Spaces:
Running
Running
Commit
·
aa1e877
1
Parent(s):
bc6e5cf
working on hf dataset downloader
Browse files- app.py +1 -1
- vms/services/importer/hub_dataset.py +106 -15
- vms/services/importer/import_service.py +18 -5
- vms/tabs/import_tab/hub_tab.py +116 -74
- vms/tabs/import_tab/import_tab.py +76 -22
- vms/ui/video_trainer_ui.py +26 -0
app.py
CHANGED
@@ -65,7 +65,7 @@ def main():
|
|
65 |
]
|
66 |
|
67 |
# Launch the Gradio app
|
68 |
-
app.queue(default_concurrency_limit=
|
69 |
server_name="0.0.0.0",
|
70 |
allowed_paths=allowed_paths
|
71 |
)
|
|
|
65 |
]
|
66 |
|
67 |
# Launch the Gradio app
|
68 |
+
app.queue(default_concurrency_limit=2).launch(
|
69 |
server_name="0.0.0.0",
|
70 |
allowed_paths=allowed_paths
|
71 |
)
|
vms/services/importer/hub_dataset.py
CHANGED
@@ -10,7 +10,7 @@ import asyncio
|
|
10 |
import logging
|
11 |
import gradio as gr
|
12 |
from pathlib import Path
|
13 |
-
from typing import List, Dict, Optional, Tuple, Any, Union
|
14 |
|
15 |
from huggingface_hub import (
|
16 |
HfApi,
|
@@ -43,6 +43,7 @@ class HubDatasetBrowser:
|
|
43 |
|
44 |
Returns:
|
45 |
List of datasets matching the query [id, title, downloads]
|
|
|
46 |
"""
|
47 |
try:
|
48 |
# Start with some filters to find video-related datasets
|
@@ -126,15 +127,10 @@ class HubDatasetBrowser:
|
|
126 |
|
127 |
# Add basic stats (with safer access)
|
128 |
downloads = getattr(dataset_info, 'downloads', None)
|
129 |
-
info_text += f"
|
130 |
|
131 |
last_modified = getattr(dataset_info, 'last_modified', None)
|
132 |
-
info_text += f"
|
133 |
-
|
134 |
-
# Show tags if available (with safer access)
|
135 |
-
tags = getattr(dataset_info, "tags", None) or []
|
136 |
-
if tags:
|
137 |
-
info_text += f"**Tags:** {', '.join(tags[:10])}\n\n"
|
138 |
|
139 |
# Group files by type
|
140 |
file_groups = {
|
@@ -168,13 +164,20 @@ class HubDatasetBrowser:
|
|
168 |
logger.error(f"Error getting dataset info: {str(e)}", exc_info=True)
|
169 |
return f"Error loading dataset information: {str(e)}", {}, {}
|
170 |
|
171 |
-
async def download_file_group(
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
"""Download all files of a specific type from the dataset
|
173 |
|
174 |
Args:
|
175 |
dataset_id: The dataset ID
|
176 |
file_type: Either "video" or "webdataset"
|
177 |
enable_splitting: Whether to enable automatic video splitting
|
|
|
178 |
|
179 |
Returns:
|
180 |
Status message
|
@@ -190,6 +193,11 @@ class HubDatasetBrowser:
|
|
190 |
return f"No {file_type} files found in the dataset"
|
191 |
|
192 |
logger.info(f"Downloading {len(files)} {file_type} files from dataset {dataset_id}")
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
# Track counts for status message
|
195 |
video_count = 0
|
@@ -200,8 +208,16 @@ class HubDatasetBrowser:
|
|
200 |
temp_path = Path(temp_dir)
|
201 |
|
202 |
# Process all files of the requested type
|
203 |
-
for filename in files:
|
204 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Download the file
|
206 |
file_path = hf_hub_download(
|
207 |
repo_id=dataset_id,
|
@@ -212,6 +228,7 @@ class HubDatasetBrowser:
|
|
212 |
|
213 |
file_path = Path(file_path)
|
214 |
logger.info(f"Downloaded file to {file_path}")
|
|
|
215 |
|
216 |
# Process based on file type
|
217 |
if file_type == "video":
|
@@ -274,9 +291,13 @@ class HubDatasetBrowser:
|
|
274 |
except Exception as e:
|
275 |
logger.warning(f"Error processing file {filename}: {e}")
|
276 |
|
|
|
|
|
|
|
|
|
277 |
# Generate status message
|
278 |
if file_type == "video":
|
279 |
-
|
280 |
elif file_type == "webdataset":
|
281 |
parts = []
|
282 |
if video_count > 0:
|
@@ -285,23 +306,37 @@ class HubDatasetBrowser:
|
|
285 |
parts.append(f"{image_count} image{'s' if image_count != 1 else ''}")
|
286 |
|
287 |
if parts:
|
288 |
-
|
289 |
else:
|
290 |
-
|
|
|
|
|
291 |
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
except Exception as e:
|
295 |
error_msg = f"Error downloading {file_type} files: {str(e)}"
|
296 |
logger.error(error_msg, exc_info=True)
|
|
|
297 |
return error_msg
|
298 |
|
299 |
-
async def download_dataset(
|
|
|
|
|
|
|
|
|
|
|
300 |
"""Download a dataset and process its video/image content
|
301 |
|
302 |
Args:
|
303 |
dataset_id: The dataset ID to download
|
304 |
enable_splitting: Whether to enable automatic video splitting
|
|
|
305 |
|
306 |
Returns:
|
307 |
Tuple of (loading_msg, status_msg)
|
@@ -327,9 +362,15 @@ class HubDatasetBrowser:
|
|
327 |
video_files = [s.rfilename for s in siblings if hasattr(s, 'rfilename') and s.rfilename.lower().endswith((".mp4", ".webm"))]
|
328 |
tar_files = [s.rfilename for s in siblings if hasattr(s, 'rfilename') and s.rfilename.lower().endswith(".tar")]
|
329 |
|
|
|
|
|
|
|
|
|
|
|
330 |
# Create a temporary directory for downloads
|
331 |
with tempfile.TemporaryDirectory() as temp_dir:
|
332 |
temp_path = Path(temp_dir)
|
|
|
333 |
|
334 |
# If we have video files, download them individually
|
335 |
if video_files:
|
@@ -337,6 +378,14 @@ class HubDatasetBrowser:
|
|
337 |
logger.info(f"Downloading {len(video_files)} video files from {dataset_id}")
|
338 |
|
339 |
