Spaces:
Running
Running
Commit
·
66c6879
1
Parent(s):
c8589f9
fix for Finetrainers
Browse files- finetrainers/dataset.py +4 -6
- finetrainers/finetrainers__lib__trainer.py +1235 -0
- finetrainers/trainer.py +1 -1
- vms/services/trainer.py +148 -146
- vms/ui/video_trainer_ui.py +4 -0
finetrainers/dataset.py
CHANGED
@@ -32,25 +32,23 @@ from .constants import ( # noqa
|
|
32 |
PRECOMPUTED_LATENTS_DIR_NAME,
|
33 |
)
|
34 |
|
35 |
-
logger = get_logger(__name__)
|
36 |
-
|
37 |
# Decord is causing us some issues!
|
38 |
# Let's try to increase file descriptor limits to avoid this error:
|
39 |
#
|
40 |
# decord._ffi.base.DECORDError: Resource temporarily unavailable
|
41 |
try:
|
42 |
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
43 |
-
|
44 |
|
45 |
# Try to increase to hard limit if possible
|
46 |
if soft < hard:
|
47 |
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
48 |
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
49 |
-
|
50 |
except Exception as e:
|
51 |
-
|
52 |
-
|
53 |
|
|
|
54 |
|
55 |
# TODO(aryan): This needs a refactor with separation of concerns.
|
56 |
# Images should be handled separately. Videos should be handled separately.
|
|
|
32 |
PRECOMPUTED_LATENTS_DIR_NAME,
|
33 |
)
|
34 |
|
|
|
|
|
35 |
# Decord is causing us some issues!
|
36 |
# Let's try to increase file descriptor limits to avoid this error:
|
37 |
#
|
38 |
# decord._ffi.base.DECORDError: Resource temporarily unavailable
|
39 |
try:
|
40 |
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
41 |
+
print(f"Current file descriptor limits: soft={soft}, hard={hard}")
|
42 |
|
43 |
# Try to increase to hard limit if possible
|
44 |
if soft < hard:
|
45 |
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
46 |
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
47 |
+
print(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
|
48 |
except Exception as e:
|
49 |
+
print(f"Could not check or update file descriptor limits: {e}")
|
|
|
50 |
|
51 |
+
logger = get_logger(__name__)
|
52 |
|
53 |
# TODO(aryan): This needs a refactor with separation of concerns.
|
54 |
# Images should be handled separately. Videos should be handled separately.
|
finetrainers/finetrainers__lib__trainer.py
ADDED
@@ -0,0 +1,1235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import gc
|
6 |
+
import random
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Any, Dict, List
|
10 |
+
|
11 |
+
import diffusers
|
12 |
+
import torch
|
13 |
+
import torch.backends
|
14 |
+
import transformers
|
15 |
+
import wandb
|
16 |
+
from accelerate import Accelerator, DistributedType
|
17 |
+
from accelerate.logging import get_logger
|
18 |
+
from accelerate.utils import (
|
19 |
+
DistributedDataParallelKwargs,
|
20 |
+
InitProcessGroupKwargs,
|
21 |
+
ProjectConfiguration,
|
22 |
+
gather_object,
|
23 |
+
set_seed,
|
24 |
+
)
|
25 |
+
from diffusers import DiffusionPipeline
|
26 |
+
from diffusers.configuration_utils import FrozenDict
|
27 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
28 |
+
from diffusers.optimization import get_scheduler
|
29 |
+
from diffusers.training_utils import cast_training_params
|
30 |
+
from diffusers.utils import export_to_video, load_image, load_video
|
31 |
+
from huggingface_hub import create_repo, upload_folder
|
32 |
+
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
33 |
+
from tqdm import tqdm
|
34 |
+
|
35 |
+
from .args import Args, validate_args
|
36 |
+
from .constants import (
|
37 |
+
FINETRAINERS_LOG_LEVEL,
|
38 |
+
PRECOMPUTED_CONDITIONS_DIR_NAME,
|
39 |
+
PRECOMPUTED_DIR_NAME,
|
40 |
+
PRECOMPUTED_LATENTS_DIR_NAME,
|
41 |
+
)
|
42 |
+
from .dataset import BucketSampler, ImageOrVideoDatasetWithResizing, PrecomputedDataset
|
43 |
+
from .hooks import apply_layerwise_upcasting
|
44 |
+
from .models import get_config_from_model_name
|
45 |
+
from .patches import perform_peft_patches
|
46 |
+
from .state import State
|
47 |
+
from .utils.checkpointing import get_intermediate_ckpt_path, get_latest_ckpt_path_to_resume_from
|
48 |
+
from .utils.data_utils import should_perform_precomputation
|
49 |
+
from .utils.diffusion_utils import (
|
50 |
+
get_scheduler_alphas,
|
51 |
+
get_scheduler_sigmas,
|
52 |
+
prepare_loss_weights,
|
53 |
+
prepare_sigmas,
|
54 |
+
prepare_target,
|
55 |
+
)
|
56 |
+
from .utils.file_utils import string_to_filename
|
57 |
+
from .utils.hub_utils import save_model_card
|
58 |
+
from .utils.memory_utils import free_memory, get_memory_statistics, make_contiguous
|
59 |
+
from .utils.model_utils import resolve_vae_cls_from_ckpt_path
|
60 |
+
from .utils.optimizer_utils import get_optimizer
|
61 |
+
from .utils.torch_utils import align_device_and_dtype, expand_tensor_dims, unwrap_model
|
62 |
+
|
63 |
+
|
64 |
+
logger = get_logger("finetrainers")
|
65 |
+
logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
66 |
+
|
67 |
+
|
68 |
+
class Trainer:
|
69 |
+
def __init__(self, args: Args) -> None:
|
70 |
+
validate_args(args)
|
71 |
+
|
72 |
+
self.args = args
|
73 |
+
self.args.seed = self.args.seed or datetime.now().year
|
74 |
+
self.state = State()
|
75 |
+
|
76 |
+
# Tokenizers
|
77 |
+
self.tokenizer = None
|
78 |
+
self.tokenizer_2 = None
|
79 |
+
self.tokenizer_3 = None
|
80 |
+
|
81 |
+
# Text encoders
|
82 |
+
self.text_encoder = None
|
83 |
+
self.text_encoder_2 = None
|
84 |
+
self.text_encoder_3 = None
|
85 |
+
|
86 |
+
# Denoisers
|
87 |
+
self.transformer = None
|
88 |
+
self.unet = None
|
89 |
+
|
90 |
+
# Autoencoders
|
91 |
+
self.vae = None
|
92 |
+
|
93 |
+
# Scheduler
|
94 |
+
self.scheduler = None
|
95 |
+
|
96 |
+
self.transformer_config = None
|
97 |
+
self.vae_config = None
|
98 |
+
|
99 |
+
self._init_distributed()
|
100 |
+
self._init_logging()
|
101 |
+
self._init_directories_and_repositories()
|
102 |
+
self._init_config_options()
|
103 |
+
|
104 |
+
# Peform any patches needed for training
|
105 |
+
if len(self.args.layerwise_upcasting_modules) > 0:
|
106 |
+
perform_peft_patches()
|
107 |
+
# TODO(aryan): handle text encoders
|
108 |
+
# if any(["text_encoder" in component_name for component_name in self.args.layerwise_upcasting_modules]):
|
109 |
+
# perform_text_encoder_patches()
|
110 |
+
|
111 |
+
self.state.model_name = self.args.model_name
|
112 |
+
self.model_config = get_config_from_model_name(self.args.model_name, self.args.training_type)
|
113 |
+
|
114 |
+
def prepare_dataset(self) -> None:
|
115 |
+
# TODO(aryan): Make a background process for fetching
|
116 |
+
logger.info("Initializing dataset and dataloader")
|
117 |
+
|
118 |
+
self.dataset = ImageOrVideoDatasetWithResizing(
|
119 |
+
data_root=self.args.data_root,
|
120 |
+
caption_column=self.args.caption_column,
|
121 |
+
video_column=self.args.video_column,
|
122 |
+
resolution_buckets=self.args.video_resolution_buckets,
|
123 |
+
dataset_file=self.args.dataset_file,
|
124 |
+
id_token=self.args.id_token,
|
125 |
+
remove_llm_prefixes=self.args.remove_common_llm_caption_prefixes,
|
126 |
+
)
|
127 |
+
self.dataloader = torch.utils.data.DataLoader(
|
128 |
+
self.dataset,
|
129 |
+
batch_size=1,
|
130 |
+
sampler=BucketSampler(self.dataset, batch_size=self.args.batch_size, shuffle=True),
|
131 |
+
collate_fn=self.model_config.get("collate_fn"),
|
132 |
+
num_workers=self.args.dataloader_num_workers,
|
133 |
+
pin_memory=self.args.pin_memory,
|
134 |
+
)
|
135 |
+
|
136 |
+
def prepare_models(self) -> None:
|
137 |
+
logger.info("Initializing models")
|
138 |
+
|
139 |
+
load_components_kwargs = self._get_load_components_kwargs()
|
140 |
+
condition_components, latent_components, diffusion_components = {}, {}, {}
|
141 |
+
if not self.args.precompute_conditions:
|
142 |
+
# To download the model files first on the main process (if not already present)
|
143 |
+
# and then load the cached files afterward from the other processes.
|
144 |
+
with self.state.accelerator.main_process_first():
|
145 |
+
condition_components = self.model_config["load_condition_models"](**load_components_kwargs)
|
146 |
+
latent_components = self.model_config["load_latent_models"](**load_components_kwargs)
|
147 |
+
diffusion_components = self.model_config["load_diffusion_models"](**load_components_kwargs)
|
148 |
+
|
149 |
+
components = {}
|
150 |
+
components.update(condition_components)
|
151 |
+
components.update(latent_components)
|
152 |
+
components.update(diffusion_components)
|
153 |
+
self._set_components(components)
|
154 |
+
|
155 |
+
if self.vae is not None:
|
156 |
+
if self.args.enable_slicing:
|
157 |
+
self.vae.enable_slicing()
|
158 |
+
if self.args.enable_tiling:
|
159 |
+
self.vae.enable_tiling()
|
160 |
+
|
161 |
+
def prepare_precomputations(self) -> None:
|
162 |
+
if not self.args.precompute_conditions:
|
163 |
+
return
|
164 |
+
|
165 |
+
logger.info("Initializing precomputations")
|
166 |
+
|
167 |
+
if self.args.batch_size != 1:
|
168 |
+
raise ValueError("Precomputation is only supported with batch size 1. This will be supported in future.")
