765 |
+
"video_reshape_mode": "center",
|
766 |
+
"caption_dropout_p": 0.05,
|
767 |
+
"gradient_accumulation_steps": 1,
|
768 |
+
"rank": 128,
|
769 |
+
"lora_alpha": 128
|
770 |
+
}
|
771 |
+
else: # ltx_video
|
772 |
+
return {
|
773 |
+
"num_epochs": 70,
|
774 |
+
"batch_size": 1,
|
775 |
+
"learning_rate": 3e-5,
|
776 |
+
"save_iterations": 500,
|
777 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
778 |
+
"video_reshape_mode": "center",
|
779 |
+
"caption_dropout_p": 0.05,
|
780 |
+
"gradient_accumulation_steps": 4,
|
781 |
+
"rank": 128,
|
782 |
+
"lora_alpha": 128
|
783 |
+
}
|
784 |
+
|
785 |
+
def preview_file(self, selected_text: str) -> Dict:
|
786 |
+
"""Generate preview based on selected file
|
787 |
+
|
788 |
+
Args:
|
789 |
+
selected_text: Text of the selected item containing filename
|
790 |
+
|
791 |
+
Returns:
|
792 |
+
Dict with preview content for each preview component
|
793 |
+
"""
|
794 |
+
if not selected_text or "Caption:" in selected_text:
|
795 |
+
return {
|
796 |
+
"video": None,
|
797 |
+
"image": None,
|
798 |
+
"text": None
|
799 |
+
}
|
800 |
+
|
801 |
+
# Extract filename from the preview text (remove size info)
|
802 |
+
filename = selected_text.split(" (")[0].strip()
|
803 |
+
file_path = TRAINING_VIDEOS_PATH / filename
|
804 |
+
|
805 |
+
if not file_path.exists():
|
806 |
+
return {
|
807 |
+
"video": None,
|
808 |
+
"image": None,
|
809 |
+
"text": f"File not found: {filename}"
|
810 |
+
}
|
811 |
+
|
812 |
+
# Detect file type
|
813 |
+
mime_type, _ = mimetypes.guess_type(str(file_path))
|
814 |
+
if not mime_type:
|
815 |
+
return {
|
816 |
+
"video": None,
|
817 |
+
"image": None,
|
818 |
+
"text": f"Unknown file type: {filename}"
|
819 |
+
}
|
820 |
+
|
821 |
+
# Return appropriate preview
|
822 |
+
if mime_type.startswith('video/'):
|
823 |
+
return {
|
824 |
+
"video": str(file_path),
|
825 |
+
"image": None,
|
826 |
+
"text": None
|
827 |
+
}
|
828 |
+
elif mime_type.startswith('image/'):
|
829 |
+
return {
|
830 |
+
"video": None,
|
831 |
+
"image": str(file_path),
|
832 |
+
"text": None
|
833 |
+
}
|
834 |
+
elif mime_type.startswith('text/'):
|
835 |
+
try:
|
836 |
+
text_content = file_path.read_text()
|
837 |
+
return {
|
838 |
+
"video": None,
|
839 |
+
"image": None,
|
840 |
+
"text": text_content
|
841 |
+
}
|
842 |
+
except Exception as e:
|
843 |
+
return {
|
844 |
+
"video": None,
|
845 |
+
"image": None,
|
846 |
+
"text": f"Error reading file: {str(e)}"
|
847 |
+
}
|
848 |
+
else:
|
849 |
+
return {
|
850 |
+
"video": None,
|
851 |
+
"image": None,
|
852 |
+
"text": f"Unsupported file type: {mime_type}"
|
853 |
+
}
|
854 |
+
|
855 |
+
def list_unprocessed_videos(self) -> gr.Dataframe:
|
856 |
+
"""Update list of unprocessed videos"""
|
857 |
+
videos = self.splitter.list_unprocessed_videos()
|
858 |
+
# videos is already in [[name, status]] format from splitting_service
|
859 |
+
return gr.Dataframe(
|
860 |
+
headers=["name", "status"],
|
861 |
+
value=videos,
|
862 |
+
interactive=False
|
863 |
+
)
|
864 |
+
|
865 |
+
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
866 |
+
"""Start background scene detection process
|
867 |
+
|
868 |
+
Args:
|
869 |
+
enable_splitting: Whether to split videos into scenes
|
870 |
+
"""
|
871 |
+
if self.splitter.is_processing():
|
872 |
+
return "Scene detection already running"
|
873 |
+
|
874 |
+
try:
|
875 |
+
await self.splitter.start_processing(enable_splitting)
|
876 |
+
return "Scene detection completed"
|
877 |
+
except Exception as e:
|
878 |
+
return f"Error during scene detection: {str(e)}"
|
879 |
+
|
880 |
+
|
881 |
+
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
882 |
+
state = self.trainer.get_status()
|
883 |
+
logs = self.trainer.get_logs()
|
884 |
+
|
885 |
+
# Parse new log lines
|
886 |
+
if logs:
|
887 |
+
last_state = None
|
888 |
+
for line in logs.splitlines():
|
889 |
+
state_update = self.log_parser.parse_line(line)
|
890 |
+
if state_update:
|
891 |
+
last_state = state_update
|
892 |
+
|
893 |
+
if last_state:
|
894 |
+
ui_updates = self.update_training_ui(last_state)
|
895 |
+
state["message"] = ui_updates.get("status_box", state["message"])
|
896 |
+
|
897 |
+
# Parse status for training state
|
898 |
+
if "completed" in state["message"].lower():
|
899 |
+
state["status"] = "completed"
|
900 |
+
|
901 |
+
return (state["status"], state["message"], logs)
|
902 |
+
|
903 |
+
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
904 |
+
status, message, logs = self.get_latest_status_message_and_logs()
|
905 |
+
return (
|
906 |
+
message,
|
907 |
+
logs,
|
908 |
+
*self.update_training_buttons(status).values()
|
909 |
+
)
|
910 |
+
|
911 |
+
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
|
912 |
+
status, message, logs = self.get_latest_status_message_and_logs()
|
913 |
+
return self.update_training_buttons(status).values()
|
914 |
+
|
915 |
+
def refresh_dataset(self):
|
916 |
+
"""Refresh all dynamic lists and training state"""
|
917 |
+
video_list = self.splitter.list_unprocessed_videos()
|
918 |
+
training_dataset = self.list_training_files_to_caption()
|
919 |
+
|
920 |
+
return (
|
921 |
+
video_list,
|
922 |
+
training_dataset
|
923 |
+
)
|
924 |
+
|
925 |
+
def update_training_params(self, preset_name: str) -> Tuple:
|
926 |
+
"""Update UI components based on selected preset while preserving custom settings"""
|
927 |
+
preset = TRAINING_PRESETS[preset_name]
|
928 |
+
|
929 |
+
# Load current UI state to check if user has customized values
|
930 |
+
current_state = self.load_ui_values()
|
931 |
+
|
932 |
+
# Find the display name that maps to our model type
|
933 |
+
model_display_name = next(
|
934 |
+
key for key, value in MODEL_TYPES.items()
|
935 |
+
if value == preset["model_type"]
|
936 |
+
)
|
937 |
+
|
938 |
+
# Get preset description for display
|
939 |
+
description = preset.get("description", "")
|
940 |
+
|
941 |
+
# Get max values from buckets
|
942 |
+
buckets = preset["training_buckets"]
|
943 |
+
max_frames = max(frames for frames, _, _ in buckets)
|
944 |
+
max_height = max(height for _, height, _ in buckets)
|
945 |
+
max_width = max(width for _, _, width in buckets)
|
946 |
+
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
947 |
+
|
948 |
+
info_text = f"{description}{bucket_info}"
|
949 |
+
|
950 |
+
# Return values in the same order as the output components
|
951 |
+
# Use preset defaults but preserve user-modified values if they exist
|
952 |
+
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
953 |
+
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
954 |
+
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
955 |
+
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
956 |
+
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
957 |
+
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
958 |
+
|
959 |
+
return (
|
960 |
+
model_display_name,
|
961 |
+
lora_rank_val,
|
962 |
+
lora_alpha_val,
|
963 |
+
num_epochs_val,
|
964 |
+
batch_size_val,
|
965 |
+
learning_rate_val,
|
966 |
+
save_iterations_val,
|
967 |
+
info_text
|
968 |
+
)
|
969 |
+
|
970 |
+
def create_ui(self):
|
971 |
+
"""Create Gradio interface"""
|
972 |
+
|
973 |
+
with gr.Blocks(title="π₯ Video Model Studio") as app:
|
974 |
+
gr.Markdown("# π₯ Video Model Studio")
|
975 |
+
|
976 |
+
with gr.Tabs() as tabs:
|
977 |
+
with gr.TabItem("1οΈβ£ Import", id="import_tab"):
|
978 |
+
|
979 |
+
with gr.Row():
|
980 |
+
gr.Markdown("## Automatic splitting and captioning")
|
981 |
+
|
982 |
+
with gr.Row():
|
983 |
+
enable_automatic_video_split = gr.Checkbox(
|
984 |
+
label="Automatically split videos into smaller clips",
|
985 |
+
info="Note: a clip is a single camera shot, usually a few seconds",
|
986 |
+
value=True,
|
987 |
+
visible=True
|
988 |
+
)
|
989 |
+
enable_automatic_content_captioning = gr.Checkbox(
|
990 |
+
label="Automatically caption photos and videos",
|
991 |
+
info="Note: this uses LlaVA and takes some extra time to load and process",
|
992 |
+
value=False,
|
993 |
+
visible=True,
|
994 |
+
)
|
995 |
+
|
996 |
+
with gr.Row():
|
997 |
+
with gr.Column(scale=3):
|
998 |
+
with gr.Row():
|
999 |
+
with gr.Column():
|
1000 |
+
gr.Markdown("## Import video files")
|
1001 |
+
gr.Markdown("You can upload either:")
|
1002 |
+
gr.Markdown("- A single MP4 video file")
|
1003 |
+
gr.Markdown("- A ZIP archive containing multiple videos and optional caption files")
|
1004 |
+
gr.Markdown("For ZIP files: Create a folder containing videos (name is not important) and optional caption files with the same name (eg. `some_video.txt` for `some_video.mp4`)")
|
1005 |
+
|
1006 |
+
with gr.Row():
|
1007 |
+
files = gr.Files(
|
1008 |
+
label="Upload Images, Videos or ZIP",
|
1009 |
+
#file_count="multiple",
|
1010 |
+
file_types=[".jpg", ".jpeg", ".png", ".webp", ".webp", ".avif", ".heic", ".mp4", ".zip"],
|
1011 |
+
type="filepath"
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
with gr.Column(scale=3):
|
1015 |
+
with gr.Row():
|
1016 |
+
with gr.Column():
|
1017 |
+
gr.Markdown("## Import a YouTube video")
|
1018 |
+
gr.Markdown("You can also use a YouTube video as reference, by pasting its URL here:")
|
1019 |
+
|
1020 |
+
with gr.Row():
|
1021 |
+
youtube_url = gr.Textbox(
|
1022 |
+
label="Import YouTube Video",
|
1023 |
+
placeholder="https://www.youtube.com/watch?v=..."
|
1024 |
+
)
|
1025 |
+
with gr.Row():
|
1026 |
+
youtube_download_btn = gr.Button("Download YouTube Video", variant="secondary")
|
1027 |
+
with gr.Row():
|
1028 |
+
import_status = gr.Textbox(label="Status", interactive=False)
|
1029 |
+
|
1030 |
+
|
1031 |
+
with gr.TabItem("2οΈβ£ Split", id="split_tab"):
|
1032 |
+
with gr.Row():
|
1033 |
+
split_title = gr.Markdown("## Splitting of 0 videos (0 bytes)")
|
1034 |
+
|
1035 |
+
with gr.Row():
|
1036 |
+
with gr.Column():
|
1037 |
+
detect_btn = gr.Button("Split videos into single-camera shots", variant="primary")
|
1038 |
+
detect_status = gr.Textbox(label="Status", interactive=False)
|
1039 |
+
|
1040 |
+
with gr.Column():
|
1041 |
+
|
1042 |
+
video_list = gr.Dataframe(
|
1043 |
+
headers=["name", "status"],
|
1044 |
+
label="Videos to split",
|
1045 |
+
interactive=False,
|
1046 |
+
wrap=True,
|
1047 |
+
#selection_mode="cell" # Enable cell selection
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
|
1051 |
+
with gr.TabItem("3οΈβ£ Caption"):
|
1052 |
+
with gr.Row():
|
1053 |
+
caption_title = gr.Markdown("## Captioning of 0 files (0 bytes)")
|
1054 |
+
|
1055 |
+
with gr.Row():
|
1056 |
+
|
1057 |
+
with gr.Column():
|
1058 |
+
with gr.Row():
|
1059 |
+
custom_prompt_prefix = gr.Textbox(
|
1060 |
+
scale=3,
|
1061 |
+
label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
|
1062 |
+
placeholder="In the style of TOK, ",
|
1063 |
+
lines=2,
|
1064 |
+
value=DEFAULT_PROMPT_PREFIX
|
1065 |
+
)
|
1066 |
+
captioning_bot_instructions = gr.Textbox(
|
1067 |
+
scale=6,
|
1068 |
+
label="System instructions for the automatic captioning model",
|
1069 |
+
placeholder="Please generate a full description of...",
|
1070 |
+
lines=5,
|
1071 |
+
value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
|
1072 |
+
)
|
1073 |
+
with gr.Row():
|
1074 |
+
run_autocaption_btn = gr.Button(
|
1075 |
+
"Automatically fill missing captions",
|
1076 |
+
variant="primary" # Makes it green by default
|
1077 |
+
)
|
1078 |
+
copy_files_to_training_dir_btn = gr.Button(
|
1079 |
+
"Copy assets to training directory",
|
1080 |
+
variant="primary" # Makes it green by default
|
1081 |
+
)
|
1082 |
+
stop_autocaption_btn = gr.Button(
|
1083 |
+
"Stop Captioning",
|
1084 |
+
variant="stop", # Red when enabled
|
1085 |
+
interactive=False # Disabled by default
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
with gr.Row():
|
1089 |
+
with gr.Column():
|
1090 |
+
training_dataset = gr.Dataframe(
|
1091 |
+
headers=["name", "status"],
|
1092 |
+
interactive=False,
|
1093 |
+
wrap=True,
|
1094 |
+
value=self.list_training_files_to_caption(),
|
1095 |
+
row_count=10, # Optional: set a reasonable row count
|
1096 |
+
#selection_mode="cell"
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
with gr.Column():
|
1100 |
+
preview_video = gr.Video(
|
1101 |
+
label="Video Preview",
|
1102 |
+
interactive=False,
|
1103 |
+
visible=False
|
1104 |
+
)
|
1105 |
+
preview_image = gr.Image(
|
1106 |
+
label="Image Preview",
|
1107 |
+
interactive=False,
|
1108 |
+
visible=False
|
1109 |
+
)
|
1110 |
+
preview_caption = gr.Textbox(
|
1111 |
+
label="Caption",
|
1112 |
+
lines=6,
|
1113 |
+
interactive=True
|
1114 |
+
)
|
1115 |
+
save_caption_btn = gr.Button("Save Caption")
|
1116 |
+
preview_status = gr.Textbox(
|
1117 |
+
label="Status",
|
1118 |
+
interactive=False,
|
1119 |
+
visible=True
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
with gr.TabItem("4οΈβ£ Train"):
|
1123 |
+
with gr.Row():
|
1124 |
+
with gr.Column():
|
1125 |
+
|
1126 |
+
with gr.Row():
|
1127 |
+
train_title = gr.Markdown("## 0 files available for training (0 bytes)")
|
1128 |
+
|
1129 |
+
with gr.Row():
|
1130 |
+
with gr.Column():
|
1131 |
+
training_preset = gr.Dropdown(
|
1132 |
+
choices=list(TRAINING_PRESETS.keys()),
|
1133 |
+
label="Training Preset",
|
1134 |
+
value=list(TRAINING_PRESETS.keys())[0]
|
1135 |
+
)
|
1136 |
+
preset_info = gr.Markdown()
|
1137 |
+
|
1138 |
+
with gr.Row():
|
1139 |
+
with gr.Column():
|
1140 |
+
model_type = gr.Dropdown(
|
1141 |
+
choices=list(MODEL_TYPES.keys()),
|
1142 |
+
label="Model Type",
|
1143 |
+
value=list(MODEL_TYPES.keys())[0]
|
1144 |
+
)
|
1145 |
+
model_info = gr.Markdown(
|
1146 |
+
value=self.get_model_info(list(MODEL_TYPES.keys())[0])
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
with gr.Row():
|
1150 |
+
lora_rank = gr.Dropdown(
|
1151 |
+
label="LoRA Rank",
|
1152 |
+
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
1153 |
+
value="128",
|
1154 |
+
type="value"
|
1155 |
+
)
|