for i, video_file in enumerate(video_files):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
# Download the video file
|
341 |
try:
|
342 |
file_path = hf_hub_download(
|
@@ -369,6 +418,7 @@ class HubDatasetBrowser:
|
|
369 |
|
370 |
status_msg = f"Downloaded video {i+1}/{len(video_files)} from {dataset_id}"
|
371 |
logger.info(status_msg)
|
|
|
372 |
except Exception as e:
|
373 |
logger.warning(f"Error downloading {video_file}: {e}")
|
374 |
|
@@ -378,6 +428,14 @@ class HubDatasetBrowser:
|
|
378 |
logger.info(f"Downloading {len(tar_files)} WebDataset files from {dataset_id}")
|
379 |
|
380 |
for i, tar_file in enumerate(tar_files):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
try:
|
382 |
file_path = hf_hub_download(
|
383 |
repo_id=dataset_id,
|
@@ -387,6 +445,7 @@ class HubDatasetBrowser:
|
|
387 |
)
|
388 |
status_msg = f"Downloaded WebDataset {i+1}/{len(tar_files)} from {dataset_id}"
|
389 |
logger.info(status_msg)
|
|
|
390 |
except Exception as e:
|
391 |
logger.warning(f"Error downloading {tar_file}: {e}")
|
392 |
|
@@ -395,6 +454,9 @@ class HubDatasetBrowser:
|
|
395 |
loading_msg = f"{loading_msg}\n\nDownloading entire dataset repository..."
|
396 |
logger.info(f"No specific media files found, downloading entire repository for {dataset_id}")
|
397 |
|
|
|
|
|
|
|
398 |
try:
|
399 |
snapshot_download(
|
400 |
repo_id=dataset_id,
|
@@ -403,6 +465,9 @@ class HubDatasetBrowser:
|
|
403 |
)
|
404 |
status_msg = f"Downloaded entire repository for {dataset_id}"
|
405 |
logger.info(status_msg)
|
|
|
|
|
|
|
406 |
except Exception as e:
|
407 |
logger.error(f"Error downloading dataset snapshot: {e}", exc_info=True)
|
408 |
return loading_msg, f"Error downloading dataset: {str(e)}"
|
@@ -411,6 +476,9 @@ class HubDatasetBrowser:
|
|
411 |
loading_msg = f"{loading_msg}\n\nProcessing downloaded files..."
|
412 |
logger.info(f"Processing downloaded files from {dataset_id}")
|
413 |
|
|
|
|
|
|
|
414 |
# Count imported files
|
415 |
video_count = 0
|
416 |
image_count = 0
|
@@ -420,11 +488,28 @@ class HubDatasetBrowser:
|
|
420 |
async def process_files():
|
421 |
nonlocal video_count, image_count, tar_count
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
# Process all files in the temp directory
|
424 |
for root, _, files in os.walk(temp_path):
|
425 |
for file in files:
|
426 |
file_path = Path(root) / file
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
# Process videos
|
429 |
if file.lower().endswith((".mp4", ".webm")):
|
430 |
# Choose target path based on auto-splitting setting
|
@@ -490,10 +575,16 @@ class HubDatasetBrowser:
|
|
490 |
logger.info(f"Extracted {vid_count} videos and {img_count} images from {file}")
|
491 |
except Exception as e:
|
492 |
logger.error(f"Error processing WebDataset file {file_path}: {str(e)}", exc_info=True)
|
|
|
|
|
493 |
|
494 |
# Run the processing asynchronously
|
495 |
await process_files()
|
496 |
|
|
|
|
|
|
|
|
|
497 |
# Generate final status message
|
498 |
parts = []
|
499 |
if video_count > 0:
|
|
|
10 |
import logging
|
11 |
import gradio as gr
|
12 |
from pathlib import Path
|
13 |
+
from typing import List, Dict, Optional, Tuple, Any, Union, Callable
|
14 |
|
15 |
from huggingface_hub import (
|
16 |
HfApi,
|
|
|
43 |
|
44 |
Returns:
|
45 |
List of datasets matching the query [id, title, downloads]
|
46 |
+
Note: We still return all columns internally, but the UI will only display the first column
|
47 |
"""
|
48 |
try:
|
49 |
# Start with some filters to find video-related datasets
|
|
|
127 |
|
128 |
# Add basic stats (with safer access)
|
129 |
downloads = getattr(dataset_info, 'downloads', None)
|
130 |
+
info_text += f"## Downloads: {downloads if downloads is not None else 'N/A'}\n"
|
131 |
|
132 |
last_modified = getattr(dataset_info, 'last_modified', None)
|
133 |
+
info_text += f"## Last modified: {last_modified if last_modified is not None else 'N/A'}\n"
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Group files by type
|
136 |
file_groups = {
|
|
|
164 |
logger.error(f"Error getting dataset info: {str(e)}", exc_info=True)
|
165 |
return f"Error loading dataset information: {str(e)}", {}, {}
|
166 |
|
167 |
+
async def download_file_group(
|
168 |
+
self,
|
169 |
+
dataset_id: str,
|
170 |
+
file_type: str,
|
171 |
+
enable_splitting: bool = True,
|
172 |
+
progress_callback: Optional[Callable] = None
|
173 |
+
) -> str:
|
174 |
"""Download all files of a specific type from the dataset
|
175 |
|
176 |
Args:
|
177 |
dataset_id: The dataset ID
|
178 |
file_type: Either "video" or "webdataset"
|
179 |
enable_splitting: Whether to enable automatic video splitting
|
180 |
+
progress_callback: Optional callback for progress updates
|
181 |
|
182 |
Returns:
|
183 |
Status message
|
|
|
193 |
return f"No {file_type} files found in the dataset"
|
194 |
|
195 |
logger.info(f"Downloading {len(files)} {file_type} files from dataset {dataset_id}")
|
196 |
+
gr.Info(f"Starting download of {len(files)} {file_type} files from {dataset_id}")
|
197 |
+
|
198 |
+
# Initialize progress if callback provided
|
199 |
+
if progress_callback:
|
200 |
+