|
169 |
+
|
170 |
+
def collate_fn(batch):
|
171 |
+
latent_conditions = [x["latent_conditions"] for x in batch]
|
172 |
+
text_conditions = [x["text_conditions"] for x in batch]
|
173 |
+
batched_latent_conditions = {}
|
174 |
+
batched_text_conditions = {}
|
175 |
+
for key in list(latent_conditions[0].keys()):
|
176 |
+
if torch.is_tensor(latent_conditions[0][key]):
|
177 |
+
batched_latent_conditions[key] = torch.cat([x[key] for x in latent_conditions], dim=0)
|
178 |
+
else:
|
179 |
+
# TODO(aryan): implement batch sampler for precomputed latents
|
180 |
+
batched_latent_conditions[key] = [x[key] for x in latent_conditions][0]
|
181 |
+
for key in list(text_conditions[0].keys()):
|
182 |
+
if torch.is_tensor(text_conditions[0][key]):
|
183 |
+
batched_text_conditions[key] = torch.cat([x[key] for x in text_conditions], dim=0)
|
184 |
+
else:
|
185 |
+
# TODO(aryan): implement batch sampler for precomputed latents
|
186 |
+
batched_text_conditions[key] = [x[key] for x in text_conditions][0]
|
187 |
+
return {"latent_conditions": batched_latent_conditions, "text_conditions": batched_text_conditions}
|
188 |
+
|
189 |
+
cleaned_model_id = string_to_filename(self.args.pretrained_model_name_or_path)
|
190 |
+
precomputation_dir = (
|
191 |
+
Path(self.args.data_root) / f"{self.args.model_name}_{cleaned_model_id}_{PRECOMPUTED_DIR_NAME}"
|
192 |
+
)
|
193 |
+
should_precompute = should_perform_precomputation(precomputation_dir)
|
194 |
+
if not should_precompute:
|
195 |
+
logger.info("Precomputed conditions and latents found. Loading precomputed data.")
|
196 |
+
self.dataloader = torch.utils.data.DataLoader(
|
197 |
+
PrecomputedDataset(
|
198 |
+
data_root=self.args.data_root, model_name=self.args.model_name, cleaned_model_id=cleaned_model_id
|
199 |
+
),
|
200 |
+
batch_size=self.args.batch_size,
|
201 |
+
shuffle=True,
|
202 |
+
collate_fn=collate_fn,
|
203 |
+
num_workers=self.args.dataloader_num_workers,
|
204 |
+
pin_memory=self.args.pin_memory,
|
205 |
+
)
|
206 |
+
return
|
207 |
+
|
208 |
+
logger.info("Precomputed conditions and latents not found. Running precomputation.")
|
209 |
+
|
210 |
+
# At this point, no models are loaded, so we need to load and precompute conditions and latents
|
211 |
+
with self.state.accelerator.main_process_first():
|
212 |
+
condition_components = self.model_config["load_condition_models"](**self._get_load_components_kwargs())
|
213 |
+
self._set_components(condition_components)
|
214 |
+
self._move_components_to_device()
|
215 |
+
self._disable_grad_for_components([self.text_encoder, self.text_encoder_2, self.text_encoder_3])
|
216 |
+
|
217 |
+
if self.args.caption_dropout_p > 0 and self.args.caption_dropout_technique == "empty":
|
218 |
+
logger.warning(
|
219 |
+
"Caption dropout is not supported with precomputation yet. This will be supported in the future."
|
220 |
+
)
|
221 |
+
|
222 |
+
conditions_dir = precomputation_dir / PRECOMPUTED_CONDITIONS_DIR_NAME
|
223 |
+
latents_dir = precomputation_dir / PRECOMPUTED_LATENTS_DIR_NAME
|
224 |
+
conditions_dir.mkdir(parents=True, exist_ok=True)
|
225 |
+
latents_dir.mkdir(parents=True, exist_ok=True)
|
226 |
+
|
227 |
+
accelerator = self.state.accelerator
|
228 |
+
|
229 |
+
# Precompute conditions
|
230 |
+
progress_bar = tqdm(
|
231 |
+
range(0, (len(self.dataset) + accelerator.num_processes - 1) // accelerator.num_processes),
|
232 |
+
desc="Precomputing conditions",
|
233 |
+
disable=not accelerator.is_local_main_process,
|
234 |
+
)
|
235 |
+
index = 0
|
236 |
+
for i, data in enumerate(self.dataset):
|
237 |
+
if i % accelerator.num_processes != accelerator.process_index:
|
238 |
+
continue
|
239 |
+
|
240 |
+
logger.debug(
|
241 |
+
f"Precomputing conditions for batch {i + 1}/{len(self.dataset)} on process {accelerator.process_index}"
|
242 |
+
)
|
243 |
+
|
244 |
+
text_conditions = self.model_config["prepare_conditions"](
|
245 |
+
tokenizer=self.tokenizer,
|
246 |
+
tokenizer_2=self.tokenizer_2,
|
247 |
+
tokenizer_3=self.tokenizer_3,
|
248 |
+
text_encoder=self.text_encoder,
|
249 |
+
text_encoder_2=self.text_encoder_2,
|
250 |
+
text_encoder_3=self.text_encoder_3,
|
251 |
+
prompt=data["prompt"],
|
252 |
+
device=accelerator.device,
|
253 |
+
dtype=self.args.transformer_dtype,
|
254 |
+
)
|
255 |
+
filename = conditions_dir / f"conditions-{accelerator.process_index}-{index}.pt"
|
256 |
+
torch.save(text_conditions, filename.as_posix())
|
257 |
+
index += 1
|
258 |
+
progress_bar.update(1)
|
259 |
+
self._delete_components()
|
260 |
+
|
261 |
+
memory_statistics = get_memory_statistics()
|
262 |
+
logger.info(f"Memory after precomputing conditions: {json.dumps(memory_statistics, indent=4)}")
|
263 |
+
torch.cuda.reset_peak_memory_stats(accelerator.device)
|
264 |
+
|
265 |
+
# Precompute latents
|
266 |
+
with self.state.accelerator.main_process_first():
|
267 |
+
latent_components = self.model_config["load_latent_models"](**self._get_load_components_kwargs())
|
268 |
+
self._set_components(latent_components)
|
269 |
+
self._move_components_to_device()
|
270 |
+
self._disable_grad_for_components([self.vae])
|
271 |
+
|
272 |
+
if self.vae is not None:
|
273 |
+
if self.args.enable_slicing:
|
274 |
+
self.vae.enable_slicing()
|
275 |
+
if self.args.enable_tiling:
|
276 |
+
self.vae.enable_tiling()
|
277 |
+
|
278 |
+
progress_bar = tqdm(
|
279 |
+
range(0, (len(self.dataset) + accelerator.num_processes - 1) // accelerator.num_processes),
|
280 |
+
desc="Precomputing latents",
|
281 |
+
disable=not accelerator.is_local_main_process,
|
282 |
+
)
|
283 |
+
index = 0
|
284 |
+
for i, data in enumerate(self.dataset):
|
285 |
+
if i % accelerator.num_processes != accelerator.process_index:
|
286 |
+
continue
|
287 |
+
|
288 |
+
logger.debug(
|
289 |
+
f"Precomputing latents for batch {i + 1}/{len(self.dataset)} on process {accelerator.process_index}"
|
290 |
+
)
|
291 |
+
|
292 |
+
latent_conditions = self.model_config["prepare_latents"](
|
293 |
+
vae=self.vae,
|
294 |
+
image_or_video=data["video"].unsqueeze(0),
|
295 |
+
device=accelerator.device,
|
296 |
+
dtype=self.args.transformer_dtype,
|
297 |
+
generator=self.state.generator,
|
298 |
+
precompute=True,
|
299 |
+
)
|
300 |
+
filename = latents_dir / f"latents-{accelerator.process_index}-{index}.pt"
|
301 |
+
torch.save(latent_conditions, filename.as_posix())
|
302 |
+
index += 1
|
303 |
+
progress_bar.update(1)
|
304 |
+
self._delete_components()
|
305 |
+
|
306 |
+
accelerator.wait_for_everyone()
|
307 |
+
logger.info("Precomputation complete")
|
308 |
+
|
309 |
+
memory_statistics = get_memory_statistics()
|
310 |
+
logger.info(f"Memory after precomputing latents: {json.dumps(memory_statistics, indent=4)}")
|
311 |
+
torch.cuda.reset_peak_memory_stats(accelerator.device)
|
312 |
+
|
313 |
+
# Update dataloader to use precomputed conditions and latents
|
314 |
+
self.dataloader = torch.utils.data.DataLoader(
|
315 |
+
PrecomputedDataset(
|
316 |
+
data_root=self.args.data_root, model_name=self.args.model_name, cleaned_model_id=cleaned_model_id
|
317 |
+
),
|
318 |
+
batch_size=self.args.batch_size,
|
319 |
+
shuffle=True,
|
320 |
+
collate_fn=collate_fn,
|
321 |
+
num_workers=self.args.dataloader_num_workers,
|
322 |
+
pin_memory=self.args.pin_memory,
|
323 |
+
)
|
324 |
+
|
325 |
+
def prepare_trainable_parameters(self) -> None:
|
326 |
+
logger.info("Initializing trainable parameters")
|
327 |
+
|
328 |
+
with self.state.accelerator.main_process_first():
|
329 |
+
diffusion_components = self.model_config["load_diffusion_models"](**self._get_load_components_kwargs())
|
330 |
+
self._set_components(diffusion_components)
|
331 |
+
|
332 |
+
components = [self.text_encoder, self.text_encoder_2, self.text_encoder_3, self.vae]
|
333 |
+
self._disable_grad_for_components(components)
|
334 |
+
|
335 |
+
if self.args.training_type == "full-finetune":
|
336 |
+
logger.info("Finetuning transformer with no additional parameters")
|
337 |
+
self._enable_grad_for_components([self.transformer])
|
338 |
+
else:
|
339 |
+
logger.info("Finetuning transformer with PEFT parameters")
|
340 |
+
self._disable_grad_for_components([self.transformer])