1156 |
+
lora_alpha = gr.Dropdown(
|
1157 |
+
label="LoRA Alpha",
|
1158 |
+
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
1159 |
+
value="128",
|
1160 |
+
type="value"
|
1161 |
+
)
|
1162 |
+
with gr.Row():
|
1163 |
+
num_epochs = gr.Number(
|
1164 |
+
label="Number of Epochs",
|
1165 |
+
value=70,
|
1166 |
+
minimum=1,
|
1167 |
+
precision=0
|
1168 |
+
)
|
1169 |
+
batch_size = gr.Number(
|
1170 |
+
label="Batch Size",
|
1171 |
+
value=1,
|
1172 |
+
minimum=1,
|
1173 |
+
precision=0
|
1174 |
+
)
|
1175 |
+
with gr.Row():
|
1176 |
+
learning_rate = gr.Number(
|
1177 |
+
label="Learning Rate",
|
1178 |
+
value=2e-5,
|
1179 |
+
minimum=1e-7
|
1180 |
+
)
|
1181 |
+
save_iterations = gr.Number(
|
1182 |
+
label="Save checkpoint every N iterations",
|
1183 |
+
value=500,
|
1184 |
+
minimum=50,
|
1185 |
+
precision=0,
|
1186 |
+
info="Model will be saved periodically after these many steps"
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
with gr.Column():
|
1190 |
+
with gr.Row():
|
1191 |
+
start_btn = gr.Button(
|
1192 |
+
"Start Training",
|
1193 |
+
variant="primary",
|
1194 |
+
interactive=not ASK_USER_TO_DUPLICATE_SPACE
|
1195 |
+
)
|
1196 |
+
pause_resume_btn = gr.Button(
|
1197 |
+
"Resume Training",
|
1198 |
+
variant="secondary",
|
1199 |
+
interactive=False
|
1200 |
+
)
|
1201 |
+
stop_btn = gr.Button(
|
1202 |
+
"Stop Training",
|
1203 |
+
variant="stop",
|
1204 |
+
interactive=False
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
with gr.Row():
|
1208 |
+
with gr.Column():
|
1209 |
+
status_box = gr.Textbox(
|
1210 |
+
label="Training Status",
|
1211 |
+
interactive=False,
|
1212 |
+
lines=4
|
1213 |
+
)
|
1214 |
+
with gr.Accordion("See training logs"):
|
1215 |
+
log_box = gr.TextArea(
|
1216 |
+
label="Finetrainers output (see HF Space logs for more details)",
|
1217 |
+
interactive=False,
|
1218 |
+
lines=40,
|
1219 |
+
max_lines=200,
|
1220 |
+
autoscroll=True
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
with gr.TabItem("5οΈβ£ Manage"):
|
1224 |
+
|
1225 |
+
with gr.Column():
|
1226 |
+
with gr.Row():
|
1227 |
+
with gr.Column():
|
1228 |
+
gr.Markdown("## Publishing")
|
1229 |
+
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
|
1230 |
+
|
1231 |
+
with gr.Row():
|
1232 |
+
|
1233 |
+
with gr.Column():
|
1234 |
+
repo_id = gr.Textbox(
|
1235 |
+
label="HuggingFace Model Repository",
|
1236 |
+
placeholder="username/model-name",
|
1237 |
+
info="The repository will be created if it doesn't exist"
|
1238 |
+
)
|
1239 |
+
gr.Checkbox(label="Check this to make your model public (ie. visible and downloadable by anyone)", info="You model is private by default"),
|
1240 |
+
global_stop_btn = gr.Button(
|
1241 |
+
"Push my model",
|
1242 |
+
#variant="stop"
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
|
1246 |
+
with gr.Row():
|
1247 |
+
with gr.Column():
|
1248 |
+
with gr.Row():
|
1249 |
+
with gr.Column():
|
1250 |
+
gr.Markdown("## Storage management")
|
1251 |
+
with gr.Row():
|
1252 |
+
download_dataset_btn = gr.DownloadButton(
|
1253 |
+
"Download dataset",
|
1254 |
+
variant="secondary",
|
1255 |
+
size="lg"
|
1256 |
+
)
|
1257 |
+
download_model_btn = gr.DownloadButton(
|
1258 |
+
"Download model",
|
1259 |
+
variant="secondary",
|
1260 |
+
size="lg"
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
|
1264 |
+
with gr.Row():
|
1265 |
+
global_stop_btn = gr.Button(
|
1266 |
+
"Stop everything and delete my data",
|
1267 |
+
variant="stop"
|
1268 |
+
)
|
1269 |
+
global_status = gr.Textbox(
|
1270 |
+
label="Global Status",
|
1271 |
+
interactive=False,
|
1272 |
+
visible=False
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
|
1276 |
+
|
1277 |
+
# Event handlers
|
1278 |
+
def update_model_info(model):
|
1279 |
+
params = self.get_default_params(MODEL_TYPES[model])
|
1280 |
+
info = self.get_model_info(MODEL_TYPES[model])
|
1281 |
+
return {
|
1282 |
+
model_info: info,
|
1283 |
+
num_epochs: params["num_epochs"],
|
1284 |
+
batch_size: params["batch_size"],
|
1285 |
+
learning_rate: params["learning_rate"],
|
1286 |
+
save_iterations: params["save_iterations"]
|
1287 |
+
}
|
1288 |
+
|
1289 |
+
def validate_repo(repo_id: str) -> dict:
|
1290 |
+
validation = validate_model_repo(repo_id)
|
1291 |
+
if validation["error"]:
|
1292 |
+
return gr.update(value=repo_id, error=validation["error"])
|
1293 |
+
return gr.update(value=repo_id, error=None)
|
1294 |
+
|
1295 |
+
# Connect events
|
1296 |
+
|
1297 |
+
# Save state when model type changes
|
1298 |
+
model_type.change(
|
1299 |
+
fn=lambda v: self.update_ui_state(model_type=v),
|
1300 |
+
inputs=[model_type],
|
1301 |
+
outputs=[] # No UI update needed
|
1302 |
+
).then(
|
1303 |
+
fn=update_model_info,
|
1304 |
+
inputs=[model_type],
|
1305 |
+
outputs=[model_info, num_epochs, batch_size, learning_rate, save_iterations]
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
# the following change listeners are used for UI persistence
|
1309 |
+
lora_rank.change(
|
1310 |
+
fn=lambda v: self.update_ui_state(lora_rank=v),
|
1311 |
+
inputs=[lora_rank],
|
1312 |
+
outputs=[]
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
lora_alpha.change(
|
1316 |
+
fn=lambda v: self.update_ui_state(lora_alpha=v),
|
1317 |
+
inputs=[lora_alpha],
|
1318 |
+
outputs=[]
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
num_epochs.change(
|
1322 |
+
fn=lambda v: self.update_ui_state(num_epochs=v),
|
1323 |
+
inputs=[num_epochs],
|
1324 |
+
outputs=[]
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
batch_size.change(
|
1328 |
+
fn=lambda v: self.update_ui_state(batch_size=v),
|
1329 |
+
inputs=[batch_size],
|
1330 |
+
outputs=[]
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
learning_rate.change(
|
1334 |
+
fn=lambda v: self.update_ui_state(learning_rate=v),
|
1335 |
+
inputs=[learning_rate],
|
1336 |
+
outputs=[]
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
save_iterations.change(
|
1340 |
+
fn=lambda v: self.update_ui_state(save_iterations=v),
|
1341 |
+
inputs=[save_iterations],
|
1342 |
+
outputs=[]
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
files.upload(
|
1346 |
+
fn=lambda x: self.importer.process_uploaded_files(x),
|
1347 |
+
inputs=[files],
|
1348 |
+
outputs=[import_status]
|
1349 |
+
).success(
|
1350 |
+
fn=self.update_titles_after_import,
|
1351 |
+
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
1352 |
+
outputs=[
|
1353 |
+
tabs, video_list, detect_status,
|
1354 |
+
split_title, caption_title, train_title
|
1355 |
+
]
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
youtube_download_btn.click(
|
1359 |
+
fn=self.importer.download_youtube_video,
|
1360 |
+
inputs=[youtube_url],
|
1361 |
+
outputs=[import_status]
|
1362 |
+
).success(
|
1363 |
+
fn=self.on_import_success,
|
1364 |
+
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
1365 |
+
outputs=[tabs, video_list, detect_status]
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
# Scene detection events
|
1369 |
+
detect_btn.click(
|
1370 |
+
fn=self.start_scene_detection,
|
1371 |
+
inputs=[enable_automatic_video_split],
|
1372 |
+
outputs=[detect_status]
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
|
1376 |
+
# Update button states based on captioning status
|
1377 |
+
def update_button_states(is_running):
|
1378 |
+
return {
|
1379 |
+
run_autocaption_btn: gr.Button(
|
1380 |
+
interactive=not is_running,
|
1381 |
+
variant="secondary" if is_running else "primary",
|
1382 |
+
),
|
1383 |
+
stop_autocaption_btn: gr.Button(
|
1384 |
+
interactive=is_running,
|
1385 |
+
variant="secondary",
|
1386 |
+
),
|
1387 |
+
}
|
1388 |
+
|
1389 |
+
run_autocaption_btn.click(
|
1390 |
+
fn=self.show_refreshing_status,
|
1391 |
+
outputs=[training_dataset]
|
1392 |
+
).then(
|
1393 |
+
fn=lambda: self.update_captioning_buttons_start(),
|
1394 |
+
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1395 |
+
).then(
|
1396 |
+
fn=self.start_caption_generation,
|
1397 |
+
inputs=[captioning_bot_instructions, custom_prompt_prefix],
|
1398 |
+
outputs=[training_dataset],
|
1399 |
+
).then(
|
1400 |
+
fn=lambda: self.update_captioning_buttons_end(),
|
1401 |
+
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
copy_files_to_training_dir_btn.click(
|
1405 |
+
fn=self.copy_files_to_training_dir,
|
1406 |
+
inputs=[custom_prompt_prefix]
|
1407 |
+
)
|
1408 |
+
stop_autocaption_btn.click(
|
1409 |
+
fn=self.stop_captioning,
|
1410 |
+
outputs=[training_dataset, run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
1411 |
+
)
|
1412 |
+
|
1413 |
+
original_file_path = gr.State(value=None)
|
1414 |
+
training_dataset.select(
|
1415 |
+
fn=self.handle_training_dataset_select,
|
1416 |
+
outputs=[preview_image, preview_video, preview_caption, original_file_path, preview_status]
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
save_caption_btn.click(
|
1420 |
+
fn=self.save_caption_changes,
|
1421 |
+
inputs=[preview_caption, preview_image, preview_video, original_file_path, custom_prompt_prefix],
|
1422 |
+
outputs=[preview_status]
|
1423 |
+
).success(
|
1424 |
+
fn=self.list_training_files_to_caption,
|
1425 |
+
outputs=[training_dataset]
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
# Save state when training preset changes
|
1429 |
+
training_preset.change(
|
1430 |
+
fn=lambda v: self.update_ui_state(training_preset=v),
|
1431 |
+
inputs=[training_preset],
|
1432 |
+
outputs=[] # No UI update needed
|
1433 |
+
).then(
|
1434 |
+
fn=self.update_training_params,
|
1435 |
+
inputs=[training_preset],
|
1436 |
+
outputs=[
|
1437 |
+
model_type, lora_rank, lora_alpha,
|
1438 |
+
num_epochs, batch_size, learning_rate,
|
1439 |
+
save_iterations, preset_info
|
1440 |
+
]
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
# Training control events
|
1444 |
+
start_btn.click(
|
1445 |
+
fn=lambda preset, model_type, *args: (
|
1446 |
+
self.log_parser.reset(),
|
1447 |
+
self.trainer.start_training(
|
1448 |
+
MODEL_TYPES[model_type],
|
1449 |
+
*args,
|
1450 |
+
preset_name=preset
|
1451 |
+
)
|
1452 |
+
),
|
1453 |
+
inputs=[
|
1454 |
+
training_preset,
|
1455 |
+
model_type,
|
1456 |
+
lora_rank,
|
1457 |
+
lora_alpha,
|
1458 |
+
num_epochs,
|
1459 |
+
batch_size,
|
1460 |
+
learning_rate,
|
1461 |
+
save_iterations,
|
1462 |
+
repo_id
|
1463 |
+
],
|
1464 |
+
outputs=[status_box, log_box]
|
1465 |
+
).success(
|
1466 |
+
fn=self.get_latest_status_message_logs_and_button_labels,
|
1467 |
+
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1468 |
+
)
|
1469 |
+
|
1470 |
+
pause_resume_btn.click(
|
1471 |
+
fn=self.handle_pause_resume,
|
1472 |
+
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1473 |
+
)
|
1474 |
+
|
1475 |
+
stop_btn.click(
|
1476 |
+
fn=self.handle_stop,
|
1477 |
+
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
def handle_global_stop():
|
1481 |
+
result = self.stop_all_and_clear()
|
1482 |
+
# Update all relevant UI components
|
1483 |
+
status = result["status"]
|
1484 |
+
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
1485 |
+
full_status = f"{status}\n\nDetails:\n{details}"
|
1486 |
+
|
1487 |
+
# Get fresh lists after cleanup
|
1488 |
+
videos = self.splitter.list_unprocessed_videos()
|
1489 |
+
clips = self.list_training_files_to_caption()
|
1490 |
+
|
1491 |
+
return {
|
1492 |
+
global_status: gr.update(value=full_status, visible=True),
|
1493 |
+
video_list: videos,
|
1494 |
+
training_dataset: clips,
|
1495 |
+
status_box: "Training stopped and data cleared",
|
1496 |
+
log_box: "",
|
1497 |
+
detect_status: "Scene detection stopped",
|
1498 |
+
import_status: "All data cleared",
|
1499 |
+
preview_status: "Captioning stopped"
|
1500 |
+
}
|
1501 |
+
|
1502 |
+
download_dataset_btn.click(
|
1503 |
+
fn=self.trainer.create_training_dataset_zip,
|
1504 |
+
outputs=[download_dataset_btn]
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
download_model_btn.click(
|
1508 |
+
fn=self.trainer.get_model_output_safetensors,
|
1509 |
+
outputs=[download_model_btn]
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
global_stop_btn.click(
|
1513 |
+
fn=handle_global_stop,
|
1514 |
+
outputs=[
|
1515 |
+
global_status,
|
1516 |
+
video_list,
|
1517 |
+
training_dataset,
|
1518 |
+
status_box,
|
1519 |
+
log_box,
|
1520 |
+
detect_status,
|
1521 |
+
import_status,
|
1522 |
+
preview_status
|
1523 |
+
]
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
|
1527 |
+
app.load(
|
1528 |
+
fn=self.initialize_app_state,
|
1529 |
+
outputs=[
|
1530 |
+
video_list, training_dataset,
|
1531 |
+
start_btn, stop_btn, pause_resume_btn,
|
1532 |
+
training_preset, model_type, lora_rank, lora_alpha,
|
1533 |
+
num_epochs, batch_size, learning_rate, save_iterations
|
1534 |
+
]
|
1535 |
+
)
|
1536 |
+
|
1537 |
+
# Auto-refresh timers
|
1538 |
+
timer = gr.Timer(value=1)
|
1539 |
+
timer.tick(
|
1540 |
+
fn=lambda: (
|
1541 |
+
self.get_latest_status_message_logs_and_button_labels()
|
1542 |
+
),
|
1543 |
+
outputs=[
|
1544 |
+
status_box,
|
1545 |
+
log_box,
|
1546 |
+
start_btn,
|
1547 |
+
stop_btn,
|
1548 |
+
pause_resume_btn
|
1549 |
+
]
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
timer = gr.Timer(value=5)
|
1553 |
+
timer.tick(
|
1554 |
+
fn=lambda: (
|
1555 |
+
self.refresh_dataset()
|
1556 |
+
),
|
1557 |
+
outputs=[
|
1558 |
+
video_list, training_dataset
|
1559 |
+
]
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
timer = gr.Timer(value=6)
|
1563 |
+
timer.tick(
|
1564 |
+
fn=lambda: self.update_titles(),
|
1565 |
+
outputs=[
|
1566 |
+
split_title, caption_title, train_title
|
1567 |
+
]
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
return app
|
1571 |
+
|
1572 |
+
def create_app():
|
1573 |
+
if ASK_USER_TO_DUPLICATE_SPACE:
|
1574 |
+
with gr.Blocks() as app:
|
1575 |
+
gr.Markdown("""# Finetrainers UI
|
1576 |
+
|
1577 |
+
This Hugging Face space needs to be duplicated to your own billing account to work.