progress_callback(0, desc=f"Starting download of {len(files)} {file_type} files", total=len(files))
|
201 |
|
202 |
# Track counts for status message
|
203 |
video_count = 0
|
|
|
208 |
temp_path = Path(temp_dir)
|
209 |
|
210 |
# Process all files of the requested type
|
211 |
+
for i, filename in enumerate(files):
|
212 |
try:
|
213 |
+
# Update progress
|
214 |
+
if progress_callback:
|
215 |
+
progress_callback(
|
216 |
+
i,
|
217 |
+
desc=f"Downloading file {i+1}/{len(files)}: {Path(filename).name}",
|
218 |
+
total=len(files)
|
219 |
+
)
|
220 |
+
|
221 |
# Download the file
|
222 |
file_path = hf_hub_download(
|
223 |
repo_id=dataset_id,
|
|
|
228 |
|
229 |
file_path = Path(file_path)
|
230 |
logger.info(f"Downloaded file to {file_path}")
|
231 |
+
#gr.Info(f"Downloaded {file_path.name} ({i+1}/{len(files)})")
|
232 |
|
233 |
# Process based on file type
|
234 |
if file_type == "video":
|
|
|
291 |
except Exception as e:
|
292 |
logger.warning(f"Error processing file {filename}: {e}")
|
293 |
|
294 |
+
# Update progress to complete
|
295 |
+
if progress_callback:
|
296 |
+
progress_callback(len(files), desc="Download complete", total=len(files))
|
297 |
+
|
298 |
# Generate status message
|
299 |
if file_type == "video":
|
300 |
+
status_msg = f"Successfully imported {video_count} videos from dataset {dataset_id}"
|
301 |
elif file_type == "webdataset":
|
302 |
parts = []
|
303 |
if video_count > 0:
|
|
|
306 |
parts.append(f"{image_count} image{'s' if image_count != 1 else ''}")
|
307 |
|
308 |
if parts:
|
309 |
+
status_msg = f"Successfully imported {' and '.join(parts)} from WebDataset archives"
|
310 |
else:
|
311 |
+
status_msg = f"No media was found in the WebDataset archives"
|
312 |
+
else:
|
313 |
+
status_msg = f"Unknown file type: {file_type}"
|
314 |
|
315 |
+
# Final notification
|
316 |
+
logger.info(f"✅ Download complete! {status_msg}")
|
317 |
+
# This info message will appear as a toast notification
|
318 |
+
gr.Info(f"✅ Download complete! {status_msg}")
|
319 |
+
|
320 |
+
return status_msg
|
321 |
|
322 |
except Exception as e:
|
323 |
error_msg = f"Error downloading {file_type} files: {str(e)}"
|
324 |
logger.error(error_msg, exc_info=True)
|
325 |
+
gr.Error(error_msg)
|
326 |
return error_msg
|
327 |
|
328 |
+
async def download_dataset(
|
329 |
+
self,
|
330 |
+
dataset_id: str,
|
331 |
+
enable_splitting: bool = True,
|
332 |
+
progress_callback: Optional[Callable] = None
|
333 |
+
) -> Tuple[str, str]:
|
334 |
"""Download a dataset and process its video/image content
|
335 |
|
336 |
Args:
|
337 |
dataset_id: The dataset ID to download
|
338 |
enable_splitting: Whether to enable automatic video splitting
|
339 |
+
progress_callback: Optional callback for progress tracking
|
340 |
|
341 |
Returns:
|
342 |
Tuple of (loading_msg, status_msg)
|
|
|
362 |
video_files = [s.rfilename for s in siblings if hasattr(s, 'rfilename') and s.rfilename.lower().endswith((".mp4", ".webm"))]
|
363 |
tar_files = [s.rfilename for s in siblings if hasattr(s, 'rfilename') and s.rfilename.lower().endswith(".tar")]
|
364 |
|
365 |
+
# Initialize progress tracking
|
366 |
+
total_files = len(video_files) + len(tar_files)
|
367 |
+
if progress_callback:
|
368 |
+
progress_callback(0, desc=f"Starting download of dataset: {dataset_id}", total=total_files)
|
369 |
+
|
370 |
# Create a temporary directory for downloads
|
371 |
with tempfile.TemporaryDirectory() as temp_dir:
|
372 |
temp_path = Path(temp_dir)
|
373 |
+
files_processed = 0
|
374 |
|
375 |
# If we have video files, download them individually
|
376 |
if video_files:
|
|
|
378 |
logger.info(f"Downloading {len(video_files)} video files from {dataset_id}")
|
379 |
|
380 |
for i, video_file in enumerate(video_files):
|
381 |
+
# Update progress
|
382 |
+
if progress_callback:
|
383 |
+
progress_callback(
|
384 |
+
files_processed,
|
385 |
+
desc=f"Downloading video {i+1}/{len(video_files)}: {Path(video_file).name}",
|
386 |
+
total=total_files
|
387 |
+
)
|
388 |
+
|
389 |
# Download the video file
|
390 |
try:
|
391 |
file_path = hf_hub_download(
|
|
|
418 |
|
419 |
status_msg = f"Downloaded video {i+1}/{len(video_files)} from {dataset_id}"
|
420 |
logger.info(status_msg)
|
421 |
+
files_processed += 1
|
422 |
except Exception as e:
|
423 |
logger.warning(f"Error downloading {video_file}: {e}")
|
424 |
|
|
|
428 |
logger.info(f"Downloading {len(tar_files)} WebDataset files from {dataset_id}")
|
429 |
|
430 |
for i, tar_file in enumerate(tar_files):
|
431 |
+
# Update progress
|
432 |
+
if progress_callback:
|
433 |
+
progress_callback(
|
434 |
+
files_processed,
|
435 |
+
desc=f"Downloading WebDataset {i+1}/{len(tar_files)}: {Path(tar_file).name}",
|
436 |
+
total=total_files
|
437 |
+
)
|
438 |
+
|
439 |
try:
|
440 |
file_path = hf_hub_download(
|
441 |
repo_id=dataset_id,
|
|
|
445 |
)
|
446 |
status_msg = f"Downloaded WebDataset {i+1}/{len(tar_files)} from {dataset_id}"
|
447 |
logger.info(status_msg)
|
448 |
+
files_processed += 1
|
449 |
except Exception as e:
|
450 |
logger.warning(f"Error downloading {tar_file}: {e}")
|
451 |
|
|
|
454 |
loading_msg = f"{loading_msg}\n\nDownloading entire dataset repository..."