|
341 |
+
|
342 |
+
# Layerwise upcasting must be applied before adding the LoRA adapter.
|
343 |
+
# If we don't perform this before moving to device, we might OOM on the GPU. So, best to do it on
|
344 |
+
# CPU for now, before support is added in Diffusers for loading and enabling layerwise upcasting directly.
|
345 |
+
if self.args.training_type == "lora" and "transformer" in self.args.layerwise_upcasting_modules:
|
346 |
+
apply_layerwise_upcasting(
|
347 |
+
self.transformer,
|
348 |
+
storage_dtype=self.args.layerwise_upcasting_storage_dtype,
|
349 |
+
compute_dtype=self.args.transformer_dtype,
|
350 |
+
skip_modules_pattern=self.args.layerwise_upcasting_skip_modules_pattern,
|
351 |
+
non_blocking=True,
|
352 |
+
)
|
353 |
+
|
354 |
+
self._move_components_to_device()
|
355 |
+
|
356 |
+
if self.args.gradient_checkpointing:
|
357 |
+
self.transformer.enable_gradient_checkpointing()
|
358 |
+
|
359 |
+
if self.args.training_type == "lora":
|
360 |
+
transformer_lora_config = LoraConfig(
|
361 |
+
r=self.args.rank,
|
362 |
+
lora_alpha=self.args.lora_alpha,
|
363 |
+
init_lora_weights=True,
|
364 |
+
target_modules=self.args.target_modules,
|
365 |
+
)
|
366 |
+
self.transformer.add_adapter(transformer_lora_config)
|
367 |
+
else:
|
368 |
+
transformer_lora_config = None
|
369 |
+
|
370 |
+
# TODO(aryan): it might be nice to add some assertions here to make sure that lora parameters are still in fp32
|
371 |
+
# even if layerwise upcasting. Would be nice to have a test as well
|
372 |
+
|
373 |
+
self.register_saving_loading_hooks(transformer_lora_config)
|
374 |
+
|
375 |
+
def register_saving_loading_hooks(self, transformer_lora_config):
|
376 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
377 |
+
def save_model_hook(models, weights, output_dir):
|
378 |
+
if self.state.accelerator.is_main_process:
|
379 |
+
transformer_lora_layers_to_save = None
|
380 |
+
|
381 |
+
for model in models:
|
382 |
+
if isinstance(
|
383 |
+
unwrap_model(self.state.accelerator, model),
|
384 |
+
type(unwrap_model(self.state.accelerator, self.transformer)),
|
385 |
+
):
|
386 |
+
model = unwrap_model(self.state.accelerator, model)
|
387 |
+
if self.args.training_type == "lora":
|
388 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
|
389 |
+
else:
|
390 |
+
raise ValueError(f"Unexpected save model: {model.__class__}")
|
391 |
+
|
392 |
+
# make sure to pop weight so that corresponding model is not saved again
|
393 |
+
if weights:
|
394 |
+
weights.pop()
|
395 |
+
|
396 |
+
if self.args.training_type == "lora":
|
397 |
+
self.model_config["pipeline_cls"].save_lora_weights(
|
398 |
+
output_dir,
|
399 |
+
transformer_lora_layers=transformer_lora_layers_to_save,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
model.save_pretrained(os.path.join(output_dir, "transformer"))
|
403 |
+
|
404 |
+
# In some cases, the scheduler needs to be loaded with specific config (e.g. in CogVideoX). Since we need
|
405 |
+
# to able to load all diffusion components from a specific checkpoint folder during validation, we need to
|
406 |
+
# ensure the scheduler config is serialized as well.
|
407 |
+
self.scheduler.save_pretrained(os.path.join(output_dir, "scheduler"))
|
408 |
+
|
409 |
+
def load_model_hook(models, input_dir):
|
410 |
+
if not self.state.accelerator.distributed_type == DistributedType.DEEPSPEED:
|
411 |
+
while len(models) > 0:
|
412 |
+
model = models.pop()
|
413 |
+
if isinstance(
|
414 |
+
unwrap_model(self.state.accelerator, model),
|
415 |
+
type(unwrap_model(self.state.accelerator, self.transformer)),
|
416 |
+
):
|
417 |
+
transformer_ = unwrap_model(self.state.accelerator, model)
|
418 |
+
else:
|
419 |
+
raise ValueError(
|
420 |
+
f"Unexpected save model: {unwrap_model(self.state.accelerator, model).__class__}"
|
421 |
+
)
|
422 |
+
else:
|
423 |
+
transformer_cls_ = unwrap_model(self.state.accelerator, self.transformer).__class__
|
424 |
+
|
425 |
+
if self.args.training_type == "lora":
|
426 |
+
transformer_ = transformer_cls_.from_pretrained(
|
427 |
+
self.args.pretrained_model_name_or_path, subfolder="transformer"
|
428 |
+
)
|
429 |
+
transformer_.add_adapter(transformer_lora_config)
|
430 |
+
lora_state_dict = self.model_config["pipeline_cls"].lora_state_dict(input_dir)
|
431 |
+
transformer_state_dict = {
|
432 |
+
f'{k.replace("transformer.", "")}': v
|
433 |
+
for k, v in lora_state_dict.items()
|
434 |
+
if k.startswith("transformer.")
|
435 |
+
}
|
436 |
+
incompatible_keys = set_peft_model_state_dict(
|
437 |
+
transformer_, transformer_state_dict, adapter_name="default"
|
438 |
+
)
|
439 |
+
if incompatible_keys is not None:
|
440 |
+
# check only for unexpected keys
|
441 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
442 |
+
if unexpected_keys:
|
443 |
+
logger.warning(
|
444 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
445 |
+
f" {unexpected_keys}. "
|
446 |
+
)
|
447 |
+
else:
|
448 |
+
transformer_ = transformer_cls_.from_pretrained(os.path.join(input_dir, "transformer"))
|
449 |
+
|
450 |
+
self.state.accelerator.register_save_state_pre_hook(save_model_hook)
|
451 |
+
self.state.accelerator.register_load_state_pre_hook(load_model_hook)
|
452 |
+
|
453 |
+
def prepare_optimizer(self) -> None:
|
454 |
+
logger.info("Initializing optimizer and lr scheduler")
|
455 |
+
|
456 |
+
self.state.train_epochs = self.args.train_epochs
|
457 |
+
self.state.train_steps = self.args.train_steps
|
458 |
+
|
459 |
+
# Make sure the trainable params are in float32
|
460 |
+
if self.args.training_type == "lora":
|
461 |
+
cast_training_params([self.transformer], dtype=torch.float32)
|
462 |
+
|
463 |
+
self.state.learning_rate = self.args.lr
|
464 |
+
if self.args.scale_lr:
|
465 |
+
self.state.learning_rate = (
|
466 |
+
self.state.learning_rate
|
467 |
+
* self.args.gradient_accumulation_steps
|
468 |
+
* self.args.batch_size
|
469 |
+
* self.state.accelerator.num_processes
|
470 |
+
)
|
471 |
+
|
472 |
+
transformer_trainable_parameters = list(filter(lambda p: p.requires_grad, self.transformer.parameters()))
|
473 |
+
transformer_parameters_with_lr = {
|
474 |
+
"params": transformer_trainable_parameters,
|
475 |
+
"lr": self.state.learning_rate,
|
476 |
+
}
|
477 |
+
params_to_optimize = [transformer_parameters_with_lr]
|
478 |
+
self.state.num_trainable_parameters = sum(p.numel() for p in transformer_trainable_parameters)
|
479 |
+
|
480 |
+
use_deepspeed_opt = (
|
481 |
+
self.state.accelerator.state.deepspeed_plugin is not None
|
482 |
+
and "optimizer" in self.state.accelerator.state.deepspeed_plugin.deepspeed_config
|
483 |
+
)
|
484 |
+
optimizer = get_optimizer(
|
485 |
+
params_to_optimize=params_to_optimize,
|
486 |
+
optimizer_name=self.args.optimizer,
|
487 |
+
learning_rate=self.state.learning_rate,
|
488 |
+
beta1=self.args.beta1,
|
489 |
+
beta2=self.args.beta2,
|
490 |
+
beta3=self.args.beta3,
|
491 |
+
epsilon=self.args.epsilon,
|
492 |
+
weight_decay=self.args.weight_decay,
|
493 |
+
use_8bit=self.args.use_8bit_bnb,
|
494 |
+
use_deepspeed=use_deepspeed_opt,
|
495 |
+
)
|
496 |
+
|
497 |
+
num_update_steps_per_epoch = math.ceil(len(self.dataloader) / self.args.gradient_accumulation_steps)
|
498 |
+
if self.state.train_steps is None:
|
499 |
+
self.state.train_steps = self.state.train_epochs * num_update_steps_per_epoch
|
500 |
+
self.state.overwrote_max_train_steps = True
|
501 |
+
|
502 |
+
use_deepspeed_lr_scheduler = (
|
503 |
+
self.state.accelerator.state.deepspeed_plugin is not None
|
504 |
+
and "scheduler" in self.state.accelerator.state.deepspeed_plugin.deepspeed_config
|
505 |
+
)
|
506 |
+
total_training_steps = self.state.train_steps * self.state.accelerator.num_processes
|
507 |
+
num_warmup_steps = self.args.lr_warmup_steps * self.state.accelerator.num_processes
|
508 |
+
|
509 |
+
if use_deepspeed_lr_scheduler:
|
510 |
+
from accelerate.utils import DummyScheduler
|
511 |
+
|
512 |
+
lr_scheduler = DummyScheduler(
|
513 |
+
name=self.args.lr_scheduler,
|
514 |
+
optimizer=optimizer,
|
515 |
+
total_num_steps=total_training_steps,
|
516 |
+
num_warmup_steps=num_warmup_steps,
|
517 |
+
)
|
518 |
+
else:
|
519 |
+
lr_scheduler = get_scheduler(
|
520 |
+
name=self.args.lr_scheduler,
|
521 |
+
optimizer=optimizer,
|
522 |
+
num_warmup_steps=num_warmup_steps,
|
523 |
+
num_training_steps=total_training_steps,
|
524 |
+
num_cycles=self.args.lr_num_cycles,
|
525 |
+
power=self.args.lr_power,
|
526 |
+
)
|
527 |
+
|
528 |
+
self.optimizer = optimizer
|
529 |
+
self.lr_scheduler = lr_scheduler
|
530 |
+
|
531 |
+
def prepare_for_training(self) -> None:
|
532 |
+
self.transformer, self.optimizer, self.dataloader, self.lr_scheduler = self.state.accelerator.prepare(
|
533 |
+
self.transformer, self.optimizer, self.dataloader, self.lr_scheduler
|
534 |
+
)
|
535 |
+
|
536 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
537 |
+
num_update_steps_per_epoch = math.ceil(len(self.dataloader) / self.args.gradient_accumulation_steps)
|
538 |
+
if self.state.overwrote_max_train_steps:
|
539 |
+
self.state.train_steps = self.state.train_epochs * num_update_steps_per_epoch
|
540 |
+
# Afterwards we recalculate our number of training epochs
|
541 |
+
self.state.train_epochs = math.ceil(self.state.train_steps / num_update_steps_per_epoch)
|
542 |
+
self.state.num_update_steps_per_epoch = num_update_steps_per_epoch
|
543 |
+
|
544 |
+
def prepare_trackers(self) -> None:
|
545 |
+
logger.info("Initializing trackers")
|
546 |
+
|
547 |
+
tracker_name = self.args.tracker_name or "finetrainers-experiment"
|
548 |
+
self.state.accelerator.init_trackers(tracker_name, config=self._get_training_info())
|
549 |
+
|
550 |
+
def train(self) -> None:
|
551 |
+
logger.info("Starting training")
|
552 |
+
|
553 |
+
|
554 |
+
# Add these lines at the beginning
|
555 |
+
if hasattr(resource, 'RLIMIT_NOFILE'):
|
556 |
+
try:
|
557 |
+
soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
558 |
+
logger.info(f"Current file descriptor limits in trainer: soft={soft}, hard={hard}")
|
559 |
+
# Try to increase to hard limit if possible
|
560 |
+
if soft < hard:
|
561 |
+
resource.setrlimit(resource.RLIMIT_NOFILE, (hard, hard))
|
562 |
+
new_soft, new_hard = resource.getrlimit(resource.RLIMIT_NOFILE)
|
563 |
+
logger.info(f"Updated file descriptor limits: soft={new_soft}, hard={new_hard}")
|
564 |
+
except Exception as e:
|
565 |
+
logger.warning(f"Could not check or update file descriptor limits: {e}")
|
566 |
+
|
567 |
+
memory_statistics = get_memory_statistics()
|
568 |
+
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
569 |
+
|
570 |
+
if self.vae_config is None:
|
571 |
+
# If we've precomputed conditions and latents already, and are now re-using it, we will never load
|
572 |
+
# the VAE so self.vae_config will not be set. So, we need to load it here.
|
573 |
+
vae_cls = resolve_vae_cls_from_ckpt_path(
|
574 |
+
self.args.pretrained_model_name_or_path, revision=self.args.revision, cache_dir=self.args.cache_dir
|
575 |
+
)
|
576 |
+
vae_config = vae_cls.load_config(
|
577 |
+
self.args.pretrained_model_name_or_path,
|
578 |
+
subfolder="vae",
|
579 |
+
revision=self.args.revision,
|
580 |
+
cache_dir=self.args.cache_dir,
|
581 |
+
)
|
582 |
+
self.vae_config = FrozenDict(**vae_config)
|
583 |
+
|
584 |
+
# In some cases, the scheduler needs to be loaded with specific config (e.g. in CogVideoX). Since we need
|
585 |
+
# to able to load all diffusion components from a specific checkpoint folder during validation, we need to
|
586 |
+
# ensure the scheduler config is serialized as well.
|
587 |
+
if self.args.training_type == "full-finetune":
|
588 |
+
self.scheduler.save_pretrained(os.path.join(self.args.output_dir, "scheduler"))
|
589 |
+
|
590 |
+
self.state.train_batch_size = (
|
591 |
+
self.args.batch_size * self.state.accelerator.num_processes * self.args.gradient_accumulation_steps
|
592 |
+
)
|
593 |
+
info = {
|
594 |
+
"trainable parameters": self.state.num_trainable_parameters,
|
595 |
+
"total samples": len(self.dataset),
|
596 |
+
"train epochs": self.state.train_epochs,
|
597 |
+
"train steps": self.state.train_steps,
|
598 |
+
"batches per device": self.args.batch_size,
|
599 |
+
"total batches observed per epoch": len(self.dataloader),
|
600 |
+
"train batch size": self.state.train_batch_size,
|
601 |
+
"gradient accumulation steps": self.args.gradient_accumulation_steps,
|
602 |
+
}
|
603 |
+
logger.info(f"Training configuration: {json.dumps(info, indent=4)}")
|
604 |
+
|
605 |
+
global_step = 0
|
606 |
+
first_epoch = 0
|
607 |
+
initial_global_step = 0
|
608 |
+
|
609 |
+
# Potentially load in the weights and states from a previous save
|
610 |
+
(
|
611 |
+
resume_from_checkpoint_path,
|
612 |
+
initial_global_step,
|
613 |
+
global_step,
|
614 |
+
first_epoch,
|
615 |
+
) = get_latest_ckpt_path_to_resume_from(
|
616 |
+
resume_from_checkpoint=self.args.resume_from_checkpoint,
|
617 |
+
num_update_steps_per_epoch=self.state.num_update_steps_per_epoch,
|
618 |
+
output_dir=self.args.output_dir,
|
619 |
+
)
|
620 |
+
if resume_from_checkpoint_path:
|
621 |
+
self.state.accelerator.load_state(resume_from_checkpoint_path)
|
622 |
+
|
623 |
+
progress_bar = tqdm(
|
624 |
+
range(0, self.state.train_steps),
|
625 |
+
initial=initial_global_step,
|
626 |
+
desc="Training steps",
|
627 |
+
disable=not self.state.accelerator.is_local_main_process,
|
628 |
+
)
|
629 |
+
|
630 |
+
accelerator = self.state.accelerator
|
631 |
+
generator = torch.Generator(device=accelerator.device)
|
632 |
+
if self.args.seed is not None:
|
633 |
+
generator = generator.manual_seed(self.args.seed)
|
634 |
+
self.state.generator = generator
|
635 |
+
|
636 |
+
scheduler_sigmas = get_scheduler_sigmas(self.scheduler)
|
637 |
+
scheduler_sigmas = (
|
638 |
+
scheduler_sigmas.to(device=accelerator.device, dtype=torch.float32)
|
639 |
+
if scheduler_sigmas is not None
|
640 |
+
else None
|
641 |
+
)
|
642 |
+
scheduler_alphas = get_scheduler_alphas(self.scheduler)
|
643 |
+
scheduler_alphas = (
|
644 |
+
scheduler_alphas.to(device=accelerator.device, dtype=torch.float32)
|
645 |
+
if scheduler_alphas is not None
|
646 |
+
else None
|
647 |
+
)
|
648 |
+
|
649 |
+
for epoch in range(first_epoch, self.state.train_epochs):
|
650 |
+
logger.debug(f"Starting epoch ({epoch + 1}/{self.state.train_epochs})")
|
651 |
+
|
652 |
+
self.transformer.train()
|
653 |
+
models_to_accumulate = [self.transformer]
|
654 |
+
epoch_loss = 0.0
|
655 |
+
num_loss_updates = 0
|
656 |
+
|
657 |
+
for step, batch in enumerate(self.dataloader):
|
658 |
+
logger.debug(f"Starting step {step + 1}")
|
659 |
+
logs = {}
|
660 |
+
|
661 |
+
with accelerator.accumulate(models_to_accumulate):
|
662 |
+
if not self.args.precompute_conditions:
|
663 |
+
videos = batch["videos"]
|
664 |
+
prompts = batch["prompts"]
|
665 |
+
batch_size = len(prompts)
|
666 |
+
|
667 |
+
if self.args.caption_dropout_technique == "empty":
|
668 |
+
if random.random() < self.args.caption_dropout_p:
|
669 |
+
prompts = [""] * batch_size
|
670 |
+
|
671 |
+
latent_conditions = self.model_config["prepare_latents"](
|
672 |
+
vae=self.vae,
|
673 |
+
image_or_video=videos,
|
674 |
+
patch_size=self.transformer_config.patch_size,
|
675 |
+
patch_size_t=self.transformer_config.patch_size_t,
|
676 |
+
device=accelerator.device,
|
677 |
+
dtype=self.args.transformer_dtype,
|
678 |
+
generator=self.state.generator,
|
679 |
+
)
|
680 |
+
text_conditions = self.model_config["prepare_conditions"](
|
681 |
+
tokenizer=self.tokenizer,
|
682 |
+
text_encoder=self.text_encoder,
|
683 |
+
tokenizer_2=self.tokenizer_2,
|
684 |
+
text_encoder_2=self.text_encoder_2,
|
685 |
+
prompt=prompts,
|
686 |
+
device=accelerator.device,
|
687 |
+
dtype=self.args.transformer_dtype,
|
688 |
+
)
|
689 |
+
else:
|
690 |
+
latent_conditions = batch["latent_conditions"]
|
691 |
+
text_conditions = batch["text_conditions"]
|
692 |
+
latent_conditions["latents"] = DiagonalGaussianDistribution(
|
693 |
+
latent_conditions["latents"]
|
694 |
+
).sample(self.state.generator)
|
695 |
+
|
696 |
+
# This method should only be called for precomputed latents.
|
697 |
+
# TODO(aryan): rename this in separate PR
|
698 |
+
latent_conditions = self.model_config["post_latent_preparation"](
|
699 |
+
vae_config=self.vae_config,
|
700 |
+
patch_size=self.transformer_config.patch_size,
|
701 |
+
patch_size_t=self.transformer_config.patch_size_t,
|
702 |
+
**latent_conditions,
|
703 |
+
)
|
704 |
+
align_device_and_dtype(latent_conditions, accelerator.device, self.args.transformer_dtype)
|
705 |
+
align_device_and_dtype(text_conditions, accelerator.device, self.args.transformer_dtype)
|
706 |
+
batch_size = latent_conditions["latents"].shape[0]
|
707 |
+
|
708 |
+
latent_conditions = make_contiguous(latent_conditions)
|
709 |
+
text_conditions = make_contiguous(text_conditions)
|
710 |
+
|
711 |
+
if self.args.caption_dropout_technique == "zero":
|
712 |
+
if random.random() < self.args.caption_dropout_p:
|
713 |
+
text_conditions["prompt_embeds"].fill_(0)
|
714 |
+
text_conditions["prompt_attention_mask"].fill_(False)
|
715 |
+
|
716 |
+
# TODO(aryan): refactor later
|
717 |
+
if "pooled_prompt_embeds" in text_conditions:
|
718 |
+
text_conditions["pooled_prompt_embeds"].fill_(0)
|
719 |
+
|
720 |
+
sigmas = prepare_sigmas(
|
721 |
+
scheduler=self.scheduler,
|
722 |
+
sigmas=scheduler_sigmas,
|
723 |
+
batch_size=batch_size,
|
724 |
+
num_train_timesteps=self.scheduler.config.num_train_timesteps,
|
725 |
+
flow_weighting_scheme=self.args.flow_weighting_scheme,
|
726 |
+
flow_logit_mean=self.args.flow_logit_mean,
|
727 |
+
flow_logit_std=self.args.flow_logit_std,
|
728 |
+
flow_mode_scale=self.args.flow_mode_scale,
|
729 |
+
device=accelerator.device,
|
730 |
+
generator=self.state.generator,
|
731 |
+
)
|
732 |
+
timesteps = (sigmas * 1000.0).long()
|
733 |
+
|
734 |
+
noise = torch.randn(
|
735 |
+
latent_conditions["latents"].shape,
|
736 |
+
generator=self.state.generator,
|
737 |
+
device=accelerator.device,
|
738 |
+
dtype=self.args.transformer_dtype,
|
739 |
+
)
|
740 |
+
sigmas = expand_tensor_dims(sigmas, ndim=noise.ndim)