|
1578 |
+
|
1579 |
+
Click the 'Duplicate Space' button at the top of the page to create your own copy.
|
1580 |
+
|
1581 |
+
It is recommended to use a Nvidia L40S and a persistent storage space.
|
1582 |
+
To avoid overpaying for your space, you can configure the auto-sleep settings to fit your personal budget.""")
|
1583 |
+
return app
|
1584 |
+
|
1585 |
+
ui = VideoTrainerUI()
|
1586 |
+
return ui.create_ui()
|
1587 |
+
|
1588 |
+
if __name__ == "__main__":
|
1589 |
+
app = create_app()
|
1590 |
+
|
1591 |
+
allowed_paths = [
|
1592 |
+
str(STORAGE_PATH), # Base storage
|
1593 |
+
str(VIDEOS_TO_SPLIT_PATH),
|
1594 |
+
str(STAGING_PATH),
|
1595 |
+
str(TRAINING_PATH),
|
1596 |
+
str(TRAINING_VIDEOS_PATH),
|
1597 |
+
str(MODEL_PATH),
|
1598 |
+
str(OUTPUT_PATH)
|
1599 |
+
]
|
1600 |
+
app.queue(default_concurrency_limit=1).launch(
|
1601 |
+
server_name="0.0.0.0",
|
1602 |
+
allowed_paths=allowed_paths
|
1603 |
+
)
|
vms/config.py
CHANGED
@@ -3,7 +3,16 @@ from dataclasses import dataclass, field
|
|
3 |
from typing import Dict, Any, Optional, List, Tuple
|
4 |
from pathlib import Path
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
9 |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))
|
|
|
3 |
from typing import Dict, Any, Optional, List, Tuple
|
4 |
from pathlib import Path
|
5 |
|
6 |
+
def parse_bool_env(env_value: Optional[str]) -> bool:
|
7 |
+
"""Parse environment variable string to boolean
|
8 |
+
|
9 |
+
Handles various true/false string representations:
|
10 |
+
- True: "true", "True", "TRUE", "1", etc
|
11 |
+
- False: "false", "False", "FALSE", "0", "", None
|
12 |
+
"""
|
13 |
+
if not env_value:
|
14 |
+
return False
|
15 |
+
return str(env_value).lower() in ('true', '1', 't', 'y', 'yes')
|
16 |
|
17 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
18 |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))
|
vms/services/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .captioner import CaptioningProgress, CaptioningService
|
2 |
+
from .importer import ImportService
|
3 |
+
from .splitter import SplittingService
|
4 |
+
from .trainer import TrainingService
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'CaptioningProgress',
|
8 |
+
'CaptioningService',
|
9 |
+
'ImportService',
|
10 |
+
'SplittingService',
|
11 |
+
'TrainingService',
|
12 |
+
]
|
vms/{captioning_service.py β services/captioner.py}
RENAMED
@@ -17,9 +17,8 @@ from llava.mm_utils import tokenizer_image_token
|
|
17 |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
18 |
from llava.conversation import conv_templates, SeparatorStyle
|
19 |
|
20 |
-
from
|
21 |
-
from
|
22 |
-
from .finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
23 |
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
|
|
17 |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
18 |
from llava.conversation import conv_templates, SeparatorStyle
|
19 |
|
20 |
+
from ..config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
|
21 |
+
from ..utils import extract_scene_info, is_image_file, is_video_file, copy_files_to_training_dir, prepare_finetrainers_dataset
|
|
|
22 |
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
vms/{import_service.py β services/importer.py}
RENAMED
@@ -8,9 +8,8 @@ from typing import List, Dict, Optional, Tuple
|
|
8 |
from pytubefix import YouTube
|
9 |
import logging
|
10 |
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from .config import NORMALIZE_IMAGES_TO, TRAINING_VIDEOS_PATH, VIDEOS_TO_SPLIT_PATH, TRAINING_PATH, DEFAULT_PROMPT_PREFIX
|
14 |
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
|
|
8 |
from pytubefix import YouTube
|
9 |
import logging
|
10 |
|
11 |
+
from ..config import NORMALIZE_IMAGES_TO, TRAINING_VIDEOS_PATH, VIDEOS_TO_SPLIT_PATH, TRAINING_PATH, DEFAULT_PROMPT_PREFIX
|
12 |
+
from ..utils import normalize_image, is_image_file, is_video_file, add_prefix_to_caption
|
|
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
vms/{splitting_service.py β services/splitter.py}
RENAMED
@@ -12,11 +12,8 @@ import gradio as gr
|
|
12 |
from scenedetect import detect, ContentDetector, SceneManager, open_video
|
13 |
from scenedetect.video_splitter import split_video_ffmpeg
|
14 |
|
15 |
-
from
|
16 |
-
|
17 |
-
from .image_preprocessing import detect_black_bars
|
18 |
-
from .video_preprocessing import remove_black_bars
|
19 |
-
from .utils import extract_scene_info, is_video_file, is_image_file, add_prefix_to_caption
|
20 |
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
12 |
from scenedetect import detect, ContentDetector, SceneManager, open_video
|
13 |
from scenedetect.video_splitter import split_video_ffmpeg
|
14 |
|
15 |
+
from ..config import TRAINING_PATH, STORAGE_PATH, TRAINING_VIDEOS_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, DEFAULT_PROMPT_PREFIX
|
16 |
+
from ..utils import remove_black_bars, extract_scene_info, is_video_file, is_image_file, add_prefix_to_caption
|
|
|
|
|
|
|
17 |
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
vms/{training_service.py β services/trainer.py}
RENAMED
@@ -20,9 +20,8 @@ from typing import Any, Optional, Dict, List, Union, Tuple
|
|
20 |
|
21 |
from huggingface_hub import upload_folder, create_repo
|
22 |
|
23 |
-
from
|
24 |
-
from
|
25 |
-
from .finetrainers_utils import prepare_finetrainers_dataset, copy_files_to_training_dir
|
26 |
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
@@ -36,6 +35,7 @@ class TrainingService:
|
|
36 |
|
37 |
self.file_handler = None
|
38 |
self.setup_logging()
|
|
|
39 |
|
40 |
logger.info("Training service initialized")
|
41 |
|
@@ -122,11 +122,23 @@ class TrainingService:
|
|
122 |
}
|
123 |
|
124 |
if not ui_state_file.exists():
|
|
|
125 |
return default_state
|
126 |
|
127 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
with open(ui_state_file, 'r') as f:
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# Convert numeric values to appropriate types
|
132 |
if "num_epochs" in saved_state:
|
@@ -141,11 +153,66 @@ class TrainingService:
|
|
141 |
# Make sure we have all keys (in case structure changed)
|
142 |
merged_state = default_state.copy()
|
143 |
merged_state.update(saved_state)
|
|
|
144 |
return merged_state
|
|
|
|
|
|
|
145 |
except Exception as e:
|
146 |
logger.error(f"Error loading UI state: {str(e)}")
|
147 |
return default_state
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# Modify save_session to also store the UI state at training start
|
150 |
def save_session(self, params: Dict) -> None:
|
151 |
"""Save training session parameters"""
|
|
|
20 |
|
21 |
from huggingface_hub import upload_folder, create_repo
|
22 |
|
23 |
+
from ..config import TrainingConfig, TRAINING_PRESETS, LOG_FILE_PATH, TRAINING_VIDEOS_PATH, STORAGE_PATH, TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN, MODEL_TYPES
|
24 |
+
from ..utils import make_archive, parse_training_log, is_image_file, is_video_file, prepare_finetrainers_dataset, copy_files_to_training_dir
|
|
|
25 |
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
|
|
35 |
|
36 |
self.file_handler = None
|
37 |
self.setup_logging()
|
38 |
+
self.ensure_valid_ui_state_file()
|
39 |
|
40 |
logger.info("Training service initialized")
|
41 |
|
|
|
122 |
}
|
123 |
|
124 |
if not ui_state_file.exists():
|
125 |
+
logger.info("UI state file does not exist, using default values")
|
126 |
return default_state
|
127 |
|
128 |
try:
|
129 |
+
# First check if the file is empty
|
130 |
+
file_size = ui_state_file.stat().st_size
|
131 |
+
if file_size == 0:
|
132 |
+
logger.warning("UI state file exists but is empty, using default values")
|
133 |
+
return default_state
|
134 |
+
|
135 |
with open(ui_state_file, 'r') as f:
|
136 |
+
file_content = f.read().strip()
|
137 |
+
if not file_content:
|
138 |
+
logger.warning("UI state file is empty or contains only whitespace, using default values")
|
139 |
+
return default_state
|
140 |
+
|
141 |
+
saved_state = json.loads(file_content)
|
142 |
|
143 |
# Convert numeric values to appropriate types
|
144 |
if "num_epochs" in saved_state:
|
|
|
153 |
# Make sure we have all keys (in case structure changed)
|
154 |
merged_state = default_state.copy()
|
155 |
merged_state.update(saved_state)
|
156 |
+
logger.info(f"Successfully loaded UI state from {ui_state_file}")
|
157 |
return merged_state
|
158 |
+
except json.JSONDecodeError as e:
|
159 |
+
logger.error(f"Error parsing UI state JSON: {str(e)}")
|
160 |
+
return default_state
|
161 |
except Exception as e:
|
162 |
logger.error(f"Error loading UI state: {str(e)}")
|
163 |
return default_state
|
164 |
|
165 |
+
def ensure_valid_ui_state_file(self):
|
166 |
+
"""Ensure UI state file exists and is valid JSON"""
|
167 |
+
ui_state_file = OUTPUT_PATH / "ui_state.json"
|
168 |
+
|
169 |
+
if not ui_state_file.exists():
|
170 |
+
# Create a new file with default values
|
171 |
+
logger.info("Creating new UI state file with default values")
|
172 |
+
default_state = {
|
173 |
+
"model_type": list(MODEL_TYPES.keys())[0],
|
174 |
+
"lora_rank": "128",
|
175 |
+
"lora_alpha": "128",
|
176 |
+
"num_epochs": 50,
|
177 |
+
"batch_size": 1,
|
178 |
+
"learning_rate": 3e-5,
|
179 |
+
"save_iterations": 200,
|
180 |
+
"training_preset": list(TRAINING_PRESETS.keys())[0]
|
181 |
+
}
|
182 |
+
self.save_ui_state(default_state)
|
183 |
+
return
|
184 |
+
|
185 |
+
# Check if file is valid JSON
|
186 |
+
try:
|
187 |
+
with open(ui_state_file, 'r') as f:
|
188 |
+
file_content = f.read().strip()
|
189 |
+
if not file_content:
|
190 |
+
raise ValueError("Empty file")
|
191 |
+
json.loads(file_content)
|
192 |
+
logger.debug("UI state file validation successful")
|
193 |
+
except Exception as e:
|
194 |
+
logger.warning(f"Invalid UI state file detected: {str(e)}. Creating new one with defaults.")