|
455 |
logger.info(f"No specific media files found, downloading entire repository for {dataset_id}")
|
456 |
|
457 |
+
if progress_callback:
|
458 |
+
progress_callback(0, desc=f"Downloading entire repository for {dataset_id}", total=1)
|
459 |
+
|
460 |
try:
|
461 |
snapshot_download(
|
462 |
repo_id=dataset_id,
|
|
|
465 |
)
|
466 |
status_msg = f"Downloaded entire repository for {dataset_id}"
|
467 |
logger.info(status_msg)
|
468 |
+
|
469 |
+
if progress_callback:
|
470 |
+
progress_callback(1, desc="Repository download complete", total=1)
|
471 |
except Exception as e:
|
472 |
logger.error(f"Error downloading dataset snapshot: {e}", exc_info=True)
|
473 |
return loading_msg, f"Error downloading dataset: {str(e)}"
|
|
|
476 |
loading_msg = f"{loading_msg}\n\nProcessing downloaded files..."
|
477 |
logger.info(f"Processing downloaded files from {dataset_id}")
|
478 |
|
479 |
+
if progress_callback:
|
480 |
+
progress_callback(0, desc="Processing downloaded files", total=100)
|
481 |
+
|
482 |
# Count imported files
|
483 |
video_count = 0
|
484 |
image_count = 0
|
|
|
488 |
async def process_files():
|
489 |
nonlocal video_count, image_count, tar_count
|
490 |
|
491 |
+
# Get total number of files to process
|
492 |
+
file_count = 0
|
493 |
+
for root, _, files in os.walk(temp_path):
|
494 |
+
file_count += len(files)
|
495 |
+
|
496 |
+
processed = 0
|
497 |
+
|
498 |
# Process all files in the temp directory
|
499 |
for root, _, files in os.walk(temp_path):
|
500 |
for file in files:
|
501 |
file_path = Path(root) / file
|
502 |
|
503 |
+
# Update progress (every 5 files to avoid too many updates)
|
504 |
+
if progress_callback and processed % 5 == 0:
|
505 |
+
if file_count > 0:
|
506 |
+
progress_percent = int((processed / file_count) * 100)
|
507 |
+
progress_callback(
|
508 |
+
progress_percent,
|
509 |
+
desc=f"Processing files: {processed}/{file_count}",
|
510 |
+
total=100
|
511 |
+
)
|
512 |
+
|
513 |
# Process videos
|
514 |
if file.lower().endswith((".mp4", ".webm")):
|
515 |
# Choose target path based on auto-splitting setting
|
|
|
575 |
logger.info(f"Extracted {vid_count} videos and {img_count} images from {file}")
|
576 |
except Exception as e:
|
577 |
logger.error(f"Error processing WebDataset file {file_path}: {str(e)}", exc_info=True)
|
578 |
+
|
579 |
+
processed += 1
|
580 |
|
581 |
# Run the processing asynchronously
|
582 |
await process_files()
|
583 |
|
584 |
+
# Update progress to complete
|
585 |
+
if progress_callback:
|
586 |
+
progress_callback(100, desc="Processing complete", total=100)
|
587 |
+
|
588 |
# Generate final status message
|
589 |
parts = []
|
590 |
if video_count > 0:
|
vms/services/importer/import_service.py
CHANGED
@@ -4,7 +4,7 @@ Delegates to specialized handler classes for different import types.