|
741 |
+
|
742 |
+
# TODO(aryan): We probably don't need calculate_noisy_latents because we can determine the type of
|
743 |
+
# scheduler and calculate the noisy latents accordingly. Look into this later.
|
744 |
+
if "calculate_noisy_latents" in self.model_config.keys():
|
745 |
+
noisy_latents = self.model_config["calculate_noisy_latents"](
|
746 |
+
scheduler=self.scheduler,
|
747 |
+
noise=noise,
|
748 |
+
latents=latent_conditions["latents"],
|
749 |
+
timesteps=timesteps,
|
750 |
+
)
|
751 |
+
else:
|
752 |
+
# Default to flow-matching noise addition
|
753 |
+
noisy_latents = (1.0 - sigmas) * latent_conditions["latents"] + sigmas * noise
|
754 |
+
noisy_latents = noisy_latents.to(latent_conditions["latents"].dtype)
|
755 |
+
|
756 |
+
latent_conditions.update({"noisy_latents": noisy_latents})
|
757 |
+
|
758 |
+
weights = prepare_loss_weights(
|
759 |
+
scheduler=self.scheduler,
|
760 |
+
alphas=scheduler_alphas[timesteps] if scheduler_alphas is not None else None,
|
761 |
+
sigmas=sigmas,
|
762 |
+
flow_weighting_scheme=self.args.flow_weighting_scheme,
|
763 |
+
)
|
764 |
+
weights = expand_tensor_dims(weights, noise.ndim)
|
765 |
+
|
766 |
+
pred = self.model_config["forward_pass"](
|
767 |
+
transformer=self.transformer,
|
768 |
+
scheduler=self.scheduler,
|
769 |
+
timesteps=timesteps,
|
770 |
+
**latent_conditions,
|
771 |
+
**text_conditions,
|
772 |
+
)
|
773 |
+
target = prepare_target(
|
774 |
+
scheduler=self.scheduler, noise=noise, latents=latent_conditions["latents"]
|
775 |
+
)
|
776 |
+
|
777 |
+
loss = weights.float() * (pred["latents"].float() - target.float()).pow(2)
|
778 |
+
# Average loss across all but batch dimension
|
779 |
+
loss = loss.mean(list(range(1, loss.ndim)))
|
780 |
+
# Average loss across batch dimension
|
781 |
+
loss = loss.mean()
|
782 |
+
accelerator.backward(loss)
|
783 |
+
|
784 |
+
if accelerator.sync_gradients:
|
785 |
+
if accelerator.distributed_type == DistributedType.DEEPSPEED:
|
786 |
+
grad_norm = self.transformer.get_global_grad_norm()
|
787 |
+
# In some cases the grad norm may not return a float
|
788 |
+
if torch.is_tensor(grad_norm):
|
789 |
+
grad_norm = grad_norm.item()
|
790 |
+
else:
|
791 |
+
grad_norm = accelerator.clip_grad_norm_(
|
792 |
+
self.transformer.parameters(), self.args.max_grad_norm
|
793 |
+
)
|
794 |
+
if torch.is_tensor(grad_norm):
|
795 |
+
grad_norm = grad_norm.item()
|
796 |
+
|
797 |
+
logs["grad_norm"] = grad_norm
|
798 |
+
|
799 |
+
self.optimizer.step()
|
800 |
+
self.lr_scheduler.step()
|
801 |
+
self.optimizer.zero_grad()
|
802 |
+
|
803 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
804 |
+
if accelerator.sync_gradients:
|
805 |
+
progress_bar.update(1)
|
806 |
+
global_step += 1
|
807 |
+
|
808 |
+
# Checkpointing
|
809 |
+
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process:
|
810 |
+
if global_step % self.args.checkpointing_steps == 0:
|
811 |
+
save_path = get_intermediate_ckpt_path(
|
812 |
+
checkpointing_limit=self.args.checkpointing_limit,
|
813 |
+
step=global_step,
|
814 |
+
output_dir=self.args.output_dir,
|
815 |
+
)
|
816 |
+
accelerator.save_state(save_path)
|
817 |
+
|
818 |
+
# Maybe run validation
|
819 |
+
should_run_validation = (
|
820 |
+
self.args.validation_every_n_steps is not None
|
821 |
+
and global_step % self.args.validation_every_n_steps == 0
|
822 |
+
)
|
823 |
+
if should_run_validation:
|
824 |
+
self.validate(global_step)
|
825 |
+
|
826 |
+
loss_item = loss.detach().item()
|
827 |
+
epoch_loss += loss_item
|
828 |
+
num_loss_updates += 1
|
829 |
+
logs["step_loss"] = loss_item
|
830 |
+
logs["lr"] = self.lr_scheduler.get_last_lr()[0]
|
831 |
+
progress_bar.set_postfix(logs)
|
832 |
+
accelerator.log(logs, step=global_step)
|
833 |
+
|
834 |
+
if global_step % 100 == 0: # Every 100 steps
|
835 |
+
# Force garbage collection to clean up any lingering resources
|
836 |
+
gc.collect()
|
837 |
+
|
838 |
+
if global_step >= self.state.train_steps:
|
839 |
+
break
|
840 |
+
|
841 |
+
|
842 |
+
|
843 |
+
if num_loss_updates > 0:
|
844 |
+
epoch_loss /= num_loss_updates
|
845 |
+
accelerator.log({"epoch_loss": epoch_loss}, step=global_step)
|
846 |
+
memory_statistics = get_memory_statistics()
|
847 |
+
logger.info(f"Memory after epoch {epoch + 1}: {json.dumps(memory_statistics, indent=4)}")
|
848 |
+
|
849 |
+
# Maybe run validation
|
850 |
+
should_run_validation = (
|
851 |
+
self.args.validation_every_n_epochs is not None
|
852 |
+
and (epoch + 1) % self.args.validation_every_n_epochs == 0
|
853 |
+
)
|
854 |
+
if should_run_validation:
|
855 |
+
self.validate(global_step)
|
856 |
+
|
857 |
+
if epoch % 3 == 0: # Every 3 epochs
|
858 |
+
logger.info("Performing periodic resource cleanup")
|
859 |
+
free_memory()
|
860 |
+
gc.collect()
|
861 |
+
torch.cuda.empty_cache()
|
862 |
+
torch.cuda.synchronize(accelerator.device)
|
863 |
+
|
864 |
+
accelerator.wait_for_everyone()
|
865 |
+
if accelerator.is_main_process:
|
866 |
+
transformer = unwrap_model(accelerator, self.transformer)
|
867 |
+
|
868 |
+
if self.args.training_type == "lora":
|
869 |
+
transformer_lora_layers = get_peft_model_state_dict(transformer)
|
870 |
+
|
871 |
+
self.model_config["pipeline_cls"].save_lora_weights(
|
872 |
+
save_directory=self.args.output_dir,
|
873 |
+
transformer_lora_layers=transformer_lora_layers,
|
874 |
+
)
|
875 |
+
else:
|
876 |
+
transformer.save_pretrained(os.path.join(self.args.output_dir, "transformer"))
|
877 |
+
accelerator.wait_for_everyone()
|
878 |
+
self.validate(step=global_step, final_validation=True)
|
879 |
+
|
880 |
+
if accelerator.is_main_process:
|
881 |
+
if self.args.push_to_hub:
|
882 |
+
upload_folder(
|
883 |
+
repo_id=self.state.repo_id, folder_path=self.args.output_dir, ignore_patterns=["checkpoint-*"]
|
884 |
+
)
|
885 |
+
|
886 |
+
self._delete_components()
|
887 |
+
memory_statistics = get_memory_statistics()
|
888 |
+
logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")
|
889 |
+
|
890 |
+
accelerator.end_training()
|
891 |
+
|
892 |
+
def validate(self, step: int, final_validation: bool = False) -> None:
|
893 |
+
logger.info("Starting validation")
|
894 |
+
|
895 |
+
accelerator = self.state.accelerator
|
896 |
+
num_validation_samples = len(self.args.validation_prompts)
|
897 |
+
|
898 |
+
if num_validation_samples == 0:
|
899 |
+
logger.warning("No validation samples found. Skipping validation.")