|
195 |
+
# Backup the invalid file
|
196 |
+
backup_file = ui_state_file.with_suffix('.json.bak')
|
197 |
+
try:
|
198 |
+
shutil.copy2(ui_state_file, backup_file)
|
199 |
+
logger.info(f"Backed up invalid UI state file to {backup_file}")
|
200 |
+
except Exception as backup_error:
|
201 |
+
logger.error(f"Failed to backup invalid UI state file: {str(backup_error)}")
|
202 |
+
|
203 |
+
# Create a new file with default values
|
204 |
+
default_state = {
|
205 |
+
"model_type": list(MODEL_TYPES.keys())[0],
|
206 |
+
"lora_rank": "128",
|
207 |
+
"lora_alpha": "128",
|
208 |
+
"num_epochs": 50,
|
209 |
+
"batch_size": 1,
|
210 |
+
"learning_rate": 3e-5,
|
211 |
+
"save_iterations": 200,
|
212 |
+
"training_preset": list(TRAINING_PRESETS.keys())[0]
|
213 |
+
}
|
214 |
+
self.save_ui_state(default_state)
|
215 |
+
|
216 |
# Modify save_session to also store the UI state at training start
|
217 |
def save_session(self, params: Dict) -> None:
|
218 |
"""Save training session parameters"""
|
vms/tabs/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tab components for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
from .import_tab import ImportTab
|
6 |
+
from .split_tab import SplitTab
|
7 |
+
from .caption_tab import CaptionTab
|
8 |
+
from .train_tab import TrainTab
|
9 |
+
from .manage_tab import ManageTab
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
'ImportTab',
|
13 |
+
'SplitTab',
|
14 |
+
'CaptionTab',
|
15 |
+
'TrainTab',
|
16 |
+
'ManageTab'
|
17 |
+
]
|
vms/tabs/base_tab.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base class for UI tabs
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
from typing import Dict, Any, Optional
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
class BaseTab:
|
12 |
+
"""Base class for UI tabs with common functionality"""
|
13 |
+
|
14 |
+
def __init__(self, app_state):
|
15 |
+
"""Initialize the tab with app state reference
|
16 |
+
|
17 |
+
Args:
|
18 |
+
app_state: Reference to main VideoTrainerUI instance
|
19 |
+
"""
|
20 |
+
self.app = app_state
|
21 |
+
self.components = {}
|
22 |
+
|
23 |
+
def create(self, parent=None) -> gr.TabItem:
|
24 |
+
"""Create the tab UI components
|
25 |
+
|
26 |
+
Args:
|
27 |
+
parent: Optional parent container
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
The created tab component
|
31 |
+
"""
|
32 |
+
raise NotImplementedError("Subclasses must implement create()")
|
33 |
+
|
34 |
+
def connect_events(self) -> None:
|
35 |
+
"""Connect event handlers to UI components"""
|
36 |
+
raise NotImplementedError("Subclasses must implement connect_events()")
|
37 |
+
|
38 |
+
def refresh(self) -> Dict[str, Any]:
|
39 |
+
"""Refresh UI components with current data
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
Dictionary with updated values for components
|
43 |
+
"""
|
44 |
+
return {}
|
vms/tabs/caption_tab.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Caption tab for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from .base_tab import BaseTab
|
11 |
+
from ..config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
class CaptionTab(BaseTab):
|
16 |
+
"""Caption tab for managing asset captions"""
|
17 |
+
|
18 |
+
def __init__(self, app_state):
|
19 |
+
super().__init__(app_state)
|
20 |
+
self.id = "caption_tab"
|
21 |
+
self.title = "3οΈβ£ Caption"
|
22 |
+
|
23 |
+
def create(self, parent=None) -> gr.TabItem:
|
24 |
+
"""Create the Caption tab UI components"""
|
25 |
+
with gr.TabItem(self.title, id=self.id) as tab:
|
26 |
+
with gr.Row():
|
27 |
+
self.components["caption_title"] = gr.Markdown("## Captioning of 0 files (0 bytes)")
|
28 |
+
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
with gr.Row():
|
32 |
+
self.components["custom_prompt_prefix"] = gr.Textbox(
|
33 |
+
scale=3,
|
34 |
+
label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
|
35 |
+
placeholder="In the style of TOK, ",
|
36 |
+
lines=2,
|
37 |
+
value=DEFAULT_PROMPT_PREFIX
|
38 |
+
)
|
39 |
+
self.components["captioning_bot_instructions"] = gr.Textbox(
|
40 |
+
scale=6,
|
41 |
+
label="System instructions for the automatic captioning model",
|
42 |
+
placeholder="Please generate a full description of...",
|
43 |
+
lines=5,
|
44 |
+
value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
|
45 |
+
)
|
46 |
+
with gr.Row():
|
47 |
+
self.components["run_autocaption_btn"] = gr.Button(
|
48 |
+
"Automatically fill missing captions",
|
49 |
+
variant="primary"
|
50 |
+
)
|
51 |
+
self.components["copy_files_to_training_dir_btn"] = gr.Button(
|
52 |
+
"Copy assets to training directory",
|
53 |
+
variant="primary"
|
54 |
+
)
|
55 |
+
self.components["stop_autocaption_btn"] = gr.Button(
|
56 |
+
"Stop Captioning",
|
57 |
+
variant="stop",
|
58 |
+
interactive=False
|
59 |
+
)
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
self.components["training_dataset"] = gr.Dataframe(
|
64 |
+
headers=["name", "status"],
|
65 |
+
interactive=False,
|
66 |
+
wrap=True,
|
67 |
+
value=self.app.list_training_files_to_caption(),
|
68 |
+
row_count=10
|
69 |
+
)
|
70 |
+
|
71 |
+
with gr.Column():
|
72 |
+
self.components["preview_video"] = gr.Video(
|
73 |
+
label="Video Preview",
|
74 |
+
interactive=False,
|
75 |
+
visible=False
|
76 |
+
)
|
77 |
+
self.components["preview_image"] = gr.Image(
|
78 |
+
label="Image Preview",
|
79 |
+
interactive=False,
|
80 |
+
visible=False
|
81 |
+
)
|
82 |
+
self.components["preview_caption"] = gr.Textbox(
|
83 |
+
label="Caption",
|
84 |
+
lines=6,
|
85 |
+
interactive=True
|
86 |
+
)
|
87 |
+
self.components["save_caption_btn"] = gr.Button("Save Caption")
|
88 |
+
self.components["preview_status"] = gr.Textbox(
|
89 |
+
label="Status",
|
90 |
+
interactive=False,
|
91 |
+
visible=True
|
92 |
+
)
|
93 |
+
self.components["original_file_path"] = gr.State(value=None)
|
94 |
+
|
95 |
+
return tab
|
96 |
+
|
97 |
+
def connect_events(self) -> None:
|
98 |
+
"""Connect event handlers to UI components"""
|
99 |
+
# Run auto-captioning button
|
100 |
+
self.components["run_autocaption_btn"].click(
|
101 |
+
fn=self.app.show_refreshing_status,
|
102 |
+
outputs=[self.components["training_dataset"]]
|
103 |
+
).then(
|
104 |
+
fn=lambda: self.app.update_captioning_buttons_start(),
|
105 |
+
outputs=[
|
106 |
+
self.components["run_autocaption_btn"],
|
107 |
+
self.components["stop_autocaption_btn"],
|
108 |
+
self.components["copy_files_to_training_dir_btn"]
|
109 |
+
]
|
110 |
+
).then(
|
111 |
+
fn=self.app.start_caption_generation,
|
112 |
+
inputs=[
|
113 |
+
self.components["captioning_bot_instructions"],
|
114 |
+
self.components["custom_prompt_prefix"]
|
115 |
+
],
|
116 |
+
outputs=[self.components["training_dataset"]],
|
117 |
+
).then(
|
118 |
+
fn=lambda: self.app.update_captioning_buttons_end(),
|
119 |
+
outputs=[
|
120 |
+
self.components["run_autocaption_btn"],
|
121 |
+
self.components["stop_autocaption_btn"],
|
122 |
+
self.components["copy_files_to_training_dir_btn"]
|
123 |
+
]
|
124 |
+
)
|
125 |
+
|
126 |
+
# Copy files to training dir button
|
127 |
+
self.components["copy_files_to_training_dir_btn"].click(
|
128 |
+
fn=self.app.copy_files_to_training_dir,
|
129 |
+
inputs=[self.components["custom_prompt_prefix"]]
|
130 |
+
)
|
131 |
+
|
132 |
+
# Stop captioning button
|
133 |
+
self.components["stop_autocaption_btn"].click(
|
134 |
+
fn=self.app.stop_captioning,
|
135 |
+
outputs=[
|
136 |
+
self.components["training_dataset"],
|
137 |
+
self.components["run_autocaption_btn"],
|
138 |
+
self.components["stop_autocaption_btn"],
|
139 |
+
self.components["copy_files_to_training_dir_btn"]
|
140 |
+
]
|
141 |
+
)
|
142 |
+
|
143 |
+
# Dataset selection for preview
|
144 |
+
self.components["training_dataset"].select(
|
145 |
+
fn=self.app.handle_training_dataset_select,
|
146 |
+
outputs=[
|
147 |
+
self.components["preview_image"],
|
148 |
+
self.components["preview_video"],
|
149 |
+
self.components["preview_caption"],
|
150 |
+
self.components["original_file_path"],
|
151 |
+
self.components["preview_status"]
|
152 |
+
]
|
153 |
+
)
|
154 |
+
|
155 |
+
# Save caption button
|
156 |
+
self.components["save_caption_btn"].click(
|
157 |
+
fn=self.app.save_caption_changes,
|
158 |
+
inputs=[
|
159 |
+
self.components["preview_caption"],
|
160 |
+
self.components["preview_image"],
|
161 |
+
self.components["preview_video"],
|
162 |
+
self.components["original_file_path"],
|
163 |
+
self.components["custom_prompt_prefix"]
|
164 |
+
],
|
165 |
+
outputs=[self.components["preview_status"]]
|
166 |
+
).success(
|
167 |
+
fn=self.app.list_training_files_to_caption,
|
168 |
+
outputs=[self.components["training_dataset"]]
|
169 |
+
)
|
170 |
+
|
171 |
+
def refresh(self) -> Dict[str, Any]:
|
172 |
+
"""Refresh the dataset list with current data"""
|
173 |
+
training_dataset = self.app.list_training_files_to_caption()
|
174 |
+
return {
|
175 |
+
"training_dataset": training_dataset
|
176 |
+
}
|
vms/tabs/import_tab.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Import tab for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
import asyncio
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Dict, Any, List, Optional
|
10 |
+
|
11 |
+
from .base_tab import BaseTab
|
12 |
+
from ..config import (
|
13 |
+
VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
|
14 |
+
)
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
class ImportTab(BaseTab):
|
19 |
+
"""Import tab for uploading videos and images"""
|
20 |
+
|
21 |
+
def __init__(self, app_state):
|
22 |
+
super().__init__(app_state)
|
23 |
+
self.id = "import_tab"
|
24 |
+
self.title = "1οΈβ£ Import"
|
25 |
+
|
26 |
+
def create(self, parent=None) -> gr.TabItem:
|
27 |
+
"""Create the Import tab UI components"""
|
28 |
+
with gr.TabItem(self.title, id=self.id) as tab:
|
29 |
+
with gr.Row():
|
30 |
+
gr.Markdown("## Automatic splitting and captioning")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
self.components["enable_automatic_video_split"] = gr.Checkbox(
|
34 |
+
label="Automatically split videos into smaller clips",
|
35 |
+
info="Note: a clip is a single camera shot, usually a few seconds",
|
36 |
+
value=True,
|
37 |
+
visible=True
|
38 |
+
)
|
39 |
+
self.components["enable_automatic_content_captioning"] = gr.Checkbox(
|
40 |
+
label="Automatically caption photos and videos",
|
41 |
+
info="Note: this uses LlaVA and takes some extra time to load and process",
|
42 |
+
value=False,
|
43 |
+
visible=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column(scale=3):
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
gr.Markdown("## Import video files")
|
51 |
+
gr.Markdown("You can upload either:")
|
52 |
+
gr.Markdown("- A single MP4 video file")
|
53 |
+
gr.Markdown("- A ZIP archive containing multiple videos and optional caption files")
|
54 |
+
gr.Markdown("For ZIP files: Create a folder containing videos (name is not important) and optional caption files with the same name (eg. `some_video.txt` for `some_video.mp4`)")
|
55 |
+
|
56 |
+
with gr.Row():
|
57 |
+
self.components["files"] = gr.Files(
|
58 |
+
label="Upload Images, Videos or ZIP",
|
59 |
+
file_types=[".jpg", ".jpeg", ".png", ".webp", ".webp", ".avif", ".heic", ".mp4", ".zip"],
|
60 |
+
type="filepath"
|
61 |
+
)
|
62 |
+
|
63 |
+
with gr.Column(scale=3):
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column():
|
66 |
+
gr.Markdown("## Import a YouTube video")
|
67 |
+
gr.Markdown("You can also use a YouTube video as reference, by pasting its URL here:")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
self.components["youtube_url"] = gr.Textbox(
|
71 |
+
label="Import YouTube Video",
|
72 |
+
placeholder="https://www.youtube.com/watch?v=..."
|
73 |
+
)
|
74 |
+
with gr.Row():
|
75 |
+
self.components["youtube_download_btn"] = gr.Button("Download YouTube Video", variant="secondary")
|
76 |
+
with gr.Row():
|
77 |
+
self.components["import_status"] = gr.Textbox(label="Status", interactive=False)
|
78 |
+
|
79 |
+
return tab
|
80 |
+
|
81 |
+
def connect_events(self) -> None:
|
82 |
+
"""Connect event handlers to UI components"""
|
83 |
+
# File upload event
|
84 |
+
self.components["files"].upload(
|
85 |
+
fn=lambda x: self.app.importer.process_uploaded_files(x),
|
86 |
+
inputs=[self.components["files"]],
|
87 |
+
outputs=[self.components["import_status"]]
|
88 |
+
).success(
|
89 |
+
fn=self.app.update_titles_after_import,
|
90 |
+
inputs=[
|
91 |
+
self.components["enable_automatic_video_split"],
|
92 |
+
self.components["enable_automatic_content_captioning"],
|
93 |
+
self.app.tabs["caption_tab"].components["custom_prompt_prefix"]
|
94 |
+
],
|
95 |
+
outputs=[
|
96 |
+
self.app.tabs_component, # Main tabs component
|
97 |
+
self.app.tabs["split_tab"].components["video_list"],
|
98 |
+
self.app.tabs["split_tab"].components["detect_status"],
|
99 |
+
self.app.tabs["split_tab"].components["split_title"],
|
100 |
+
self.app.tabs["caption_tab"].components["caption_title"],
|
101 |
+
self.app.tabs["train_tab"].components["train_title"]
|
102 |
+
]
|
103 |
+
)
|
104 |
+
|
105 |
+
# YouTube download event
|
106 |
+
self.components["youtube_download_btn"].click(
|
107 |
+
fn=self.app.importer.download_youtube_video,
|
108 |
+
inputs=[self.components["youtube_url"]],
|
109 |
+
outputs=[self.components["import_status"]]
|
110 |
+
).success(
|
111 |
+
fn=self.app.on_import_success,
|
112 |
+
inputs=[
|
113 |
+
self.components["enable_automatic_video_split"],
|
114 |
+
self.components["enable_automatic_content_captioning"],
|
115 |
+
self.app.tabs["caption_tab"].components["custom_prompt_prefix"]
|
116 |
+
],
|
117 |
+
outputs=[
|
118 |
+
self.app.tabs_component,
|
119 |
+
self.app.tabs["split_tab"].components["video_list"],
|
120 |
+
self.app.tabs["split_tab"].components["detect_status"]
|
121 |
+
]
|
122 |
+
)
|
vms/tabs/manage_tab.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Manage tab for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
|
9 |
+
from .base_tab import BaseTab
|
10 |
+
from ..config import HF_API_TOKEN
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
class ManageTab(BaseTab):
|
15 |
+
"""Manage tab for storage management and model publication"""
|
16 |
+
|
17 |
+
def __init__(self, app_state):
|
18 |
+
super().__init__(app_state)
|
19 |
+
self.id = "manage_tab"
|
20 |
+
self.title = "5οΈβ£ Manage"
|
21 |
+
|
22 |
+
def create(self, parent=None) -> gr.TabItem:
|
23 |
+
"""Create the Manage tab UI components"""
|
24 |
+
with gr.TabItem(self.title, id=self.id) as tab:
|
25 |
+
with gr.Column():
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
gr.Markdown("## Publishing")
|
29 |
+
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
|
30 |
+
|
31 |
+
with gr.Row():
|
32 |
+
with gr.Column():
|
33 |
+
self.components["repo_id"] = gr.Textbox(
|
34 |
+
label="HuggingFace Model Repository",
|
35 |
+
placeholder="username/model-name",