|
|
4 |
"""
|
5 |
|
6 |
import logging
|
7 |
-
from typing import List, Dict, Optional, Tuple, Any, Union
|
8 |
from pathlib import Path
|
9 |
import gradio as gr
|
10 |
|
@@ -76,27 +76,40 @@ class ImportService:
|
|
76 |
"""
|
77 |
return self.hub_browser.get_dataset_info(dataset_id)
|
78 |
|
79 |
-
async def download_dataset(
|
|
|
|
|
|
|
|
|
|
|
80 |
"""Download a dataset and process its video/image content
|
81 |
|
82 |
Args:
|
83 |
dataset_id: The dataset ID to download
|
84 |
enable_splitting: Whether to enable automatic video splitting
|
|
|
85 |
|
86 |
Returns:
|
87 |
Tuple of (loading_msg, status_msg)
|
88 |
"""
|
89 |
-
return await self.hub_browser.download_dataset(dataset_id, enable_splitting)
|
90 |
|
91 |
-
async def download_file_group(
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
"""Download a group of files (videos or WebDatasets)
|
93 |
|
94 |
Args:
|
95 |
dataset_id: The dataset ID
|
96 |
file_type: Type of file ("video" or "webdataset")
|
97 |
enable_splitting: Whether to enable automatic video splitting
|
|
|
98 |
|
99 |
Returns:
|
100 |
Status message
|
101 |
"""
|
102 |
-
return await self.hub_browser.download_file_group(dataset_id, file_type, enable_splitting)
|
|
|
4 |
"""
|
5 |
|
6 |
import logging
|
7 |
+
from typing import List, Dict, Optional, Tuple, Any, Union, Callable
|
8 |
from pathlib import Path
|
9 |
import gradio as gr
|
10 |
|
|
|
76 |
"""
|
77 |
return self.hub_browser.get_dataset_info(dataset_id)
|
78 |
|
79 |
+
async def download_dataset(
|
80 |
+
self,
|
81 |
+
dataset_id: str,
|
82 |
+
enable_splitting: bool = True,
|
83 |
+
progress_callback: Optional[Callable] = None
|
84 |
+
) -> Tuple[str, str]:
|
85 |
"""Download a dataset and process its video/image content
|
86 |
|
87 |
Args:
|
88 |
dataset_id: The dataset ID to download
|
89 |
enable_splitting: Whether to enable automatic video splitting
|
90 |
+
progress_callback: Optional callback for progress tracking
|
91 |
|
92 |
Returns:
|
93 |
Tuple of (loading_msg, status_msg)
|
94 |
"""
|
95 |
+
return await self.hub_browser.download_dataset(dataset_id, enable_splitting, progress_callback)
|
96 |
|
97 |
+
async def download_file_group(
|
98 |
+
self,
|
99 |
+
dataset_id: str,
|
100 |
+
file_type: str,
|
101 |
+
enable_splitting: bool = True,
|
102 |
+
progress_callback: Optional[Callable] = None
|
103 |
+
) -> str:
|
104 |
"""Download a group of files (videos or WebDatasets)
|
105 |
|
106 |
Args:
|
107 |
dataset_id: The dataset ID
|
108 |
file_type: Type of file ("video" or "webdataset")
|
109 |
enable_splitting: Whether to enable automatic video splitting
|
110 |
+
progress_callback: Optional callback for progress tracking
|
111 |
|
112 |
Returns:
|
113 |
Status message
|
114 |
"""
|
115 |
+
return await self.hub_browser.download_file_group(dataset_id, file_type, enable_splitting, progress_callback)
|
vms/tabs/import_tab/hub_tab.py
CHANGED
@@ -6,6 +6,7 @@ Handles browsing, searching, and importing datasets from the Hugging Face Hub.
|
|
6 |
import gradio as gr
|
7 |
import logging
|
8 |
import asyncio
|
|
|
9 |
from pathlib import Path
|
10 |
from typing import Dict, Any, List, Optional, Tuple
|
11 |
|
@@ -20,6 +21,7 @@ class HubTab(BaseTab):
|
|
20 |
super().__init__(app_state)
|
21 |
self.id = "hub_tab"
|
22 |
self.title = "Import from Hugging Face"
|
|
|
23 |
|
24 |
def create(self, parent=None) -> gr.Tab:
|
25 |
"""Create the Hub tab UI components"""
|
@@ -33,8 +35,8 @@ class HubTab(BaseTab):
|
|
33 |
|
34 |
with gr.Row():
|
35 |
self.components["dataset_search"] = gr.Textbox(
|
36 |
-
label="Search Hugging Face Datasets",
|
37 |
-
placeholder="Search for video datasets
|
38 |
)
|
39 |
|
40 |
with gr.Row():
|
@@ -46,7 +48,7 @@ class HubTab(BaseTab):
|
|
46 |
|
47 |
with gr.Column(scale=3):
|
48 |
self.components["dataset_results"] = gr.Dataframe(
|
49 |
-
headers=["
|
50 |
interactive=False,
|
51 |
wrap=True,
|
52 |
row_count=10,
|
@@ -58,6 +60,7 @@ class HubTab(BaseTab):
|
|
58 |
self.components["dataset_info"] = gr.Markdown("Select a dataset to see details")
|
59 |
self.components["dataset_id"] = gr.State(value=None)
|
60 |
self.components["file_type"] = gr.State(value=None)
|
|
|
61 |
|
62 |
# Files section that appears when a dataset is selected
|
63 |
with gr.Column(visible=False) as files_section:
|
@@ -66,27 +69,23 @@ class HubTab(BaseTab):
|
|
66 |
gr.Markdown("## Files:")
|
67 |
|
68 |
# Video files row (appears if videos are present)
|
69 |
-
with gr.Row(
|
70 |
self.components["video_files_row"] = video_files_row
|
71 |
|
72 |
-
|
73 |
-
self.components["video_count_text"] = gr.Markdown("Contains 0 video files")
|
74 |
|
75 |
-
|
76 |
-
self.components["download_videos_btn"] = gr.Button("Download", variant="primary")
|
77 |
|
78 |
# WebDataset files row (appears if tar files are present)
|
79 |
-
with gr.Row(
|
80 |
self.components["webdataset_files_row"] = webdataset_files_row
|
81 |
|
82 |
-
|
83 |
-
self.components["webdataset_count_text"] = gr.Markdown("Contains 0 WebDataset (.tar) files")
|
84 |
|
85 |
-
|
86 |
-
self.components["download_webdataset_btn"] = gr.Button("Download", variant="primary")