|
900 |
+
if accelerator.is_main_process:
|
901 |
+
if self.args.push_to_hub:
|
902 |
+
save_model_card(
|
903 |
+
args=self.args,
|
904 |
+
repo_id=self.state.repo_id,
|
905 |
+
videos=None,
|
906 |
+
validation_prompts=None,
|
907 |
+
)
|
908 |
+
return
|
909 |
+
|
910 |
+
self.transformer.eval()
|
911 |
+
|
912 |
+
memory_statistics = get_memory_statistics()
|
913 |
+
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
|
914 |
+
|
915 |
+
pipeline = self._get_and_prepare_pipeline_for_validation(final_validation=final_validation)
|
916 |
+
|
917 |
+
all_processes_artifacts = []
|
918 |
+
prompts_to_filenames = {}
|
919 |
+
for i in range(num_validation_samples):
|
920 |
+
# Skip current validation on all processes but one
|
921 |
+
if i % accelerator.num_processes != accelerator.process_index:
|
922 |
+
continue
|
923 |
+
|
924 |
+
prompt = self.args.validation_prompts[i]
|
925 |
+
image = self.args.validation_images[i]
|
926 |
+
video = self.args.validation_videos[i]
|
927 |
+
height = self.args.validation_heights[i]
|
928 |
+
width = self.args.validation_widths[i]
|
929 |
+
num_frames = self.args.validation_num_frames[i]
|
930 |
+
frame_rate = self.args.validation_frame_rate
|
931 |
+
if image is not None:
|
932 |
+
image = load_image(image)
|
933 |
+
if video is not None:
|
934 |
+
video = load_video(video)
|
935 |
+
|
936 |
+
logger.debug(
|
937 |
+
f"Validating sample {i + 1}/{num_validation_samples} on process {accelerator.process_index}. Prompt: {prompt}",
|
938 |
+
main_process_only=False,
|
939 |
+
)
|
940 |
+
validation_artifacts = self.model_config["validation"](
|
941 |
+
pipeline=pipeline,
|
942 |
+
prompt=prompt,
|
943 |
+
image=image,
|
944 |
+
video=video,
|
945 |
+
height=height,
|
946 |
+
width=width,
|
947 |
+
num_frames=num_frames,
|
948 |
+
frame_rate=frame_rate,
|
949 |
+
num_videos_per_prompt=self.args.num_validation_videos_per_prompt,
|
950 |
+
generator=torch.Generator(device=accelerator.device).manual_seed(
|
951 |
+
self.args.seed if self.args.seed is not None else 0
|
952 |
+
),
|
953 |
+
# todo support passing `fps` for supported pipelines.
|
954 |
+
)
|
955 |
+
|
956 |
+
prompt_filename = string_to_filename(prompt)[:25]
|
957 |
+
artifacts = {
|
958 |
+
"image": {"type": "image", "value": image},
|
959 |
+
"video": {"type": "video", "value": video},
|
960 |
+
}
|
961 |
+
for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
|
962 |
+
if artifact_value:
|
963 |
+
artifacts.update({f"artifact_{i}": {"type": artifact_type, "value": artifact_value}})
|
964 |
+
logger.debug(
|
965 |
+
f"Validation artifacts on process {accelerator.process_index}: {list(artifacts.keys())}",
|
966 |
+
main_process_only=False,
|
967 |
+
)
|
968 |
+
|
969 |
+
for index, (key, value) in enumerate(list(artifacts.items())):
|
970 |
+
artifact_type = value["type"]
|
971 |
+
artifact_value = value["value"]
|
972 |
+
if artifact_type not in ["image", "video"] or artifact_value is None:
|
973 |
+
continue
|
974 |
+
|
975 |
+
extension = "png" if artifact_type == "image" else "mp4"
|
976 |
+
filename = "validation-" if not final_validation else "final-"
|
977 |
+
filename += f"{step}-{accelerator.process_index}-{index}-{prompt_filename}.{extension}"
|
978 |
+
if accelerator.is_main_process and extension == "mp4":
|
979 |
+
prompts_to_filenames[prompt] = filename
|
980 |
+
filename = os.path.join(self.args.output_dir, filename)
|
981 |
+
|
982 |
+
if artifact_type == "image" and artifact_value:
|
983 |
+
logger.debug(f"Saving image to {filename}")
|
984 |
+
artifact_value.save(filename)
|
985 |
+
artifact_value = wandb.Image(filename)
|
986 |
+
elif artifact_type == "video" and artifact_value:
|
987 |
+
logger.debug(f"Saving video to {filename}")
|
988 |
+
# TODO: this should be configurable here as well as in validation runs where we call the pipeline that has `fps`.
|
989 |
+
export_to_video(artifact_value, filename, fps=frame_rate)
|
990 |
+
artifact_value = wandb.Video(filename, caption=prompt)
|
991 |
+
|
992 |
+
all_processes_artifacts.append(artifact_value)
|
993 |
+
|
994 |
+
all_artifacts = gather_object(all_processes_artifacts)
|
995 |
+
|
996 |
+
if accelerator.is_main_process:
|
997 |
+
tracker_key = "final" if final_validation else "validation"
|
998 |
+
for tracker in accelerator.trackers:
|
999 |
+
if tracker.name == "wandb":
|
1000 |
+
artifact_log_dict = {}
|
1001 |
+
|
1002 |
+
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
|
1003 |
+
if len(image_artifacts) > 0:
|
1004 |
+
artifact_log_dict["images"] = image_artifacts
|
1005 |
+
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
|
1006 |
+
if len(video_artifacts) > 0:
|
1007 |
+
artifact_log_dict["videos"] = video_artifacts
|
1008 |
+
tracker.log({tracker_key: artifact_log_dict}, step=step)
|
1009 |
+
|
1010 |
+
if self.args.push_to_hub and final_validation:
|
1011 |
+
video_filenames = list(prompts_to_filenames.values())
|
1012 |
+
prompts = list(prompts_to_filenames.keys())
|
1013 |
+
save_model_card(
|
1014 |
+
args=self.args,
|
1015 |
+
repo_id=self.state.repo_id,
|
1016 |
+
videos=video_filenames,
|
1017 |
+
validation_prompts=prompts,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# Remove all hooks that might have been added during pipeline initialization to the models
|
1021 |
+
pipeline.remove_all_hooks()
|
1022 |
+
del pipeline
|
1023 |
+
|
1024 |
+
accelerator.wait_for_everyone()
|
1025 |
+
|
1026 |
+
free_memory()
|
1027 |
+
memory_statistics = get_memory_statistics()
|
1028 |
+
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
|
1029 |
+
torch.cuda.reset_peak_memory_stats(accelerator.device)
|
1030 |
+
|
1031 |
+
if not final_validation:
|
1032 |
+
self.transformer.train()
|
1033 |
+
|
1034 |
+
def evaluate(self) -> None:
|
1035 |
+
raise NotImplementedError("Evaluation has not been implemented yet.")
|
1036 |
+
|
1037 |
+
def _init_distributed(self) -> None:
|
1038 |
+
logging_dir = Path(self.args.output_dir, self.args.logging_dir)
|
1039 |
+
project_config = ProjectConfiguration(project_dir=self.args.output_dir, logging_dir=logging_dir)
|
1040 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
1041 |
+
init_process_group_kwargs = InitProcessGroupKwargs(
|
1042 |
+
backend="nccl", timeout=timedelta(seconds=self.args.nccl_timeout)
|
1043 |
+
)
|
1044 |
+
report_to = None if self.args.report_to.lower() == "none" else self.args.report_to
|
1045 |
+
|
1046 |
+
accelerator = Accelerator(
|
1047 |
+
project_config=project_config,
|
1048 |
+
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
|
1049 |
+
log_with=report_to,
|
1050 |
+
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
# Disable AMP for MPS.
|
1054 |
+
if torch.backends.mps.is_available():
|
1055 |
+
accelerator.native_amp = False
|
1056 |
+
|
1057 |
+
self.state.accelerator = accelerator
|
1058 |
+
|
1059 |
+
if self.args.seed is not None:
|
1060 |
+
self.state.seed = self.args.seed
|
1061 |
+
set_seed(self.args.seed)
|
1062 |
+
|
1063 |
+
def _init_logging(self) -> None:
|
1064 |
+
logging.basicConfig(
|
1065 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
1066 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
1067 |
+
level=FINETRAINERS_LOG_LEVEL,
|
1068 |
+
)
|
1069 |
+
if self.state.accelerator.is_local_main_process:
|
1070 |
+
transformers.utils.logging.set_verbosity_warning()
|
1071 |
+
diffusers.utils.logging.set_verbosity_info()
|
1072 |
+
else:
|
1073 |
+
transformers.utils.logging.set_verbosity_error()
|
1074 |
+
diffusers.utils.logging.set_verbosity_error()
|
1075 |
+
|
1076 |
+
logger.info("Initialized FineTrainers")
|
1077 |
+
logger.info(self.state.accelerator.state, main_process_only=False)
|
1078 |
+
|
1079 |
+
def _init_directories_and_repositories(self) -> None:
|
1080 |
+
if self.state.accelerator.is_main_process:
|
1081 |
+
self.args.output_dir = Path(self.args.output_dir)
|
1082 |
+
self.args.output_dir.mkdir(parents=True, exist_ok=True)
|
1083 |
+
self.state.output_dir = Path(self.args.output_dir)
|
1084 |
+
|
1085 |
+
if self.args.push_to_hub:
|
1086 |
+
repo_id = self.args.hub_model_id or Path(self.args.output_dir).name
|
1087 |
+
self.state.repo_id = create_repo(token=self.args.hub_token, repo_id=repo_id, exist_ok=True).repo_id
|
1088 |
+
|
1089 |
+
def _init_config_options(self) -> None:
|
1090 |
+
# Enable TF32 for faster training on Ampere GPUs: https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
1091 |
+
if self.args.allow_tf32 and torch.cuda.is_available():
|
1092 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
1093 |
+
|
1094 |
+
def _move_components_to_device(self):
|
1095 |
+
if self.text_encoder is not None:
|
1096 |
+
self.text_encoder = self.text_encoder.to(self.state.accelerator.device)
|
1097 |
+
if self.text_encoder_2 is not None:
|
1098 |
+
self.text_encoder_2 = self.text_encoder_2.to(self.state.accelerator.device)
|
1099 |
+
if self.text_encoder_3 is not None:
|
1100 |
+
self.text_encoder_3 = self.text_encoder_3.to(self.state.accelerator.device)
|
1101 |
+
if self.transformer is not None:
|
1102 |
+
self.transformer = self.transformer.to(self.state.accelerator.device)
|
1103 |
+
if self.unet is not None:
|
1104 |
+
self.unet = self.unet.to(self.state.accelerator.device)
|
1105 |
+
if self.vae is not None:
|
1106 |
+
self.vae = self.vae.to(self.state.accelerator.device)
|
1107 |
+
|
1108 |
+
def _get_load_components_kwargs(self) -> Dict[str, Any]:
|
1109 |
+
load_component_kwargs = {
|
1110 |
+
"text_encoder_dtype": self.args.text_encoder_dtype,
|
1111 |
+
"text_encoder_2_dtype": self.args.text_encoder_2_dtype,
|
1112 |
+
"text_encoder_3_dtype": self.args.text_encoder_3_dtype,
|
1113 |
+
"transformer_dtype": self.args.transformer_dtype,
|
1114 |
+
"vae_dtype": self.args.vae_dtype,
|
1115 |
+
"shift": self.args.flow_shift,
|
1116 |
+
"revision": self.args.revision,
|
1117 |
+
"cache_dir": self.args.cache_dir,
|
1118 |
+
}
|
1119 |
+
if self.args.pretrained_model_name_or_path is not None:
|
1120 |
+