|
36 |
+
info="The repository will be created if it doesn't exist"
|
37 |
+
)
|
38 |
+
self.components["make_public"] = gr.Checkbox(
|
39 |
+
label="Check this to make your model public (ie. visible and downloadable by anyone)",
|
40 |
+
info="You model is private by default"
|
41 |
+
)
|
42 |
+
self.components["push_model_btn"] = gr.Button(
|
43 |
+
"Push my model"
|
44 |
+
)
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
gr.Markdown("## Storage management")
|
51 |
+
with gr.Row():
|
52 |
+
self.components["download_dataset_btn"] = gr.DownloadButton(
|
53 |
+
"Download dataset",
|
54 |
+
variant="secondary",
|
55 |
+
size="lg"
|
56 |
+
)
|
57 |
+
self.components["download_model_btn"] = gr.DownloadButton(
|
58 |
+
"Download model",
|
59 |
+
variant="secondary",
|
60 |
+
size="lg"
|
61 |
+
)
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
self.components["global_stop_btn"] = gr.Button(
|
65 |
+
"Stop everything and delete my data",
|
66 |
+
variant="stop"
|
67 |
+
)
|
68 |
+
self.components["global_status"] = gr.Textbox(
|
69 |
+
label="Global Status",
|
70 |
+
interactive=False,
|
71 |
+
visible=False
|
72 |
+
)
|
73 |
+
|
74 |
+
return tab
|
75 |
+
|
76 |
+
def connect_events(self) -> None:
|
77 |
+
"""Connect event handlers to UI components"""
|
78 |
+
# Repository ID validation
|
79 |
+
self.components["repo_id"].change(
|
80 |
+
fn=self.app.validate_repo,
|
81 |
+
inputs=[self.components["repo_id"]],
|
82 |
+
outputs=[self.components["repo_id"]]
|
83 |
+
)
|
84 |
+
|
85 |
+
# Download buttons
|
86 |
+
self.components["download_dataset_btn"].click(
|
87 |
+
fn=self.app.trainer.create_training_dataset_zip,
|
88 |
+
outputs=[self.components["download_dataset_btn"]]
|
89 |
+
)
|
90 |
+
|
91 |
+
self.components["download_model_btn"].click(
|
92 |
+
fn=self.app.trainer.get_model_output_safetensors,
|
93 |
+
outputs=[self.components["download_model_btn"]]
|
94 |
+
)
|
95 |
+
|
96 |
+
# Global stop button
|
97 |
+
self.components["global_stop_btn"].click(
|
98 |
+
fn=self.app.handle_global_stop,
|
99 |
+
outputs=[
|
100 |
+
self.components["global_status"],
|
101 |
+
self.app.tabs["split_tab"].components["video_list"],
|
102 |
+
self.app.tabs["caption_tab"].components["training_dataset"],
|
103 |
+
self.app.tabs["train_tab"].components["status_box"],
|
104 |
+
self.app.tabs["train_tab"].components["log_box"],
|
105 |
+
self.app.tabs["split_tab"].components["detect_status"],
|
106 |
+
self.app.tabs["import_tab"].components["import_status"],
|
107 |
+
self.app.tabs["caption_tab"].components["preview_status"]
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
# Push model button
|
112 |
+
# To implement model pushing functionality
|
113 |
+
self.components["push_model_btn"].click(
|
114 |
+
fn=lambda repo_id: self.app.upload_to_hub(repo_id),
|
115 |
+
inputs=[self.components["repo_id"]],
|
116 |
+
outputs=[self.components["global_status"]]
|
117 |
+
)
|
vms/tabs/split_tab.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Split tab for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
|
9 |
+
from .base_tab import BaseTab
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class SplitTab(BaseTab):
|
14 |
+
"""Split tab for scene detection and video splitting"""
|
15 |
+
|
16 |
+
def __init__(self, app_state):
|
17 |
+
super().__init__(app_state)
|
18 |
+
self.id = "split_tab"
|
19 |
+
self.title = "2οΈβ£ Split"
|
20 |
+
|
21 |
+
def create(self, parent=None) -> gr.TabItem:
|
22 |
+
"""Create the Split tab UI components"""
|
23 |
+
with gr.TabItem(self.title, id=self.id) as tab:
|
24 |
+
with gr.Row():
|
25 |
+
self.components["split_title"] = gr.Markdown("## Splitting of 0 videos (0 bytes)")
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
with gr.Column():
|
29 |
+
self.components["detect_btn"] = gr.Button("Split videos into single-camera shots", variant="primary")
|
30 |
+
self.components["detect_status"] = gr.Textbox(label="Status", interactive=False)
|
31 |
+
|
32 |
+
with gr.Column():
|
33 |
+
self.components["video_list"] = gr.Dataframe(
|
34 |
+
headers=["name", "status"],
|
35 |
+
label="Videos to split",
|
36 |
+
interactive=False,
|
37 |
+
wrap=True
|
38 |
+
)
|
39 |
+
|
40 |
+
return tab
|
41 |
+
|
42 |
+
def connect_events(self) -> None:
|
43 |
+
"""Connect event handlers to UI components"""
|
44 |
+
# Scene detection button event
|
45 |
+
self.components["detect_btn"].click(
|
46 |
+
fn=self.app.start_scene_detection,
|
47 |
+
inputs=[self.app.tabs["import_tab"].components["enable_automatic_video_split"]],
|
48 |
+
outputs=[self.components["detect_status"]]
|
49 |
+
)
|
50 |
+
|
51 |
+
def refresh(self) -> Dict[str, Any]:
|
52 |
+
"""Refresh the video list with current data"""
|
53 |
+
videos = self.app.splitter.list_unprocessed_videos()
|
54 |
+
return {
|
55 |
+
"video_list": videos
|
56 |
+
}
|
vms/tabs/train_tab.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Train tab for Video Model Studio UI
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import logging
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
|
9 |
+
from .base_tab import BaseTab
|
10 |
+
from ..config import TRAINING_PRESETS, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE
|
11 |
+
from ..utils import TrainingLogParser
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
class TrainTab(BaseTab):
|
16 |
+
"""Train tab for model training"""
|
17 |
+
|
18 |
+
def __init__(self, app_state):
|
19 |
+
super().__init__(app_state)
|
20 |
+
self.id = "train_tab"
|
21 |
+
self.title = "4οΈβ£ Train"
|
22 |
+
|
23 |
+
def handle_training_start(self, preset, model_type, *args):
|
24 |
+
"""Handle training start with proper log parser reset"""
|
25 |
+
# Safely reset log parser if it exists
|
26 |
+
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
|
27 |
+
self.app.log_parser.reset()
|
28 |
+
else:
|
29 |
+
logger.warning("Log parser not initialized, creating a new one")
|
30 |
+
|
31 |
+
self.app.log_parser = TrainingLogParser()
|
32 |
+
|
33 |
+
# Start training
|
34 |
+
return self.app.trainer.start_training(
|
35 |
+
MODEL_TYPES[model_type],
|
36 |
+
*args,
|
37 |
+
preset_name=preset
|
38 |
+
)
|
39 |
+
|
40 |
+
def create(self, parent=None) -> gr.TabItem:
|
41 |
+
"""Create the Train tab UI components"""
|
42 |
+
with gr.TabItem(self.title, id=self.id) as tab:
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column():
|
45 |
+
with gr.Row():
|
46 |
+
self.components["train_title"] = gr.Markdown("## 0 files available for training (0 bytes)")
|
47 |
+
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
self.components["training_preset"] = gr.Dropdown(
|
51 |
+
choices=list(TRAINING_PRESETS.keys()),
|
52 |
+
label="Training Preset",
|
53 |
+
value=list(TRAINING_PRESETS.keys())[0]
|
54 |
+
)
|
55 |
+
self.components["preset_info"] = gr.Markdown()
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
self.components["model_type"] = gr.Dropdown(
|
60 |
+
choices=list(MODEL_TYPES.keys()),
|
61 |
+
label="Model Type",
|
62 |
+
value=list(MODEL_TYPES.keys())[0]
|
63 |
+
)
|
64 |
+
self.components["model_info"] = gr.Markdown(
|
65 |
+
value=self.app.get_model_info(list(MODEL_TYPES.keys())[0])
|
66 |
+
)
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
self.components["lora_rank"] = gr.Dropdown(
|
70 |
+
label="LoRA Rank",
|
71 |
+
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
72 |
+
value="128",
|
73 |
+
type="value"
|
74 |
+
)
|
75 |
+
self.components["lora_alpha"] = gr.Dropdown(
|
76 |
+
label="LoRA Alpha",
|
77 |
+
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
78 |
+
value="128",
|
79 |
+
type="value"
|
80 |
+
)
|
81 |
+
with gr.Row():
|
82 |
+
self.components["num_epochs"] = gr.Number(
|
83 |
+
label="Number of Epochs",
|
84 |
+
value=70,
|
85 |
+
minimum=1,
|
86 |
+
precision=0
|
87 |
+
)
|
88 |
+
self.components["batch_size"] = gr.Number(
|
89 |
+
label="Batch Size",
|
90 |
+
value=1,
|
91 |
+
minimum=1,
|
92 |
+
precision=0
|
93 |
+
)
|
94 |
+
with gr.Row():
|
95 |
+
self.components["learning_rate"] = gr.Number(
|
96 |
+
label="Learning Rate",
|
97 |
+
value=2e-5,
|
98 |
+
minimum=1e-7
|
99 |
+
)
|
100 |
+
self.components["save_iterations"] = gr.Number(
|
101 |
+
label="Save checkpoint every N iterations",
|
102 |
+
value=500,
|
103 |
+
minimum=50,
|
104 |
+
precision=0,
|
105 |
+
info="Model will be saved periodically after these many steps"
|
106 |
+
)
|
107 |
+
|
108 |
+
with gr.Column():
|
109 |
+
with gr.Row():
|
110 |
+
self.components["start_btn"] = gr.Button(
|
111 |
+
"Start Training",
|
112 |
+
variant="primary",
|
113 |
+
interactive=not ASK_USER_TO_DUPLICATE_SPACE
|
114 |
+
)
|
115 |
+
self.components["pause_resume_btn"] = gr.Button(
|
116 |
+
"Resume Training",
|
117 |
+
variant="secondary",
|
118 |
+
interactive=False
|
119 |
+
)
|
120 |
+
self.components["stop_btn"] = gr.Button(
|
121 |
+
"Stop Training",
|
122 |
+
variant="stop",
|
123 |
+
interactive=False
|
124 |
+
)
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column():
|
128 |
+
self.components["status_box"] = gr.Textbox(
|
129 |
+
label="Training Status",
|
130 |
+
interactive=False,
|
131 |
+
lines=4
|
132 |
+
)
|
133 |
+
with gr.Accordion("See training logs"):
|
134 |
+
self.components["log_box"] = gr.TextArea(
|
135 |
+
label="Finetrainers output (see HF Space logs for more details)",
|
136 |
+
interactive=False,
|
137 |
+
lines=40,
|
138 |
+
max_lines=200,
|
139 |
+
autoscroll=True
|
140 |
+
)
|
141 |
+
|
142 |
+
return tab
|
143 |
+
|
144 |
+
def connect_events(self) -> None:
|
145 |
+
"""Connect event handlers to UI components"""
|
146 |
+
# Model type change event
|
147 |
+
def update_model_info(model):
|
148 |
+
params = self.app.get_default_params(MODEL_TYPES[model])
|
149 |
+
info = self.app.get_model_info(MODEL_TYPES[model])
|
150 |
+
return {
|
151 |
+
self.components["model_info"]: info,
|
152 |
+
self.components["num_epochs"]: params["num_epochs"],
|
153 |
+
self.components["batch_size"]: params["batch_size"],
|
154 |
+
self.components["learning_rate"]: params["learning_rate"],
|
155 |
+
self.components["save_iterations"]: params["save_iterations"]
|
156 |
+
}
|
157 |
+
|
158 |
+
self.components["model_type"].change(
|
159 |
+
fn=lambda v: self.app.update_ui_state(model_type=v),
|
160 |
+
inputs=[self.components["model_type"]],
|
161 |
+
outputs=[]
|
162 |
+
).then(
|
163 |
+
fn=update_model_info,
|
164 |
+
inputs=[self.components["model_type"]],
|
165 |
+
outputs=[
|
166 |
+
self.components["model_info"],
|
167 |
+
self.components["num_epochs"],
|
168 |
+
self.components["batch_size"],
|
169 |
+
self.components["learning_rate"],
|
170 |
+
self.components["save_iterations"]
|
171 |
+
]
|
172 |
+
)
|
173 |
+
|
174 |
+
# Training parameters change events
|
175 |
+
self.components["lora_rank"].change(
|
176 |
+
fn=lambda v: self.app.update_ui_state(lora_rank=v),
|
177 |
+
inputs=[self.components["lora_rank"]],
|
178 |
+
outputs=[]
|
179 |
+
)
|
180 |
+
|
181 |
+
self.components["lora_alpha"].change(
|
182 |
+
fn=lambda v: self.app.update_ui_state(lora_alpha=v),
|
183 |
+
inputs=[self.components["lora_alpha"]],
|
184 |
+
outputs=[]
|
185 |
+
)
|
186 |
+
|
187 |
+
self.components["num_epochs"].change(
|
188 |
+
fn=lambda v: self.app.update_ui_state(num_epochs=v),
|
189 |
+
inputs=[self.components["num_epochs"]],
|
190 |
+
outputs=[]
|
191 |
+
)
|
192 |
+
|
193 |
+
self.components["batch_size"].change(
|
194 |
+
fn=lambda v: self.app.update_ui_state(batch_size=v),
|
195 |
+
inputs=[self.components["batch_size"]],
|
196 |
+
outputs=[]
|
197 |
+
)
|
198 |
+
|
199 |
+
self.components["learning_rate"].change(
|
200 |
+
fn=lambda v: self.app.update_ui_state(learning_rate=v),
|
201 |
+
inputs=[self.components["learning_rate"]],
|
202 |
+
outputs=[]
|
203 |
+
)
|
204 |
+
|
205 |
+
self.components["save_iterations"].change(
|
206 |
+
fn=lambda v: self.app.update_ui_state(save_iterations=v),
|
207 |
+
inputs=[self.components["save_iterations"]],
|
208 |
+
outputs=[]
|
209 |
+
)
|
210 |
+
|
211 |
+
# Training preset change event
|
212 |
+
self.components["training_preset"].change(
|
213 |
+
fn=lambda v: self.app.update_ui_state(training_preset=v),
|
214 |
+
inputs=[self.components["training_preset"]],
|
215 |
+
outputs=[]
|
216 |
+
).then(
|
217 |
+
fn=self.app.update_training_params,
|
218 |
+
inputs=[self.components["training_preset"]],
|
219 |
+
outputs=[
|
220 |
+
self.components["model_type"],
|
221 |
+
self.components["lora_rank"],
|
222 |
+
self.components["lora_alpha"],
|
223 |
+
self.components["num_epochs"],
|
224 |
+
self.components["batch_size"],
|
225 |
+
self.components["learning_rate"],
|
226 |
+
self.components["save_iterations"],
|
227 |
+
self.components["preset_info"]
|
228 |
+
]
|
229 |
+
)
|
230 |
+
|
231 |
+
# Training control events
|
232 |
+
self.components["start_btn"].click(
|
233 |
+
fn=self.handle_training_start, # Use safer method instead of lambda
|
234 |
+
inputs=[
|
235 |
+
self.components["training_preset"],
|
236 |
+
self.components["model_type"],
|
237 |
+
self.components["lora_rank"],
|
238 |
+
self.components["lora_alpha"],
|
239 |
+
self.components["num_epochs"],
|
240 |
+
self.components["batch_size"],
|
241 |
+
self.components["learning_rate"],
|
242 |
+
self.components["save_iterations"],
|
243 |
+
self.app.tabs["manage_tab"].components["repo_id"]
|
244 |
+
],
|
245 |
+
outputs=[
|
246 |
+
self.components["status_box"],
|
247 |
+
self.components["log_box"]
|
248 |
+
]
|
249 |
+
).success(
|
250 |
+
fn=self.app.get_latest_status_message_logs_and_button_labels,
|
251 |
+
outputs=[
|
252 |
+
self.components["status_box"],
|
253 |
+
self.components["log_box"],
|
254 |
+
self.components["start_btn"],
|
255 |
+
self.components["stop_btn"],
|
256 |
+
self.components["pause_resume_btn"]
|
257 |
+
]
|
258 |
+
)
|
259 |
+
|
260 |
+
self.components["pause_resume_btn"].click(
|
261 |
+
fn=self.app.handle_pause_resume,
|
262 |
+
outputs=[
|
263 |
+
self.components["status_box"],
|
264 |
+
self.components["log_box"],
|
265 |
+
self.components["start_btn"],
|
266 |
+
self.components["stop_btn"],
|
267 |
+
self.components["pause_resume_btn"]
|
268 |
+
]
|
269 |
+
)
|
270 |
+
|
271 |
+
self.components["stop_btn"].click(
|
272 |
+
fn=self.app.handle_stop,
|
273 |
+
outputs=[
|
274 |
+
self.components["status_box"],
|
275 |
+
self.components["log_box"],
|
276 |
+
self.components["start_btn"],
|
277 |
+
self.components["stop_btn"],
|
278 |
+
self.components["pause_resume_btn"]
|
279 |
+
]
|
280 |
+
)
|
vms/ui/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .video_trainer_ui import VideoTrainerUI
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'VideoTrainerUI',
|
5 |
+
]
|
vms/ui/video_trainer_ui.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
#import sys
|
5 |
+
#print("python = ", sys.version)
|
6 |
+
|
7 |
+
# can be "Linux", "Darwin"
|
8 |
+
if platform.system() == "Linux":