|
87 |
|
88 |
-
# Status
|
89 |
-
self.components["
|
90 |
|
91 |
return tab
|
92 |
|
@@ -102,7 +101,7 @@ class HubTab(BaseTab):
|
|
102 |
]
|
103 |
)
|
104 |
|
105 |
-
# Dataset selection event
|
106 |
self.components["dataset_results"].select(
|
107 |
fn=self.display_dataset_info,
|
108 |
outputs=[
|
@@ -112,7 +111,8 @@ class HubTab(BaseTab):
|
|
112 |
self.components["video_files_row"],
|
113 |
self.components["video_count_text"],
|
114 |
self.components["webdataset_files_row"],
|
115 |
-
self.components["webdataset_count_text"]
|
|
|
116 |
]
|
117 |
)
|
118 |
|
@@ -128,20 +128,11 @@ class HubTab(BaseTab):
|
|
128 |
self.components["file_type"]
|
129 |
],
|
130 |
outputs=[
|
131 |
-
self.components["
|
132 |
-
self.components["import_status"]
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
inputs=[
|
137 |
-
self.components["enable_automatic_video_split"],
|
138 |
-
self.components["enable_automatic_content_captioning"],
|
139 |
-
self.app.tabs["caption_tab"].components["custom_prompt_prefix"]
|
140 |
-
],
|
141 |
-
outputs=[
|
142 |
-
self.app.tabs_component,
|
143 |
-
self.app.tabs["split_tab"].components["video_list"],
|
144 |
-
self.app.tabs["split_tab"].components["detect_status"]
|
145 |
]
|
146 |
)
|
147 |
|
@@ -157,20 +148,11 @@ class HubTab(BaseTab):
|
|
157 |
self.components["file_type"]
|
158 |
],
|
159 |
outputs=[
|
160 |
-
self.components["
|
161 |
-
self.components["import_status"]
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
inputs=[
|
166 |
-
self.components["enable_automatic_video_split"],
|
167 |
-
self.components["enable_automatic_content_captioning"],
|
168 |
-
self.app.tabs["caption_tab"].components["custom_prompt_prefix"]
|
169 |
-
],
|
170 |
-
outputs=[
|
171 |
-
self.app.tabs_component,
|
172 |
-
self.app.tabs["split_tab"].components["video_list"],
|
173 |
-
self.app.tabs["split_tab"].components["detect_status"]
|
174 |
]
|
175 |
)
|
176 |
|
@@ -186,12 +168,16 @@ class HubTab(BaseTab):
|
|
186 |
"""Search datasets on the Hub matching the query"""
|
187 |
try:
|
188 |
logger.info(f"Searching for datasets with query: '{query}'")
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
return results, gr.update(visible=True)
|
191 |
except Exception as e:
|
192 |
logger.error(f"Error searching datasets: {str(e)}", exc_info=True)
|
193 |
-
return [[f"Error: {str(e)}"
|
194 |
-
|
195 |
def display_dataset_info(self, evt: gr.SelectData):
|
196 |
"""Display detailed information about the selected dataset"""
|
197 |
try:
|
@@ -204,9 +190,11 @@ class HubTab(BaseTab):
|
|
204 |
gr.update(visible=False), # video_files_row
|
205 |
"", # video_count_text
|
206 |
gr.update(visible=False), # webdataset_files_row
|
207 |
-
"" # webdataset_count_text
|
|
|
208 |
)
|
209 |
|
|
|
210 |
dataset_id = evt.value[0] if isinstance(evt.value, list) else evt.value
|
211 |
logger.info(f"Getting dataset info for: {dataset_id}")
|
212 |
|
@@ -225,7 +213,8 @@ class HubTab(BaseTab):
|
|
225 |
gr.update(visible=video_count > 0), # video_files_row
|
226 |
f"Contains {video_count} video file{'s' if video_count != 1 else ''}", # video_count_text
|
227 |
gr.update(visible=webdataset_count > 0), # webdataset_files_row
|
228 |
-
f"Contains {webdataset_count} WebDataset (.tar) file{'s' if webdataset_count != 1 else ''}" # webdataset_count_text
|
|
|
229 |
)
|
230 |
except Exception as e:
|
231 |
logger.error(f"Error displaying dataset info: {str(e)}", exc_info=True)
|
@@ -236,38 +225,91 @@ class HubTab(BaseTab):
|
|
236 |
gr.update(visible=False), # video_files_row
|
237 |
"", # video_count_text
|
238 |
gr.update(visible=False), # webdataset_files_row
|
239 |
-
""
|
|
|
240 |
)
|
241 |
-
|
242 |
-
def
|
243 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
try:
|
245 |
if not dataset_id:
|
246 |
-
return
|
|
|
|
|
|
|
|
|
247 |
|
248 |
logger.info(f"Starting download of {file_type} files from dataset: {dataset_id}")
|
249 |
|
250 |
-
#
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
)
|
255 |
-
|
256 |
|
257 |
-
#
|
258 |
-
asyncio.
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
except Exception as e:
|
263 |
-
error_msg = f"Error
|
264 |
logger.error(error_msg, exc_info=True)
|
265 |
-
return
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
except Exception as e:
|
273 |
-
logger.error(f"Error in background file group download: {str(e)}", exc_info=True)
|
|
|
6 |
import gradio as gr
|
7 |
import logging
|
8 |
import asyncio
|
9 |
+
import threading
|
10 |
from pathlib import Path
|
11 |
from typing import Dict, Any, List, Optional, Tuple
|
12 |
|
|
|
21 |
super().__init__(app_state)
|
22 |
self.id = "hub_tab"
|
23 |
self.title = "Import from Hugging Face"
|
24 |
+
self.is_downloading = False
|
25 |
|
26 |
def create(self, parent=None) -> gr.Tab:
|
27 |
"""Create the Hub tab UI components"""
|
|
|
35 |
|
36 |
with gr.Row():
|
37 |
self.components["dataset_search"] = gr.Textbox(
|
38 |
+
label="Search Hugging Face Datasets (eg. cakeify, disney, rickroll..)",
|
39 |
+
placeholder="Search for video datasets (eg. cakeify, disney, rickroll..)"