load_component_kwargs["model_id"] = self.args.pretrained_model_name_or_path
|
1121 |
+
return load_component_kwargs
|
1122 |
+
|
1123 |
+
def _set_components(self, components: Dict[str, Any]) -> None:
|
1124 |
+
# Set models
|
1125 |
+
self.tokenizer = components.get("tokenizer", self.tokenizer)
|
1126 |
+
self.tokenizer_2 = components.get("tokenizer_2", self.tokenizer_2)
|
1127 |
+
self.tokenizer_3 = components.get("tokenizer_3", self.tokenizer_3)
|
1128 |
+
self.text_encoder = components.get("text_encoder", self.text_encoder)
|
1129 |
+
self.text_encoder_2 = components.get("text_encoder_2", self.text_encoder_2)
|
1130 |
+
self.text_encoder_3 = components.get("text_encoder_3", self.text_encoder_3)
|
1131 |
+
self.transformer = components.get("transformer", self.transformer)
|
1132 |
+
self.unet = components.get("unet", self.unet)
|
1133 |
+
self.vae = components.get("vae", self.vae)
|
1134 |
+
self.scheduler = components.get("scheduler", self.scheduler)
|
1135 |
+
|
1136 |
+
# Set configs
|
1137 |
+
self.transformer_config = self.transformer.config if self.transformer is not None else self.transformer_config
|
1138 |
+
self.vae_config = self.vae.config if self.vae is not None else self.vae_config
|
1139 |
+
|
1140 |
+
def _delete_components(self) -> None:
|
1141 |
+
self.tokenizer = None
|
1142 |
+
self.tokenizer_2 = None
|
1143 |
+
self.tokenizer_3 = None
|
1144 |
+
self.text_encoder = None
|
1145 |
+
self.text_encoder_2 = None
|
1146 |
+
self.text_encoder_3 = None
|
1147 |
+
self.transformer = None
|
1148 |
+
self.unet = None
|
1149 |
+
self.vae = None
|
1150 |
+
self.scheduler = None
|
1151 |
+
free_memory()
|
1152 |
+
torch.cuda.synchronize(self.state.accelerator.device)
|
1153 |
+
|
1154 |
+
def _get_and_prepare_pipeline_for_validation(self, final_validation: bool = False) -> DiffusionPipeline:
|
1155 |
+
accelerator = self.state.accelerator
|
1156 |
+
if not final_validation:
|
1157 |
+
pipeline = self.model_config["initialize_pipeline"](
|
1158 |
+
model_id=self.args.pretrained_model_name_or_path,
|
1159 |
+
tokenizer=self.tokenizer,
|
1160 |
+
text_encoder=self.text_encoder,
|
1161 |
+
tokenizer_2=self.tokenizer_2,
|
1162 |
+
text_encoder_2=self.text_encoder_2,
|
1163 |
+
transformer=unwrap_model(accelerator, self.transformer),
|
1164 |
+
vae=self.vae,
|
1165 |
+
device=accelerator.device,
|
1166 |
+
revision=self.args.revision,
|
1167 |
+
cache_dir=self.args.cache_dir,
|
1168 |
+
enable_slicing=self.args.enable_slicing,
|
1169 |
+
enable_tiling=self.args.enable_tiling,
|
1170 |
+
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
|
1171 |
+
is_training=True,
|
1172 |
+
)
|
1173 |
+
else:
|
1174 |
+
self._delete_components()
|
1175 |
+
|
1176 |
+
# Load the transformer weights from the final checkpoint if performing full-finetune
|
1177 |
+
transformer = None
|
1178 |
+
if self.args.training_type == "full-finetune":
|
1179 |
+
transformer = self.model_config["load_diffusion_models"](model_id=self.args.output_dir)["transformer"]
|
1180 |
+
|
1181 |
+
pipeline = self.model_config["initialize_pipeline"](
|
1182 |
+
model_id=self.args.pretrained_model_name_or_path,
|
1183 |
+
transformer=transformer,
|
1184 |
+
device=accelerator.device,
|
1185 |
+
revision=self.args.revision,
|
1186 |
+
cache_dir=self.args.cache_dir,
|
1187 |
+
enable_slicing=self.args.enable_slicing,
|
1188 |
+
enable_tiling=self.args.enable_tiling,
|
1189 |
+
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
|
1190 |
+
is_training=False,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
# Load the LoRA weights if performing LoRA finetuning
|
1194 |
+
if self.args.training_type == "lora":
|
1195 |
+
pipeline.load_lora_weights(self.args.output_dir)
|
1196 |
+
|
1197 |
+
return pipeline
|
1198 |
+
|
1199 |
+
def _disable_grad_for_components(self, components: List[torch.nn.Module]):
|
1200 |
+
for component in components:
|
1201 |
+
if component is not None:
|
1202 |
+
component.requires_grad_(False)
|
1203 |
+
|
1204 |
+
def _enable_grad_for_components(self, components: List[torch.nn.Module]):
|
1205 |
+
for component in components:
|
1206 |
+
if component is not None:
|
1207 |
+
component.requires_grad_(True)
|
1208 |
+
|
1209 |
+
def _get_training_info(self) -> dict:
|
1210 |
+
args = self.args.to_dict()
|
1211 |
+
|
1212 |
+
training_args = args.get("training_arguments", {})
|
1213 |
+
training_type = training_args.get("training_type", "")
|
1214 |
+
|
1215 |
+
# LoRA/non-LoRA stuff.
|
1216 |
+
if training_type == "full-finetune":
|
1217 |
+
filtered_training_args = {
|
1218 |
+
k: v for k, v in training_args.items() if k not in {"rank", "lora_alpha", "target_modules"}
|
1219 |
+
}
|
1220 |
+
else:
|
1221 |
+
filtered_training_args = training_args
|
1222 |
+
|
1223 |
+
# Diffusion/flow stuff.
|
1224 |
+
diffusion_args = args.get("diffusion_arguments", {})
|
1225 |
+
scheduler_name = self.scheduler.__class__.__name__
|
1226 |
+
if scheduler_name != "FlowMatchEulerDiscreteScheduler":
|
1227 |
+
filtered_diffusion_args = {k: v for k, v in diffusion_args.items() if "flow" not in k}
|
1228 |
+
else:
|
1229 |
+
filtered_diffusion_args = diffusion_args
|
1230 |
+
|
1231 |
+
# Rest of the stuff.
|
1232 |
+
updated_training_info = args.copy()
|
1233 |
+
updated_training_info["training_arguments"] = filtered_training_args
|
1234 |
+
updated_training_info["diffusion_arguments"] = filtered_diffusion_args
|
1235 |
+
return updated_training_info
|
finetrainers/trainer.py
CHANGED
@@ -7,7 +7,7 @@ import random
|
|
7 |
from datetime import datetime, timedelta
|
8 |
from pathlib import Path
|
9 |
from typing import Any, Dict, List
|
10 |
-
|
11 |
import diffusers
|
12 |
import torch
|
13 |
import torch.backends
|
|
|
7 |
from datetime import datetime, timedelta
|
8 |
from pathlib import Path
|
9 |
from typing import Any, Dict, List
|
10 |
+
import resource
|
11 |
import diffusers
|
12 |
import torch
|
13 |
import torch.backends
|
vms/services/trainer.py
CHANGED
@@ -153,7 +153,7 @@ class TrainingService:
|
|
153 |
# Make sure we have all keys (in case structure changed)
|
154 |
merged_state = default_state.copy()
|
155 |
merged_state.update(saved_state)
|
156 |
-
logger.info(f"Successfully loaded UI state from {ui_state_file}")
|
157 |
return merged_state
|
158 |
except json.JSONDecodeError as e:
|
159 |
logger.error(f"Error parsing UI state JSON: {str(e)}")
|
@@ -637,49 +637,68 @@ class TrainingService:
|
|
637 |
return False
|
638 |
|
639 |
def recover_interrupted_training(self) -> Dict[str, Any]:
|
640 |
-
|
641 |
-
|
642 |
-
Returns:
|
643 |
-
Dict with recovery status and UI updates
|
644 |
-
"""
|
645 |
-
status = self.get_status()
|
646 |
-
ui_updates = {}
|
647 |
-
|
648 |
-
# Check for any checkpoints, even if status doesn't indicate training
|
649 |
-
checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
|
650 |
-
has_checkpoints = len(checkpoints) > 0
|
651 |
-
|
652 |
-
# If status indicates training but process isn't running, or if we have checkpoints
|
653 |
-
# and no active training process, try to recover
|
654 |
-
if (status.get('status') in ['training', 'paused'] and not self.is_training_running()) or \
|
655 |
-
(has_checkpoints and not self.is_training_running()):
|
656 |
|
657 |
-
|
|
|
|
|
|
|
|
|
658 |
|
659 |
-
#
|
660 |
-
|
|
|
661 |
|
662 |
-
if
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
679 |
}
|
680 |
-
|
681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
else:
|
|
|
683 |
# Set buttons for no active training
|
684 |
ui_updates = {
|
685 |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"},
|
@@ -687,116 +706,98 @@ class TrainingService:
|
|
687 |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
|
688 |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
689 |
}
|
690 |
-
return {"status": "
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
"
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
"ui_updates": ui_updates
|
774 |
-
|
775 |
-
except Exception as e:
|
776 |
-
logger.error(f"Failed to auto-resume training: {str(e)}")
|
777 |
-
# Set buttons for manual recovery
|
778 |
-
ui_updates.update({
|
779 |
-
"start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"},
|
780 |
-
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
781 |
-
"delete_checkpoints_btn": {"interactive": True, "variant": "stop", "value": "Delete All Checkpoints"},
|
782 |
-
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
783 |
-
})
|
784 |
-
return {"status": "error", "message": f"Failed to auto-resume: {str(e)}", "ui_updates": ui_updates}
|
785 |
-
else:
|
786 |
-
# Set up UI for manual recovery
|
787 |
-
ui_updates.update({
|
788 |
-
"start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"},
|
789 |
-
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
790 |
-
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
791 |
-
})
|
792 |
-
return {"status": "ready_to_recover", "message": f"Ready to resume from checkpoint {checkpoint_step}", "ui_updates": ui_updates}
|
793 |
-
|
794 |
elif self.is_training_running():
|
795 |
# Process is still running, set buttons accordingly
|
796 |
ui_updates = {
|
797 |
"start_btn": {"interactive": False, "variant": "secondary", "value": "Continue Training" if has_checkpoints else "Start Training"},
|
798 |
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"},
|
799 |
-
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
|
|
800 |
}
|
801 |
return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates}
|
802 |
else:
|
@@ -805,10 +806,11 @@ class TrainingService:
|
|
805 |
ui_updates = {
|
806 |
"start_btn": {"interactive": True, "variant": "primary", "value": button_text},
|
807 |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
808 |
-
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
|
|
809 |
}
|
810 |
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
|
811 |
-
|
812 |
def delete_all_checkpoints(self) -> str:
|
813 |
"""Delete all checkpoints in the output directory.