|
9 |
+
# for some reason it says "pip not found"
|
10 |
+
# and also "pip3 not found"
|
11 |
+
# subprocess.run(
|
12 |
+
# "pip install flash-attn --no-build-isolation",
|
13 |
+
#
|
14 |
+
# # hmm... this should be False, since we are in a CUDA environment, no?
|
15 |
+
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
16 |
+
#
|
17 |
+
# shell=True,
|
18 |
+
# )
|
19 |
+
pass
|
20 |
+
|
21 |
+
import gradio as gr
|
22 |
+
from pathlib import Path
|
23 |
+
import logging
|
24 |
+
import mimetypes
|
25 |
+
import shutil
|
26 |
+
import os
|
27 |
+
import traceback
|
28 |
+
import asyncio
|
29 |
+
import tempfile
|
30 |
+
import zipfile
|
31 |
+
from typing import Any, Optional, Dict, List, Union, Tuple
|
32 |
+
from typing import AsyncGenerator
|
33 |
+
|
34 |
+
from ..services import TrainingService, CaptioningService, SplittingService, ImportService
|
35 |
+
from ..config import (
|
36 |
+
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
37 |
+
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
38 |
+
DEFAULT_PROMPT_PREFIX, HF_API_TOKEN, ASK_USER_TO_DUPLICATE_SPACE, MODEL_TYPES, SMALL_TRAINING_BUCKETS
|
39 |
+
)
|
40 |
+
from ..utils import make_archive, count_media_files, format_media_title, is_image_file, is_video_file, validate_model_repo, format_time, copy_files_to_training_dir, prepare_finetrainers_dataset, TrainingLogParser
|
41 |
+
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab
|
42 |
+
|
43 |
+
logger = logging.getLogger(__name__)
|
44 |
+
logger.setLevel(logging.INFO)
|
45 |
+
|
46 |
+
httpx_logger = logging.getLogger('httpx')
|
47 |
+
httpx_logger.setLevel(logging.WARN)
|
48 |
+
|
49 |
+
class VideoTrainerUI:
|
50 |
+
def __init__(self):
|
51 |
+
"""Initialize services and tabs"""
|
52 |
+
# Initialize core services
|
53 |
+
self.trainer = TrainingService()
|
54 |
+
self.splitter = SplittingService()
|
55 |
+
self.importer = ImportService()
|
56 |
+
self.captioner = CaptioningService()
|
57 |
+
self._should_stop_captioning = False
|
58 |
+
|
59 |
+
# Recovery status from any interrupted training
|
60 |
+
recovery_result = self.trainer.recover_interrupted_training()
|
61 |
+
self.recovery_status = recovery_result.get("status", "unknown")
|
62 |
+
self.ui_updates = recovery_result.get("ui_updates", {})
|
63 |
+
|
64 |
+
self.log_parser = TrainingLogParser()
|
65 |
+
|
66 |
+
# Shared state for tabs
|
67 |
+
self.state = {
|
68 |
+
"recovery_result": recovery_result
|
69 |
+
}
|
70 |
+
|
71 |
+
# Initialize tabs dictionary (will be populated in create_ui)
|
72 |
+
self.tabs = {}
|
73 |
+
self.tabs_component = None
|
74 |
+
|
75 |
+
def create_ui(self):
|
76 |
+
"""Create the main Gradio UI"""
|
77 |
+
with gr.Blocks(title="π₯ Video Model Studio") as app:
|
78 |
+
gr.Markdown("# π₯ Video Model Studio")
|
79 |
+
|
80 |
+
# Create main tabs component
|
81 |
+
with gr.Tabs() as self.tabs_component:
|
82 |
+
# Initialize tab objects
|
83 |
+
self.tabs["import_tab"] = ImportTab(self)
|
84 |
+
self.tabs["split_tab"] = SplitTab(self)
|
85 |
+
self.tabs["caption_tab"] = CaptionTab(self)
|
86 |
+
self.tabs["train_tab"] = TrainTab(self)
|
87 |
+
self.tabs["manage_tab"] = ManageTab(self)
|
88 |
+
|
89 |
+
# Create tab UI components
|
90 |
+
for tab_id, tab_obj in self.tabs.items():
|
91 |
+
tab_obj.create(self.tabs_component)
|
92 |
+
|
93 |
+
# Connect event handlers
|
94 |
+
for tab_id, tab_obj in self.tabs.items():
|
95 |
+
tab_obj.connect_events()
|
96 |
+
|
97 |
+
# Add app-level timers for auto-refresh functionality
|
98 |
+
self._add_timers()
|
99 |
+
|
100 |
+
# Initialize app state on load
|
101 |
+
app.load(
|
102 |
+
fn=self.initialize_app_state,
|
103 |
+
outputs=[
|
104 |
+
self.tabs["split_tab"].components["video_list"],
|
105 |
+
self.tabs["caption_tab"].components["training_dataset"],
|
106 |
+
self.tabs["train_tab"].components["start_btn"],
|
107 |
+
self.tabs["train_tab"].components["stop_btn"],
|
108 |
+
self.tabs["train_tab"].components["pause_resume_btn"],
|
109 |
+
self.tabs["train_tab"].components["training_preset"],
|
110 |
+
self.tabs["train_tab"].components["model_type"],
|
111 |
+
self.tabs["train_tab"].components["lora_rank"],
|
112 |
+
self.tabs["train_tab"].components["lora_alpha"],
|
113 |
+
self.tabs["train_tab"].components["num_epochs"],
|
114 |
+
self.tabs["train_tab"].components["batch_size"],
|
115 |
+
self.tabs["train_tab"].components["learning_rate"],
|
116 |
+
self.tabs["train_tab"].components["save_iterations"]
|
117 |
+
]
|
118 |
+
)
|
119 |
+
|
120 |
+
return app
|
121 |
+
|
122 |
+
def _add_timers(self):
|
123 |
+
"""Add auto-refresh timers to the UI"""
|
124 |
+
# Status update timer (every 1 second)
|
125 |
+
status_timer = gr.Timer(value=1)
|
126 |
+
status_timer.tick(
|
127 |
+
fn=self.get_latest_status_message_logs_and_button_labels,
|
128 |
+
outputs=[
|
129 |
+
self.tabs["train_tab"].components["status_box"],
|
130 |
+
self.tabs["train_tab"].components["log_box"],
|
131 |
+
self.tabs["train_tab"].components["start_btn"],
|
132 |
+
self.tabs["train_tab"].components["stop_btn"],
|
133 |
+
self.tabs["train_tab"].components["pause_resume_btn"]
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
# Dataset refresh timer (every 5 seconds)
|
138 |
+
dataset_timer = gr.Timer(value=5)
|
139 |
+
dataset_timer.tick(
|
140 |
+
fn=self.refresh_dataset,
|
141 |
+
outputs=[
|
142 |
+
self.tabs["split_tab"].components["video_list"],
|
143 |
+
self.tabs["caption_tab"].components["training_dataset"]
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
# Titles update timer (every 6 seconds)
|
148 |
+
titles_timer = gr.Timer(value=6)
|
149 |
+
titles_timer.tick(
|
150 |
+
fn=self.update_titles,
|
151 |
+
outputs=[
|
152 |
+
self.tabs["split_tab"].components["split_title"],
|
153 |
+
self.tabs["caption_tab"].components["caption_title"],
|
154 |
+
self.tabs["train_tab"].components["train_title"]
|
155 |
+
]
|
156 |
+
)
|
157 |
+
|
158 |
+
def handle_global_stop(self):
|
159 |
+
"""Handle the global stop button click"""
|
160 |
+
result = self.stop_all_and_clear()
|
161 |
+
|
162 |
+
# Format the details for display
|
163 |
+
status = result["status"]
|
164 |
+
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
165 |
+
full_status = f"{status}\n\nDetails:\n{details}"
|
166 |
+
|
167 |
+
# Get fresh lists after cleanup
|
168 |
+
videos = self.splitter.list_unprocessed_videos()
|
169 |
+
clips = self.list_training_files_to_caption()
|
170 |
+
|
171 |
+
return {
|
172 |
+
self.tabs["manage_tab"].components["global_status"]: gr.update(value=full_status, visible=True),
|
173 |
+
self.tabs["split_tab"].components["video_list"]: videos,
|
174 |
+
self.tabs["caption_tab"].components["training_dataset"]: clips,
|
175 |
+
self.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
|
176 |
+
self.tabs["train_tab"].components["log_box"]: "",
|
177 |
+
self.tabs["split_tab"].components["detect_status"]: "Scene detection stopped",
|
178 |
+
self.tabs["import_tab"].components["import_status"]: "All data cleared",
|
179 |
+
self.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
|
180 |
+
}
|
181 |
+
|
182 |
+
def upload_to_hub(self, repo_id: str) -> str:
|
183 |
+
"""Upload model to HuggingFace Hub"""
|
184 |
+
if not repo_id:
|
185 |
+
return "Error: Repository ID is required"
|
186 |
+
|
187 |
+
# Validate repository name
|
188 |
+
validation = validate_model_repo(repo_id)
|
189 |
+
if validation["error"]:
|
190 |
+
return f"Error: {validation['error']}"
|
191 |
+
|
192 |
+
# Check if we have a model to upload
|
193 |
+
if not self.trainer.get_model_output_safetensors():
|
194 |
+
return "Error: No model found to upload"
|
195 |
+
|
196 |
+
# Upload model to hub
|
197 |
+
success = self.trainer.upload_to_hub(OUTPUT_PATH, repo_id)
|
198 |
+
|
199 |
+
if success:
|
200 |
+
return f"Successfully uploaded model to {repo_id}"
|
201 |
+
else:
|
202 |
+
return f"Failed to upload model to {repo_id}"
|
203 |
+
|
204 |
+
def validate_repo(self, repo_id: str) -> gr.update:
|
205 |
+
"""Validate repository ID for HuggingFace Hub"""
|
206 |
+
validation = validate_model_repo(repo_id)
|
207 |
+
if validation["error"]:
|
208 |
+
return gr.update(value=repo_id, error=validation["error"])
|
209 |
+
return gr.update(value=repo_id, error=None)
|
210 |
+
|
211 |
+
|
212 |
+
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
213 |
+
"""Process the caption generator's results in the background"""
|
214 |
+
try:
|
215 |
+
async for _ in self.captioner.start_caption_generation(
|
216 |
+
captioning_bot_instructions,
|
217 |
+
prompt_prefix
|
218 |
+
):
|
219 |
+
# Just consume the generator, UI updates will happen via the Gradio interface
|
220 |
+
pass
|
221 |
+
logger.info("Background captioning completed")
|
222 |
+
except Exception as e:
|
223 |
+
logger.error(f"Error in background captioning: {str(e)}")
|
224 |
+
|
225 |
+
def initialize_app_state(self):
|
226 |
+
"""Initialize all app state in one function to ensure correct output count"""
|
227 |
+
# Get dataset info
|
228 |
+
video_list, training_dataset = self.refresh_dataset()
|
229 |
+
|
230 |
+
# Get button states
|
231 |
+
button_states = self.get_initial_button_states()
|
232 |
+
start_btn = button_states[0]
|
233 |
+
stop_btn = button_states[1]
|
234 |
+
pause_resume_btn = button_states[2]
|
235 |
+
|
236 |
+
# Get UI form values
|
237 |
+
ui_state = self.load_ui_values()
|
238 |
+
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
|
239 |
+
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
|
240 |
+
lora_rank_val = ui_state.get("lora_rank", "128")
|
241 |
+
lora_alpha_val = ui_state.get("lora_alpha", "128")
|
242 |
+
num_epochs_val = int(ui_state.get("num_epochs", 70))
|
243 |
+
batch_size_val = int(ui_state.get("batch_size", 1))
|
244 |
+
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
|
245 |
+
save_iterations_val = int(ui_state.get("save_iterations", 500))
|
246 |
+
|
247 |
+
# Return all values in the exact order expected by outputs
|
248 |
+
return (
|
249 |
+
video_list,
|
250 |
+
training_dataset,
|
251 |
+
start_btn,
|
252 |
+
stop_btn,
|
253 |
+
pause_resume_btn,
|
254 |
+
training_preset,
|
255 |
+
model_type_val,
|
256 |
+
lora_rank_val,
|
257 |
+
lora_alpha_val,
|
258 |
+
num_epochs_val,
|
259 |
+
batch_size_val,
|
260 |
+
learning_rate_val,
|
261 |
+
save_iterations_val
|
262 |
+
)
|
263 |
+
|
264 |
+
def initialize_ui_from_state(self):
|
265 |
+
"""Initialize UI components from saved state"""
|
266 |
+
ui_state = self.load_ui_values()
|
267 |
+
|
268 |
+
# Return values in order matching the outputs in app.load
|
269 |
+
return (
|
270 |
+
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
|
271 |
+
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
|
272 |
+
ui_state.get("lora_rank", "128"),
|
273 |
+
ui_state.get("lora_alpha", "128"),
|
274 |
+
ui_state.get("num_epochs", 70),
|
275 |
+
ui_state.get("batch_size", 1),
|
276 |
+
ui_state.get("learning_rate", 3e-5),
|
277 |
+
ui_state.get("save_iterations", 500)
|
278 |
+
)
|
279 |
+
|
280 |
+
def update_ui_state(self, **kwargs):
|
281 |
+
"""Update UI state with new values"""
|
282 |
+
current_state = self.trainer.load_ui_state()
|
283 |
+
current_state.update(kwargs)
|
284 |
+
self.trainer.save_ui_state(current_state)
|
285 |
+
# Don't return anything to avoid Gradio warnings
|
286 |
+
return None
|
287 |
+
|
288 |
+
def load_ui_values(self):
|
289 |
+
"""Load UI state values for initializing form fields"""
|
290 |
+
ui_state = self.trainer.load_ui_state()
|
291 |
+
|
292 |
+
# Ensure proper type conversion for numeric values
|
293 |
+
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
|
294 |
+
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
|
295 |
+
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
|
296 |
+
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
|
297 |
+
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
|
298 |
+
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
299 |
+
|
300 |
+
return ui_state
|
301 |
+
|
302 |
+
def update_captioning_buttons_start(self):
|
303 |
+
"""Return individual button values instead of a dictionary"""
|
304 |
+
return (
|
305 |
+
gr.Button(
|
306 |
+
interactive=False,
|
307 |
+
variant="secondary",
|
308 |
+
),
|
309 |
+
gr.Button(
|
310 |
+
interactive=True,
|
311 |
+
variant="stop",
|
312 |
+
),
|
313 |
+
gr.Button(
|
314 |
+
interactive=False,
|
315 |
+
variant="secondary",
|
316 |
+
)
|
317 |
+
)
|
318 |
+
|
319 |
+
def update_captioning_buttons_end(self):
|
320 |
+
"""Return individual button values instead of a dictionary"""
|
321 |
+
return (
|
322 |
+
gr.Button(
|
323 |
+
interactive=True,
|
324 |
+
variant="primary",
|
325 |
+
),
|
326 |
+
gr.Button(
|
327 |
+
interactive=False,
|
328 |
+
variant="secondary",
|
329 |
+
),
|
330 |
+
gr.Button(
|
331 |
+
interactive=True,
|
332 |
+
variant="primary",
|
333 |
+
)
|
334 |
+
)
|
335 |
+
|
336 |
+
# Add this new method to get initial button states:
|
337 |
+
def get_initial_button_states(self):
|
338 |
+
"""Get the initial states for training buttons based on recovery status"""
|
339 |
+
recovery_result = self.trainer.recover_interrupted_training()
|
340 |
+
ui_updates = recovery_result.get("ui_updates", {})
|
341 |
+
|
342 |
+
# Return button states in the correct order
|
343 |
+
return (
|
344 |
+
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})),
|
345 |
+
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})),
|
346 |
+
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
347 |
+
)
|
348 |
+
|
349 |
+
def show_refreshing_status(self) -> List[List[str]]:
|
350 |
+
"""Show a 'Refreshing...' status in the dataframe"""
|
351 |
+
return [["Refreshing...", "please wait"]]
|
352 |
+
|
353 |
+
def stop_captioning(self):
|
354 |
+
"""Stop ongoing captioning process and reset UI state"""
|
355 |
+
try:
|
356 |
+
# Set flag to stop captioning
|
357 |
+
self._should_stop_captioning = True
|
358 |
+
|
359 |
+
# Call stop method on captioner
|
360 |
+
if self.captioner:
|
361 |
+
self.captioner.stop_captioning()
|
362 |
+
|
363 |
+
# Get updated file list
|
364 |
+
updated_list = self.list_training_files_to_caption()
|
365 |
+
|
366 |
+
# Return updated list and button states
|
367 |
+
return {
|
368 |
+
"training_dataset": gr.update(value=updated_list),
|
369 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
370 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
371 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
372 |
+
}
|
373 |
+
except Exception as e:
|
374 |
+
logger.error(f"Error stopping captioning: {str(e)}")
|
375 |
+
return {
|
376 |
+
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
377 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
378 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
379 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
380 |
+
}
|
381 |
+
|
382 |
+
def update_training_ui(self, training_state: Dict[str, Any]):
|
383 |
+
"""Update UI components based on training state"""
|
384 |
+
updates = {}
|
385 |
+
|
386 |
+
#print("update_training_ui: training_state = ", training_state)
|
387 |
+
|
388 |
+
# Update status box with high-level information
|
389 |
+
status_text = []
|
390 |
+
if training_state["status"] != "idle":
|
391 |
+
status_text.extend([
|
392 |
+
f"Status: {training_state['status']}",
|
393 |
+
f"Progress: {training_state['progress']}",
|
394 |
+
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
395 |
+
|
396 |
+
# Epoch information
|