|
40 |
)
|
41 |
|
42 |
with gr.Row():
|
|
|
48 |
|
49 |
with gr.Column(scale=3):
|
50 |
self.components["dataset_results"] = gr.Dataframe(
|
51 |
+
headers=["Dataset ID"], # Simplified to show only dataset ID
|
52 |
interactive=False,
|
53 |
wrap=True,
|
54 |
row_count=10,
|
|
|
60 |
self.components["dataset_info"] = gr.Markdown("Select a dataset to see details")
|
61 |
self.components["dataset_id"] = gr.State(value=None)
|
62 |
self.components["file_type"] = gr.State(value=None)
|
63 |
+
self.components["download_in_progress"] = gr.State(value=False)
|
64 |
|
65 |
# Files section that appears when a dataset is selected
|
66 |
with gr.Column(visible=False) as files_section:
|
|
|
69 |
gr.Markdown("## Files:")
|
70 |
|
71 |
# Video files row (appears if videos are present)
|
72 |
+
with gr.Row() as video_files_row:
|
73 |
self.components["video_files_row"] = video_files_row
|
74 |
|
75 |
+
self.components["video_count_text"] = gr.Markdown("Contains 0 video files")
|
|
|
76 |
|
77 |
+
self.components["download_videos_btn"] = gr.Button("Download", variant="primary")
|
|
|
78 |
|
79 |
# WebDataset files row (appears if tar files are present)
|
80 |
+
with gr.Row() as webdataset_files_row:
|
81 |
self.components["webdataset_files_row"] = webdataset_files_row
|
82 |
|
83 |
+
self.components["webdataset_count_text"] = gr.Markdown("Contains 0 WebDataset (.tar) files")
|
|
|
84 |
|
85 |
+
self.components["download_webdataset_btn"] = gr.Button("Download", variant="primary")
|
|
|
86 |
|
87 |
+
# Status indicator
|
88 |
+
self.components["status_output"] = gr.Markdown("")
|
89 |
|
90 |
return tab
|
91 |
|
|
|
101 |
]
|
102 |
)
|
103 |
|
104 |
+
# Dataset selection event
|
105 |
self.components["dataset_results"].select(
|
106 |
fn=self.display_dataset_info,
|
107 |
outputs=[
|
|
|
111 |
self.components["video_files_row"],
|
112 |
self.components["video_count_text"],
|
113 |
self.components["webdataset_files_row"],
|
114 |
+
self.components["webdataset_count_text"],
|
115 |
+
self.components["status_output"] # Reset status output
|
116 |
]
|
117 |
)
|
118 |
|
|
|
128 |
self.components["file_type"]
|
129 |
],
|
130 |
outputs=[
|
131 |
+
self.components["status_output"],
|
132 |
+
self.components["import_status"],
|
133 |
+
self.components["download_videos_btn"],
|
134 |
+
self.components["download_webdataset_btn"],
|
135 |
+
self.components["download_in_progress"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
]
|
137 |
)
|
138 |
|
|
|
148 |
self.components["file_type"]
|
149 |
],
|
150 |
outputs=[
|
151 |
+
self.components["status_output"],
|
152 |
+
self.components["import_status"],
|
153 |
+
self.components["download_videos_btn"],
|
154 |
+
self.components["download_webdataset_btn"],
|
155 |
+
self.components["download_in_progress"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
]
|
157 |
)
|
158 |
|
|
|
168 |
"""Search datasets on the Hub matching the query"""
|
169 |
try:
|
170 |
logger.info(f"Searching for datasets with query: '{query}'")
|
171 |
+
results_full = self.app.importer.search_datasets(query)
|
172 |
+
|
173 |
+
# Extract just the first column (dataset IDs) for display
|
174 |
+
results = [[row[0]] for row in results_full]
|
175 |
+
|
176 |
return results, gr.update(visible=True)
|
177 |
except Exception as e:
|
178 |
logger.error(f"Error searching datasets: {str(e)}", exc_info=True)
|
179 |
+
return [[f"Error: {str(e)}"]], gr.update(visible=True)
|
180 |
+
|
181 |
def display_dataset_info(self, evt: gr.SelectData):
|
182 |
"""Display detailed information about the selected dataset"""
|
183 |
try:
|
|
|
190 |
gr.update(visible=False), # video_files_row
|
191 |
"", # video_count_text
|
192 |
gr.update(visible=False), # webdataset_files_row
|
193 |
+
"", # webdataset_count_text
|
194 |
+
"" # status_output
|
195 |
)
|
196 |
|
197 |
+
# Extract dataset_id from the simplified format
|
198 |
dataset_id = evt.value[0] if isinstance(evt.value, list) else evt.value
|
199 |
logger.info(f"Getting dataset info for: {dataset_id}")
|
200 |
|
|
|
213 |
gr.update(visible=video_count > 0), # video_files_row
|
214 |
f"Contains {video_count} video file{'s' if video_count != 1 else ''}", # video_count_text
|
215 |
gr.update(visible=webdataset_count > 0), # webdataset_files_row
|
216 |
+
f"Contains {webdataset_count} WebDataset (.tar) file{'s' if webdataset_count != 1 else ''}", # webdataset_count_text
|
217 |
+
"" # status_output
|
218 |
)
|
219 |
except Exception as e:
|
220 |
logger.error(f"Error displaying dataset info: {str(e)}", exc_info=True)
|
|
|
225 |
gr.update(visible=False), # video_files_row
|
226 |
"", # video_count_text
|
227 |
gr.update(visible=False), # webdataset_files_row
|
228 |
+
"", # webdataset_count_text
|
229 |
+
"" # status_output
|
230 |
)
|
231 |
+
|
232 |
+
async def _download_with_progress(self, dataset_id, file_type, enable_splitting, progress_callback):
|
233 |
+
"""Wrapper for download_file_group that integrates with progress tracking"""
|
234 |
+
try:
|
235 |
+
# Set up the progress callback adapter
|
236 |
+
def progress_adapter(progress_value, desc=None, total=None):
|
237 |
+
# For a progress bar, we need to convert the values to a 0-1 range
|
238 |
+
if isinstance(progress_value, (int, float)):
|
239 |
+
if total is not None and total > 0:
|
240 |
+
# If we have a total, calculate the fraction
|
241 |
+
fraction = min(1.0, progress_value / total)
|
242 |
+
else:
|
243 |
+
# Otherwise, just use the value directly (assumed to be 0-1)
|
244 |
+