|
814 |
|
|
|
153 |
# Make sure we have all keys (in case structure changed)
|
154 |
merged_state = default_state.copy()
|
155 |
merged_state.update(saved_state)
|
156 |
+
#logger.info(f"Successfully loaded UI state from {ui_state_file}")
|
157 |
return merged_state
|
158 |
except json.JSONDecodeError as e:
|
159 |
logger.error(f"Error parsing UI state JSON: {str(e)}")
|
|
|
637 |
return False
|
638 |
|
639 |
def recover_interrupted_training(self) -> Dict[str, Any]:
|
640 |
+
"""Attempt to recover interrupted training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
|
642 |
+
Returns:
|
643 |
+
Dict with recovery status and UI updates
|
644 |
+
"""
|
645 |
+
status = self.get_status()
|
646 |
+
ui_updates = {}
|
647 |
|
648 |
+
# Check for any checkpoints, even if status doesn't indicate training
|
649 |
+
checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
|
650 |
+
has_checkpoints = len(checkpoints) > 0
|
651 |
|
652 |
+
# If status indicates training but process isn't running, or if we have checkpoints
|
653 |
+
# and no active training process, try to recover
|
654 |
+
if (status.get('status') in ['training', 'paused'] and not self.is_training_running()) or \
|
655 |
+
(has_checkpoints and not self.is_training_running()):
|
656 |
+
|
657 |
+
logger.info("Detected interrupted training session or existing checkpoints, attempting to recover...")
|
658 |
+
|
659 |
+
# Get the latest checkpoint
|
660 |
+
last_session = self.load_session()
|
661 |
+
|
662 |
+
if not last_session:
|
663 |
+
logger.warning("No session data found for recovery, but will check for checkpoints")
|
664 |
+
# Try to create a default session based on UI state if we have checkpoints
|
665 |
+
if has_checkpoints:
|
666 |
+
ui_state = self.load_ui_state()
|
667 |
+
# Create a default session using UI state values
|
668 |
+
last_session = {
|
669 |
+
"params": {
|
670 |
+
"model_type": MODEL_TYPES.get(ui_state.get("model_type", list(MODEL_TYPES.keys())[0])),
|
671 |
+
"lora_rank": ui_state.get("lora_rank", "128"),
|
672 |
+
"lora_alpha": ui_state.get("lora_alpha", "128"),
|
673 |
+
"num_epochs": ui_state.get("num_epochs", 70),
|
674 |
+
"batch_size": ui_state.get("batch_size", 1),
|
675 |
+
"learning_rate": ui_state.get("learning_rate", 3e-5),
|
676 |
+
"save_iterations": ui_state.get("save_iterations", 500),
|
677 |
+
"preset_name": ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
|
678 |
+
"repo_id": "" # Default empty repo ID
|
679 |
+
}
|
680 |
}
|
681 |
+
logger.info("Created default session from UI state for recovery")
|
682 |
+
else:
|
683 |
+
# Set buttons for no active training
|
684 |
+
ui_updates = {
|
685 |
+
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"},
|
686 |
+
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
687 |
+
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
|
688 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
689 |
+
}
|
690 |
+
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
|
691 |
+
|
692 |
+
# Find the latest checkpoint if we have checkpoints
|
693 |
+
latest_checkpoint = None
|
694 |
+
checkpoint_step = 0
|
695 |
+
|
696 |
+
if has_checkpoints:
|
697 |
+
latest_checkpoint = max(checkpoints, key=os.path.getmtime)
|
698 |
+
checkpoint_step = int(latest_checkpoint.name.split("-")[1])
|
699 |
+
logger.info(f"Found checkpoint at step {checkpoint_step}")
|
700 |
else:
|
701 |
+
logger.warning("No checkpoints found for recovery")
|
702 |
# Set buttons for no active training
|
703 |
ui_updates = {
|
704 |
"start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"},
|
|
|
706 |
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
|
707 |
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
708 |
}
|
709 |
+
return {"status": "error", "message": "No checkpoints found", "ui_updates": ui_updates}
|
710 |
+
|
711 |
+
# Extract parameters from the saved session (not current UI state)
|
712 |
+
# This ensures we use the original training parameters
|
713 |
+
params = last_session.get('params', {})
|
714 |
+
|
715 |
+
# Map internal model type back to display name for UI
|
716 |
+
# This is the key fix for the "ltx_video" vs "LTX-Video (LoRA)" mismatch
|
717 |
+
model_type_internal = params.get('model_type')
|
718 |
+
model_type_display = model_type_internal
|
719 |
+
|
720 |
+
# Find the display name that maps to our internal model type
|
721 |
+
for display_name, internal_name in MODEL_TYPES.items():
|
722 |
+
if internal_name == model_type_internal:
|
723 |
+
model_type_display = display_name
|
724 |
+
logger.info(f"Mapped internal model type '{model_type_internal}' to display name '{model_type_display}'")
|
725 |
+
break
|
726 |
+
|
727 |
+
# Add UI updates to restore the training parameters in the UI
|
728 |
+
# This shows the user what values are being used for the resumed training
|
729 |
+
ui_updates.update({
|
730 |
+
"model_type": model_type_display, # Use the display name for the UI dropdown
|
731 |
+
"lora_rank": params.get('lora_rank', "128"),
|
732 |
+
"lora_alpha": params.get('lora_alpha', "128"),
|
733 |
+
"num_epochs": params.get('num_epochs', 70),
|
734 |
+
"batch_size": params.get('batch_size', 1),
|
735 |
+
"learning_rate": params.get('learning_rate', 3e-5),
|
736 |
+
"save_iterations": params.get('save_iterations', 500),
|
737 |
+
"training_preset": params.get('preset_name', list(TRAINING_PRESETS.keys())[0])
|
738 |
+
})
|
739 |
+
|
740 |
+
# Check if we should auto-recover (immediate restart)
|
741 |
+
auto_recover = True # Always auto-recover on startup
|
742 |
+
|
743 |
+
if auto_recover:
|
744 |
+
# Rest of the auto-recovery code remains unchanged
|
745 |
+
try:
|
746 |
+
# Use the internal model_type for the actual training
|
747 |
+
# But keep model_type_display for the UI
|
748 |
+
result = self.start_training(
|
749 |
+
model_type=model_type_internal,
|
750 |
+
lora_rank=params.get('lora_rank', "128"),
|
751 |
+
lora_alpha=params.get('lora_alpha', "128"),
|
752 |
+
num_epochs=params.get('num_epochs', 70),
|
753 |
+
batch_size=params.get('batch_size', 1),
|
754 |
+
learning_rate=params.get('learning_rate', 3e-5),
|
755 |
+
save_iterations=params.get('save_iterations', 500),
|
756 |
+
repo_id=params.get('repo_id', ''),
|
757 |
+
preset_name=params.get('preset_name', list(TRAINING_PRESETS.keys())[0]),
|
758 |
+
resume_from_checkpoint=str(latest_checkpoint)
|
759 |
+
)
|
760 |
+
|
761 |
+
# Set buttons for active training
|
762 |
+
ui_updates.update({
|
763 |
+
"start_btn": {"interactive": False, "variant": "secondary", "value": "Continue Training"},
|
764 |
+
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"},
|
765 |
+
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"},
|
766 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
767 |
+
})
|
768 |
+
|
769 |
+
return {
|
770 |
+
"status": "recovered",
|
771 |
+
"message": f"Training resumed from checkpoint {checkpoint_step}",
|
772 |
+
"result": result,
|
773 |
+
"ui_updates": ui_updates
|
774 |
+
}
|
775 |
+
except Exception as e:
|
776 |
+
logger.error(f"Failed to auto-resume training: {str(e)}")
|
777 |
+
# Set buttons for manual recovery
|
778 |
+
ui_updates.update({
|
779 |
+
"start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"},
|
780 |
+
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
781 |
+
"delete_checkpoints_btn": {"interactive": True, "variant": "stop", "value": "Delete All Checkpoints"},
|
782 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
783 |
+
})
|
784 |
+
return {"status": "error", "message": f"Failed to auto-resume: {str(e)}", "ui_updates": ui_updates}
|
785 |
+
else:
|
786 |
+
# Set up UI for manual recovery
|
787 |
+
ui_updates.update({
|
788 |
+
"start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"},
|
789 |
+
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
790 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}
|
791 |
+
})
|
792 |
+
return {"status": "ready_to_recover", "message": f"Ready to resume from checkpoint {checkpoint_step}", "ui_updates": ui_updates}
|
793 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
794 |
elif self.is_training_running():
|
795 |
# Process is still running, set buttons accordingly
|
796 |
ui_updates = {
|
797 |
"start_btn": {"interactive": False, "variant": "secondary", "value": "Continue Training" if has_checkpoints else "Start Training"},
|
798 |
"stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"},
|
799 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False},
|
800 |
+
"delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}
|
801 |
}
|
802 |
return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates}
|
803 |
else:
|
|
|
806 |
ui_updates = {
|
807 |
"start_btn": {"interactive": True, "variant": "primary", "value": button_text},
|
808 |
"stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"},
|
809 |
+
"pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False},
|
810 |
+
"delete_checkpoints_btn": {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"}
|
811 |
}
|
812 |
return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
|
813 |
+
|
814 |
def delete_all_checkpoints(self) -> str:
|
815 |
"""Delete all checkpoints in the output directory.
|
816 |
|
vms/ui/video_trainer_ui.py
CHANGED
@@ -31,6 +31,10 @@ class VideoTrainerUI:
|
|
31 |
|
32 |
# Recovery status from any interrupted training
|
33 |
recovery_result = self.trainer.recover_interrupted_training()
|
|
|
|
|
|
|
|
|
34 |
self.recovery_status = recovery_result.get("status", "unknown")
|
35 |
self.ui_updates = recovery_result.get("ui_updates", {})
|
36 |
|
|
|
31 |
|
32 |
# Recovery status from any interrupted training
|
33 |
recovery_result = self.trainer.recover_interrupted_training()
|
34 |
+
# Add null check for recovery_result
|
35 |
+
if recovery_result is None:
|
36 |
+
recovery_result = {"status": "unknown", "ui_updates": {}}
|
37 |
+
|
38 |
self.recovery_status = recovery_result.get("status", "unknown")
|
39 |
self.ui_updates = recovery_result.get("ui_updates", {})
|
40 |
|