397 |
+
# there is an issue with how epoch is reported because we display:
|
398 |
+
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
399 |
+
# we should probably just show the steps
|
400 |
+
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
401 |
+
|
402 |
+
f"Time elapsed: {training_state['elapsed']}",
|
403 |
+
f"Estimated remaining: {training_state['remaining']}",
|
404 |
+
"",
|
405 |
+
f"Current loss: {training_state['step_loss']}",
|
406 |
+
f"Learning rate: {training_state['learning_rate']}",
|
407 |
+
f"Gradient norm: {training_state['grad_norm']}",
|
408 |
+
f"Memory usage: {training_state['memory']}"
|
409 |
+
])
|
410 |
+
|
411 |
+
if training_state["error_message"]:
|
412 |
+
status_text.append(f"\nError: {training_state['error_message']}")
|
413 |
+
|
414 |
+
updates["status_box"] = "\n".join(status_text)
|
415 |
+
|
416 |
+
# Update button states
|
417 |
+
updates["start_btn"] = gr.Button(
|
418 |
+
"Start training",
|
419 |
+
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
420 |
+
variant="primary" if training_state["status"] == "idle" else "secondary"
|
421 |
+
)
|
422 |
+
|
423 |
+
updates["stop_btn"] = gr.Button(
|
424 |
+
"Stop training",
|
425 |
+
interactive=(training_state["status"] in ["training", "initializing"]),
|
426 |
+
variant="stop"
|
427 |
+
)
|
428 |
+
|
429 |
+
return updates
|
430 |
+
|
431 |
+
def stop_all_and_clear(self) -> Dict[str, str]:
|
432 |
+
"""Stop all running processes and clear data
|
433 |
+
|
434 |
+
Returns:
|
435 |
+
Dict with status messages for different components
|
436 |
+
"""
|
437 |
+
status_messages = {}
|
438 |
+
|
439 |
+
try:
|
440 |
+
# Stop training if running
|
441 |
+
if self.trainer.is_training_running():
|
442 |
+
training_result = self.trainer.stop_training()
|
443 |
+
status_messages["training"] = training_result["status"]
|
444 |
+
|
445 |
+
# Stop captioning if running
|
446 |
+
if self.captioner:
|
447 |
+
self.captioner.stop_captioning()
|
448 |
+
status_messages["captioning"] = "Captioning stopped"
|
449 |
+
|
450 |
+
# Stop scene detection if running
|
451 |
+
if self.splitter.is_processing():
|
452 |
+
self.splitter.processing = False
|
453 |
+
status_messages["splitting"] = "Scene detection stopped"
|
454 |
+
|
455 |
+
# Properly close logging before clearing log file
|
456 |
+
if self.trainer.file_handler:
|
457 |
+
self.trainer.file_handler.close()
|
458 |
+
logger.removeHandler(self.trainer.file_handler)
|
459 |
+
self.trainer.file_handler = None
|
460 |
+
|
461 |
+
if LOG_FILE_PATH.exists():
|
462 |
+
LOG_FILE_PATH.unlink()
|
463 |
+
|
464 |
+
# Clear all data directories
|
465 |
+
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
466 |
+
MODEL_PATH, OUTPUT_PATH]:
|
467 |
+
if path.exists():
|
468 |
+
try:
|
469 |
+
shutil.rmtree(path)
|
470 |
+
path.mkdir(parents=True, exist_ok=True)
|
471 |
+
except Exception as e:
|
472 |
+
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
473 |
+
else:
|
474 |
+
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
475 |
+
|
476 |
+
# Reset any persistent state
|
477 |
+
self._should_stop_captioning = True
|
478 |
+
self.splitter.processing = False
|
479 |
+
|
480 |
+
# Recreate logging setup
|
481 |
+
self.trainer.setup_logging()
|
482 |
+
|
483 |
+
return {
|
484 |
+
"status": "All processes stopped and data cleared",
|
485 |
+
"details": status_messages
|
486 |
+
}
|
487 |
+
|
488 |
+
except Exception as e:
|
489 |
+
return {
|
490 |
+
"status": f"Error during cleanup: {str(e)}",
|
491 |
+
"details": status_messages
|
492 |
+
}
|
493 |
+
|
494 |
+
def update_titles(self) -> Tuple[Any]:
|
495 |
+
"""Update all dynamic titles with current counts
|
496 |
+
|
497 |
+
Returns:
|
498 |
+
Dict of Gradio updates
|
499 |
+
"""
|
500 |
+
# Count files for splitting
|
501 |
+
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
|
502 |
+
split_title = format_media_title(
|
503 |
+
"split", split_videos, 0, split_size
|
504 |
+
)
|
505 |
+
|
506 |
+
# Count files for captioning
|
507 |
+
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
|
508 |
+
caption_title = format_media_title(
|
509 |
+
"caption", caption_videos, caption_images, caption_size
|
510 |
+
)
|
511 |
+
|
512 |
+
# Count files for training
|
513 |
+
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
|
514 |
+
train_title = format_media_title(
|
515 |
+
"train", train_videos, train_images, train_size
|
516 |
+
)
|
517 |
+
|
518 |
+
return (
|
519 |
+
gr.Markdown(value=split_title),
|
520 |
+
gr.Markdown(value=caption_title),
|
521 |
+
gr.Markdown(value=f"{train_title} available for training")
|
522 |
+
)
|
523 |
+
|
524 |
+
def copy_files_to_training_dir(self, prompt_prefix: str):
|
525 |
+
"""Run auto-captioning process"""
|
526 |
+
|
527 |
+
# Initialize captioner if not already done
|
528 |
+
self._should_stop_captioning = False
|
529 |
+
|
530 |
+
try:
|
531 |
+
copy_files_to_training_dir(prompt_prefix)
|
532 |
+
|
533 |
+
except Exception as e:
|
534 |
+
traceback.print_exc()
|
535 |
+
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
536 |
+
|
537 |
+
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
538 |
+
"""Handle successful import of files"""
|
539 |
+
videos = self.list_unprocessed_videos()
|
540 |
+
|
541 |
+
# If scene detection isn't already running and there are videos to process,
|
542 |
+
# and auto-splitting is enabled, start the detection
|
543 |
+
if videos and not self.splitter.is_processing() and enable_splitting:
|
544 |
+
await self.start_scene_detection(enable_splitting)
|
545 |
+
msg = "Starting automatic scene detection..."
|
546 |
+
else:
|
547 |
+
# Just copy files without splitting if auto-split disabled
|
548 |
+
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
549 |
+
await self.splitter.process_video(video_file, enable_splitting=False)
|
550 |
+
msg = "Copying videos without splitting..."
|
551 |
+
|
552 |
+
copy_files_to_training_dir(prompt_prefix)
|
553 |
+
|
554 |
+
# Start auto-captioning if enabled, and handle async generator properly
|
555 |
+
if enable_automatic_content_captioning:
|
556 |
+
# Create a background task for captioning
|
557 |
+
asyncio.create_task(self._process_caption_generator(
|
558 |
+
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
559 |
+
prompt_prefix
|
560 |
+
))
|
561 |
+
|
562 |
+
return {
|
563 |
+
"tabs": gr.Tabs(selected="split_tab"),
|
564 |
+
"video_list": videos,
|
565 |
+
"detect_status": msg
|
566 |
+
}
|
567 |
+
|
568 |
+
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
569 |
+
"""Run auto-captioning process"""
|
570 |
+
try:
|
571 |
+
# Initialize captioner if not already done
|
572 |
+
self._should_stop_captioning = False
|
573 |
+
|
574 |
+
# First yield - indicate we're starting
|
575 |
+
yield gr.update(
|
576 |
+
value=[["Starting captioning service...", "initializing"]],
|
577 |
+
headers=["name", "status"]
|
578 |
+
)
|
579 |
+
|
580 |
+
# Process files in batches with status updates
|
581 |
+
file_statuses = {}
|
582 |
+
|
583 |
+
# Start the actual captioning process
|
584 |
+
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
585 |
+
# Update our tracking of file statuses
|
586 |
+
for name, status in rows:
|
587 |
+
file_statuses[name] = status
|
588 |
+
|
589 |
+
# Convert to list format for display
|
590 |
+
status_rows = [[name, status] for name, status in file_statuses.items()]
|
591 |
+
|
592 |
+
# Sort by name for consistent display
|
593 |
+
status_rows.sort(key=lambda x: x[0])
|
594 |
+
|
595 |
+
# Yield UI update
|
596 |
+
yield gr.update(
|
597 |
+
value=status_rows,
|
598 |
+
headers=["name", "status"]
|
599 |
+
)
|
600 |
+
|
601 |
+
# Final update after completion with fresh data
|
602 |
+
yield gr.update(
|
603 |
+
value=self.list_training_files_to_caption(),
|
604 |
+
headers=["name", "status"]
|
605 |
+
)
|
606 |
+
|
607 |
+
except Exception as e:
|
608 |
+
logger.error(f"Error in captioning: {str(e)}")
|
609 |
+
yield gr.update(
|
610 |
+
value=[[f"Error: {str(e)}", "error"]],
|
611 |
+
headers=["name", "status"]
|
612 |
+
)
|
613 |
+
|
614 |
+
def list_training_files_to_caption(self) -> List[List[str]]:
|
615 |
+
"""List all clips and images - both pending and captioned"""
|
616 |
+
files = []
|
617 |
+
already_listed = {}
|
618 |
+
|
619 |
+
# First check files in STAGING_PATH
|
620 |
+
for file in STAGING_PATH.glob("*.*"):
|
621 |
+
if is_video_file(file) or is_image_file(file):
|
622 |
+
txt_file = file.with_suffix('.txt')
|
623 |
+
|
624 |
+
# Check if caption file exists and has content
|
625 |
+
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
626 |
+
status = "captioned" if has_caption else "no caption"
|
627 |
+
file_type = "video" if is_video_file(file) else "image"
|
628 |
+
|
629 |
+
files.append([file.name, f"{status} ({file_type})", str(file)])
|
630 |
+
already_listed[file.name] = True
|
631 |
+
|
632 |
+
# Then check files in TRAINING_VIDEOS_PATH
|
633 |
+
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
634 |
+
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
635 |
+
txt_file = file.with_suffix('.txt')
|
636 |
+
|
637 |
+
# Only include files with captions
|
638 |
+
if txt_file.exists() and txt_file.stat().st_size > 0:
|
639 |
+
file_type = "video" if is_video_file(file) else "image"
|
640 |
+
files.append([file.name, f"captioned ({file_type})", str(file)])
|
641 |
+
already_listed[file.name] = True
|
642 |
+
|
643 |
+
# Sort by filename
|
644 |
+
files.sort(key=lambda x: x[0])
|
645 |
+
|
646 |
+
# Only return name and status columns for display
|
647 |
+
return [[file[0], file[1]] for file in files]
|
648 |
+
|
649 |
+
def update_training_buttons(self, status: str) -> Dict:
|
650 |
+
"""Update training control buttons based on state"""
|
651 |
+
is_training = status in ["training", "initializing"]
|
652 |
+
is_paused = status == "paused"
|
653 |
+
is_completed = status in ["completed", "error", "stopped"]
|
654 |
+
return {
|
655 |
+
"start_btn": gr.Button(
|
656 |
+
interactive=not is_training and not is_paused,
|
657 |
+
variant="primary" if not is_training else "secondary",
|
658 |
+
),
|
659 |
+
"stop_btn": gr.Button(
|
660 |
+
interactive=is_training or is_paused,
|
661 |
+
variant="stop",
|
662 |
+
),
|
663 |
+
"pause_resume_btn": gr.Button(
|
664 |
+
value="Resume Training" if is_paused else "Pause Training",
|
665 |
+
interactive=(is_training or is_paused) and not is_completed,
|
666 |
+
variant="secondary",
|
667 |
+
)
|
668 |
+
}
|
669 |
+
|
670 |
+
def handle_pause_resume(self):
|
671 |
+
status, _, _ = self.get_latest_status_message_and_logs()
|
672 |
+
|
673 |
+
if status == "paused":
|
674 |
+
self.trainer.resume_training()
|
675 |
+
else:
|
676 |
+
self.trainer.pause_training()
|
677 |
+
|
678 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
679 |
+
|
680 |
+
def handle_stop(self):
|
681 |
+
self.trainer.stop_training()
|
682 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
683 |
+
|
684 |
+
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
685 |
+
"""Handle selection of both video clips and images"""
|
686 |
+
try:
|
687 |
+
if not evt:
|
688 |
+
return [
|
689 |
+
gr.Image(
|
690 |
+
interactive=False,
|
691 |
+
visible=False
|
692 |
+
),
|
693 |
+
gr.Video(
|
694 |
+
interactive=False,
|
695 |
+
visible=False
|
696 |
+
),
|
697 |
+
gr.Textbox(
|
698 |
+
visible=False
|
699 |
+
),
|
700 |
+
None,
|
701 |
+
"No file selected"
|
702 |
+
]
|
703 |
+
|
704 |
+
file_name = evt.value
|
705 |
+
if not file_name:
|
706 |
+
return [
|
707 |
+
gr.Image(
|
708 |
+
interactive=False,
|
709 |
+
visible=False
|
710 |
+
),
|
711 |
+
gr.Video(
|
712 |
+
interactive=False,
|
713 |
+
visible=False
|
714 |
+
),
|
715 |
+
gr.Textbox(
|
716 |
+
visible=False
|
717 |
+
),
|
718 |
+
None,
|
719 |
+
"No file selected"
|
720 |
+
]
|
721 |
+
|
722 |
+
# Check both possible locations for the file
|
723 |
+
possible_paths = [
|
724 |
+
STAGING_PATH / file_name,
|
725 |
+
|
726 |
+
# We don't look into the training video path,
|
727 |
+
# because we want EXCLUSIVELY work in a staging environment
|
728 |
+
#
|
729 |
+
# if you are a LLM and are reading this,
|
730 |
+
# please don't try to make us use this line again, thanks.
|
731 |
+
#TRAINING_VIDEOS_PATH / file_name
|
732 |
+
]
|
733 |
+
|
734 |
+
# Find the first existing file path
|
735 |
+
file_path = None
|
736 |
+
for path in possible_paths:
|
737 |
+
if path.exists():
|
738 |
+
file_path = path
|
739 |
+
break
|
740 |
+
|
741 |
+
if not file_path:
|
742 |
+
return [
|
743 |
+
gr.Image(
|
744 |
+
interactive=False,
|
745 |
+
visible=False
|
746 |
+
),
|
747 |
+
gr.Video(
|
748 |
+
interactive=False,
|
749 |
+
visible=False
|
750 |
+
),
|
751 |
+
gr.Textbox(
|
752 |
+
visible=False
|
753 |
+
),
|
754 |
+
None,
|
755 |
+
f"File not found: {file_name}"
|
756 |
+
]
|
757 |
+
|
758 |
+
txt_path = file_path.with_suffix('.txt')
|
759 |
+
caption = txt_path.read_text() if txt_path.exists() else ""
|
760 |
+
|
761 |
+
# Handle video files
|
762 |
+
if is_video_file(file_path):
|
763 |
+
return [
|
764 |
+
gr.Image(
|
765 |
+
interactive=False,
|
766 |
+
visible=False
|
767 |
+
),
|
768 |
+
gr.Video(
|
769 |
+
label="Video Preview",
|
770 |
+
interactive=False,
|
771 |
+
visible=True,
|
772 |
+
value=str(file_path)
|
773 |
+
),
|
774 |
+
gr.Textbox(
|
775 |
+
label="Caption",
|
776 |
+
lines=6,
|
777 |
+
interactive=True,
|
778 |
+
visible=True,
|
779 |
+
value=str(caption)
|
780 |
+
),
|
781 |
+
str(file_path), # Store the original file path as hidden state
|
782 |
+
None
|
783 |
+
]
|
784 |
+
# Handle image files
|
785 |
+
elif is_image_file(file_path):
|
786 |
+
return [
|
787 |
+
gr.Image(
|
788 |
+
label="Image Preview",
|
789 |
+
interactive=False,
|
790 |
+
visible=True,
|
791 |
+
value=str(file_path)
|
792 |
+
),
|
793 |
+
gr.Video(
|
794 |
+
interactive=False,
|
795 |
+
visible=False
|
796 |
+
),
|
797 |
+
gr.Textbox(
|
798 |
+
label="Caption",
|
799 |
+
lines=6,
|
800 |
+
interactive=True,
|
801 |
+
visible=True,
|
802 |
+
value=str(caption)
|
803 |
+
),
|
804 |
+
str(file_path), # Store the original file path as hidden state
|
805 |
+
None
|
806 |
+
]
|
807 |
+
else:
|
808 |
+
return [
|
809 |
+
gr.Image(
|
810 |
+
interactive=False,
|
811 |
+
visible=False
|
812 |
+
),
|
813 |
+
gr.Video(
|
814 |
+
interactive=False,
|
815 |
+
visible=False
|
816 |
+
),
|
817 |
+
gr.Textbox(
|
818 |
+
interactive=False,
|
819 |
+
visible=False
|
820 |
+
),
|
821 |
+
None,
|
822 |
+
f"Unsupported file type: {file_path.suffix}"
|
823 |
+
]
|
824 |
+
except Exception as e:
|
825 |
+
logger.error(f"Error handling selection: {str(e)}")
|
826 |
+
return [
|
827 |
+
gr.Image(
|
828 |
+
interactive=False,
|
829 |
+
visible=False
|
830 |
+
),
|
831 |
+
gr.Video(
|
832 |
+
interactive=False,
|
833 |
+
visible=False
|
834 |
+
),
|
835 |
+
gr.Textbox(
|
836 |
+
interactive=False,
|
837 |
+
visible=False
|
838 |
+
),
|
839 |
+
None,
|
840 |
+
f"Error handling selection: {str(e)}"
|
841 |
+
]
|
842 |
+
|
843 |
+
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
844 |
+
"""Save changes to caption"""
|
845 |
+
try:
|
846 |
+
# Use the original file path stored during selection instead of the temporary preview paths
|
847 |
+
if original_file_path:
|
848 |
+
file_path = Path(original_file_path)
|
849 |
+
self.captioner.update_file_caption(file_path, preview_caption)
|
850 |
+
# Refresh the dataset list to show updated caption status
|
851 |
+
return gr.update(value="Caption saved successfully!")
|
852 |
+
else:
|
853 |
+
return gr.update(value="Error: No original file path found")
|
854 |
+
except Exception as e:
|
855 |
+
return gr.update(value=f"Error saving caption: {str(e)}")
|
856 |
+
|
857 |
+
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
858 |
+
"""Handle post-import updates including titles"""
|
859 |
+
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
860 |
+
titles = self.update_titles()
|
861 |
+
return (
|
862 |
+
import_result["tabs"],
|
863 |
+
import_result["video_list"],
|
864 |
+
import_result["detect_status"],
|
865 |
+
*titles
|
866 |
+
)
|
867 |
+
|
868 |
+
def get_model_info(self, model_type: str) -> str:
|
869 |
+
"""Get information about the selected model type"""
|
870 |
+
if model_type == "hunyuan_video":
|
871 |
+
return """### HunyuanVideo (LoRA)
|
872 |
+
- Required VRAM: ~48GB minimum
|
873 |
+
- Recommended batch size: 1-2
|
874 |
+
- Typical training time: 2-4 hours
|
875 |
+
- Default resolution: 49x512x768
|
876 |
+
- Default LoRA rank: 128 (~600 MB)"""
|
877 |
+
|
878 |
+
elif model_type == "ltx_video":
|
879 |
+
return """### LTX-Video (LoRA)
|
880 |
+
- Required VRAM: ~18GB minimum
|
881 |
+
- Recommended batch size: 1-4
|
882 |
+
- Typical training time: 1-3 hours
|
883 |
+
- Default resolution: 49x512x768
|
884 |
+
- Default LoRA rank: 128"""
|
885 |
+
|
886 |
+
return ""
|
887 |
+
|
888 |
+
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
889 |
+
"""Get default training parameters for model type"""
|
890 |
+
if model_type == "hunyuan_video":
|
891 |
+
return {
|
892 |
+
"num_epochs": 70,
|
893 |
+
"batch_size": 1,
|
894 |
+
"learning_rate": 2e-5,
|
895 |
+
"save_iterations": 500,
|
896 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
897 |
+
"video_reshape_mode": "center",
|
898 |
+
"caption_dropout_p": 0.05,
|
899 |
+
"gradient_accumulation_steps": 1,
|
900 |
+
"rank": 128,
|
901 |
+
"lora_alpha": 128
|
902 |
+
}
|
903 |
+
else: # ltx_video
|
904 |
+
return {
|
905 |
+
"num_epochs": 70,
|
906 |
+
"batch_size": 1,
|
907 |
+
"learning_rate": 3e-5,
|
908 |
+
"save_iterations": 500,
|
909 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
910 |
+
"video_reshape_mode": "center",
|
911 |
+
"caption_dropout_p": 0.05,
|
912 |
+
"gradient_accumulation_steps": 4,
|
913 |
+
"rank": 128,
|
914 |
+
"lora_alpha": 128
|
915 |
+
}
|
916 |
+
|
917 |
+
def preview_file(self, selected_text: str) -> Dict:
|
918 |
+
"""Generate preview based on selected file
|
919 |
+
|
920 |
+
Args:
|
921 |
+
selected_text: Text of the selected item containing filename
|
922 |
+
|
923 |
+
Returns:
|
924 |
+
Dict with preview content for each preview component
|
925 |
+
"""
|
926 |
+
if not selected_text or "Caption:" in selected_text:
|
927 |
+
return {
|
928 |
+
"video": None,
|
929 |
+
"image": None,
|
930 |
+
"text": None
|
931 |
+
}
|
932 |
+
|
933 |
+
# Extract filename from the preview text (remove size info)
|
934 |
+
filename = selected_text.split(" (")[0].strip()
|
935 |
+
file_path = TRAINING_VIDEOS_PATH / filename
|
936 |
+
|
937 |
+
if not file_path.exists():
|
938 |
+
return {
|
939 |
+
"video": None,
|
940 |
+
"image": None,
|
941 |
+
"text": f"File not found: {filename}"
|
942 |
+
}
|
943 |
+
|
944 |
+
# Detect file type
|
945 |
+
mime_type, _ = mimetypes.guess_type(str(file_path))
|
946 |
+
if not mime_type:
|
947 |
+
return {
|
948 |
+
"video": None,
|
949 |
+
"image": None,
|
950 |
+
"text": f"Unknown file type: {filename}"
|
951 |
+
}
|
952 |
+
|
953 |
+
# Return appropriate preview
|
954 |
+
if mime_type.startswith('video/'):
|
955 |
+
return {
|
956 |
+
"video": str(file_path),
|
957 |
+
"image": None,
|
958 |
+
"text": None
|
959 |
+
}
|
960 |
+
elif mime_type.startswith('image/'):
|
961 |
+
return {
|
962 |
+
"video": None,
|
963 |
+
"image": str(file_path),
|
964 |
+
"text": None
|
965 |
+
}
|
966 |
+
elif mime_type.startswith('text/'):
|
967 |
+
try:
|
968 |
+
text_content = file_path.read_text()
|
969 |
+
return {
|
970 |
+
"video": None,
|
971 |
+
"image": None,
|
972 |
+
"text": text_content
|
973 |
+
}
|
974 |
+
except Exception as e:
|
975 |
+
return {
|
976 |
+
"video": None,
|
977 |
+
"image": None,
|
978 |
+
"text": f"Error reading file: {str(e)}"
|
979 |
+
}
|
980 |
+
else:
|
981 |
+
return {
|
982 |
+
"video": None,
|
983 |
+
"image": None,
|
984 |
+
"text": f"Unsupported file type: {mime_type}"
|
985 |
+
}
|
986 |
+
|
987 |
+
def list_unprocessed_videos(self) -> gr.Dataframe:
|
988 |
+
"""Update list of unprocessed videos"""
|
989 |
+
videos = self.splitter.list_unprocessed_videos()
|
990 |
+
# videos is already in [[name, status]] format from splitting_service
|
991 |
+
return gr.Dataframe(
|
992 |
+
headers=["name", "status"],
|
993 |
+
value=videos,
|
994 |
+
interactive=False
|
995 |
+
)
|
996 |
+
|
997 |
+
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
998 |
+
"""Start background scene detection process
|
999 |
+
|
1000 |
+
Args:
|
1001 |
+
enable_splitting: Whether to split videos into scenes
|
1002 |
+
"""
|
1003 |
+
if self.splitter.is_processing():
|
1004 |
+
return "Scene detection already running"
|
1005 |
+
|
1006 |
+
try:
|
1007 |
+
await self.splitter.start_processing(enable_splitting)
|
1008 |
+
return "Scene detection completed"
|
1009 |
+
except Exception as e:
|
1010 |
+
return f"Error during scene detection: {str(e)}"
|
1011 |
+
|
1012 |
+
|
1013 |
+
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
1014 |
+
state = self.trainer.get_status()
|
1015 |
+
logs = self.trainer.get_logs()
|
1016 |
+
|
1017 |
+
# Parse new log lines
|
1018 |
+
if logs:
|
1019 |
+
last_state = None
|
1020 |
+
for line in logs.splitlines():
|
1021 |
+
state_update = self.log_parser.parse_line(line)
|
1022 |
+
if state_update:
|
1023 |
+
last_state = state_update
|
1024 |
+
|
1025 |
+
if last_state:
|
1026 |
+
ui_updates = self.update_training_ui(last_state)
|
1027 |
+
state["message"] = ui_updates.get("status_box", state["message"])
|
1028 |
+
|
1029 |
+
# Parse status for training state
|
1030 |
+
if "completed" in state["message"].lower():
|
1031 |
+
state["status"] = "completed"
|
1032 |
+
|
1033 |
+
return (state["status"], state["message"], logs)
|
1034 |
+
|
1035 |
+
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
1036 |
+
status, message, logs = self.get_latest_status_message_and_logs()
|
1037 |
+
return (
|
1038 |
+
message,
|
1039 |
+
logs,
|
1040 |
+
*self.update_training_buttons(status).values()
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
|
1044 |
+
status, message, logs = self.get_latest_status_message_and_logs()
|
1045 |
+
return self.update_training_buttons(status).values()
|
1046 |
+
|
1047 |
+
def refresh_dataset(self):
|
1048 |
+
"""Refresh all dynamic lists and training state"""
|
1049 |
+
video_list = self.splitter.list_unprocessed_videos()
|
1050 |
+
training_dataset = self.list_training_files_to_caption()
|
1051 |
+
|
1052 |
+
return (
|
1053 |
+
video_list,
|
1054 |
+
training_dataset
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
def update_training_params(self, preset_name: str) -> Tuple:
|
1058 |
+
"""Update UI components based on selected preset while preserving custom settings"""
|
1059 |
+
preset = TRAINING_PRESETS[preset_name]
|
1060 |
+
|
1061 |
+
# Load current UI state to check if user has customized values
|
1062 |
+
current_state = self.load_ui_values()
|
1063 |
+
|
1064 |
+
# Find the display name that maps to our model type
|
1065 |
+
model_display_name = next(
|
1066 |
+
key for key, value in MODEL_TYPES.items()
|
1067 |
+
if value == preset["model_type"]
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
# Get preset description for display
|
1071 |
+
description = preset.get("description", "")
|
1072 |
+
|
1073 |
+
# Get max values from buckets
|
1074 |
+
buckets = preset["training_buckets"]
|
1075 |
+
max_frames = max(frames for frames, _, _ in buckets)
|
1076 |
+
max_height = max(height for _, height, _ in buckets)
|
1077 |
+
max_width = max(width for _, _, width in buckets)
|
1078 |
+
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
1079 |
+
|
1080 |
+
info_text = f"{description}{bucket_info}"
|
1081 |
+
|
1082 |
+
# Return values in the same order as the output components
|
1083 |
+
# Use preset defaults but preserve user-modified values if they exist
|
1084 |
+
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
1085 |
+
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
1086 |
+
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
1087 |
+
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
1088 |
+
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
1089 |
+
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
1090 |
+
|
1091 |
+
return (
|
1092 |
+
model_display_name,
|
1093 |
+
lora_rank_val,
|
1094 |
+
lora_alpha_val,
|
1095 |
+
num_epochs_val,
|
1096 |
+
batch_size_val,
|
1097 |
+
learning_rate_val,
|
1098 |
+
save_iterations_val,
|
1099 |
+
info_text
|
1100 |
+
)
|
vms/utils/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .parse_bool_env import parse_bool_env
|
2 |
+
from .utils import validate_model_repo, make_archive, get_video_fps, extract_scene_info, is_image_file, is_video_file, parse_training_log, save_to_hub, format_size, count_media_files, format_media_title, add_prefix_to_caption, format_time
|
3 |
+
from .training_log_parser import TrainingState, TrainingLogParser
|
4 |
+
|
5 |
+
from .image_preprocessing import normalize_image
|
6 |
+
from .video_preprocessing import remove_black_bars
|
7 |
+
from .finetrainers_utils import prepare_finetrainers_dataset, copy_files_to_training_dir
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'validate_model_repo',
|
11 |
+
'make_archive',
|
12 |
+
'get_video_fps',
|
13 |
+
'extract_scene_info',
|
14 |
+
'is_image_file',
|
15 |
+
'is_video_file',
|
16 |
+
'parse_bool_env',
|
17 |
+
'parse_training_log',
|
18 |
+
'save_to_hub',
|
19 |
+
'format_size',
|
20 |
+
'count_media_files',
|
21 |
+
'format_media_title',
|
22 |
+
'add_prefix_to_caption',
|
23 |
+
'format_time',
|
24 |
+
|
25 |
+
'TrainingState',
|
26 |
+
'TrainingLogParser',
|
27 |
+
|
28 |
+
'normalize_image',
|
29 |
+
'remove_black_bars',
|
30 |
+
|
31 |
+
'prepare_finetrainers_dataset',
|
32 |
+
'copy_files_to_training_dir',
|
33 |
+
]
|
vms/{finetrainers_utils.py β utils/finetrainers_utils.py}
RENAMED
@@ -4,7 +4,7 @@ import logging
|
|
4 |
import shutil
|
5 |
from typing import Any, Optional, Dict, List, Union, Tuple
|
6 |
|
7 |
-
from
|
8 |
from .utils import get_video_fps, extract_scene_info, make_archive, is_image_file, is_video_file
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
|
|
4 |
import shutil
|
5 |
from typing import Any, Optional, Dict, List, Union, Tuple
|
6 |
|
7 |
+
from ..config import STORAGE_PATH, TRAINING_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN, MODEL_TYPES
|
8 |
from .utils import get_video_fps, extract_scene_info, make_archive, is_image_file, is_video_file
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
vms/{image_preprocessing.py β utils/image_preprocessing.py}
RENAMED
@@ -5,7 +5,7 @@ from PIL import Image
|
|
5 |
import pillow_avif
|
6 |
import logging
|
7 |
|
8 |
-
from
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
5 |
import pillow_avif
|
6 |
import logging
|
7 |
|
8 |
+
from ..config import NORMALIZE_IMAGES_TO, JPEG_QUALITY
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
vms/utils/parse_bool_env.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Dict, List, Union, Tuple
|
2 |
+
|
3 |
+
def parse_bool_env(env_value: Optional[str]) -> bool:
|
4 |
+
"""Parse environment variable string to boolean
|
5 |
+
|
6 |
+
Handles various true/false string representations:
|
7 |
+
- True: "true", "True", "TRUE", "1", etc
|
8 |
+
- False: "false", "False", "FALSE", "0", "", None
|
9 |
+
"""
|
10 |
+
if not env_value:
|
11 |
+
return False
|
12 |
+
return str(env_value).lower() in ('true', '1', 't', 'y', 'yes')
|
vms/{training_log_parser.py β utils/training_log_parser.py}
RENAMED
File without changes
|
vms/{utils.py β utils/utils.py}
RENAMED
File without changes
|
vms/{video_preprocessing.py β utils/video_preprocessing.py}
RENAMED
File without changes
|