fraction = min(1.0, progress_value)
|
245 |
+
|
246 |
+
# Update the progress with the calculated fraction
|
247 |
+
progress_callback(fraction, desc=desc)
|
248 |
+
|
249 |
+
# Call the actual download function with our adapter
|
250 |
+
result = await self.app.importer.download_file_group(
|
251 |
+
dataset_id,
|
252 |
+
file_type,
|
253 |
+
enable_splitting,
|
254 |
+
progress_callback=progress_adapter
|
255 |
+
)
|
256 |
+
|
257 |
+
return result
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
logger.error(f"Error in download with progress: {str(e)}", exc_info=True)
|
261 |
+
return f"Error: {str(e)}"
|
262 |
+
|
263 |
+
def download_file_group(self, dataset_id: str, enable_splitting: bool, file_type: str, progress=gr.Progress()) -> Tuple:
|
264 |
+
"""Handle download of a group of files (videos or WebDatasets) with progress tracking"""
|
265 |
try:
|
266 |
if not dataset_id:
|
267 |
+
return ("No dataset selected",
|
268 |
+
"No dataset selected",
|
269 |
+
gr.update(),
|
270 |
+
gr.update(),
|
271 |
+
False)
|
272 |
|
273 |
logger.info(f"Starting download of {file_type} files from dataset: {dataset_id}")
|
274 |
|
275 |
+
# Initialize progress tracking
|
276 |
+
progress(0, desc=f"Starting download of {file_type} files from {dataset_id}")
|
277 |
+
|
278 |
+
# Disable download buttons during the process
|
279 |
+
videos_btn_update = gr.update(interactive=False)
|
280 |
+
webdataset_btn_update = gr.update(interactive=False)
|
281 |
|
282 |
+
# Run the download function with progress tracking
|
283 |
+
# We need to use asyncio.run to run the coroutine in a synchronous context
|
284 |
+
result = asyncio.run(self._download_with_progress(
|
285 |
+
dataset_id,
|
286 |
+
file_type,
|
287 |
+
enable_splitting,
|
288 |
+
progress
|
289 |
+
))
|
290 |
|
291 |
+
# When download is complete, update the UI
|
292 |
+
progress(1.0, desc="Download complete!")
|
293 |
+
|
294 |
+
# Create a success message
|
295 |
+
success_msg = f"✅ Download complete! {result}"
|
296 |
+
|
297 |
+
# Update the UI components
|
298 |
+
return (
|
299 |
+
success_msg, # status_output - shows the successful result
|
300 |
+
result, # import_status
|
301 |
+
gr.update(interactive=True), # download_videos_btn
|
302 |
+
gr.update(interactive=True), # download_webdataset_btn
|
303 |
+
False # download_in_progress
|
304 |
+
)
|
305 |
|
306 |
except Exception as e:
|
307 |
+
error_msg = f"Error downloading {file_type} files: {str(e)}"
|
308 |
logger.error(error_msg, exc_info=True)
|
309 |
+
return (
|
310 |
+
f"❌ Error: {error_msg}", # status_output
|
311 |
+
error_msg, # import_status
|
312 |
+
gr.update(interactive=True), # download_videos_btn
|
313 |
+
gr.update(interactive=True), # download_webdataset_btn
|
314 |
+
False # download_in_progress
|
315 |
+
)
|
|
|
|
vms/tabs/import_tab/import_tab.py
CHANGED
@@ -5,6 +5,7 @@ Parent import tab for Video Model Studio UI that contains sub-tabs
|
|
5 |
import gradio as gr
|
6 |
import logging
|
7 |
import asyncio
|
|
|
8 |
from pathlib import Path
|
9 |
from typing import Dict, Any, List, Optional, Tuple
|
10 |
|
@@ -82,44 +83,97 @@ class ImportTab(BaseTab):
|
|
82 |
self.youtube_tab.connect_events()
|
83 |
self.hub_tab.connect_events()
|
84 |
|
85 |
-
|
86 |
"""Handle successful import of files"""
|
87 |
videos = self.app.tabs["split_tab"].list_unprocessed_videos()
|
88 |
|
89 |
# If scene detection isn't already running and there are videos to process,
|
90 |
# and auto-splitting is enabled, start the detection
|
91 |
if videos and not self.app.splitter.is_processing() and enable_splitting:
|
92 |
-
|
|
|
93 |
msg = "Starting automatic scene detection..."
|
94 |
else:
|
95 |
# Just copy files without splitting if auto-split disabled
|
96 |
-
|
97 |
-
await self.app.splitter.process_video(video_file, enable_splitting=False)
|
98 |
msg = "Copying videos without splitting..."
|
99 |
|
100 |
self.app.tabs["caption_tab"].copy_files_to_training_dir(prompt_prefix)
|
101 |
|
102 |
-
# Start auto-captioning if enabled
|
103 |
if enable_automatic_content_captioning:
|
104 |
-
|
105 |
-
asyncio.create_task(self.app.tabs["caption_tab"]._process_caption_generator(
|
106 |
-
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
107 |
-
prompt_prefix
|
108 |
-
))
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
117 |
"""Handle post-import updates including titles"""
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
titles = self.app.update_titles()
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
import_result["detect_status"],
|
124 |
-
*titles
|
125 |
-
)
|
|
|
5 |
import gradio as gr
|
6 |
import logging
|
7 |
import asyncio
|
8 |
+
import threading
|
9 |
from pathlib import Path
|
10 |
from typing import Dict, Any, List, Optional, Tuple
|
11 |
|
|
|
83 |
self.youtube_tab.connect_events()
|
84 |
self.hub_tab.connect_events()
|
85 |
|
86 |
+
def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
87 |
"""Handle successful import of files"""
|
88 |
videos = self.app.tabs["split_tab"].list_unprocessed_videos()
|
89 |
|
90 |
# If scene detection isn't already running and there are videos to process,
|
91 |
# and auto-splitting is enabled, start the detection
|
92 |
if videos and not self.app.splitter.is_processing() and enable_splitting:
|
93 |
+
# Start the scene detection in a separate thread
|
94 |
+
self._start_scene_detection_bg(enable_splitting)
|
95 |
msg = "Starting automatic scene detection..."
|
96 |
else:
|
97 |
# Just copy files without splitting if auto-split disabled
|
98 |
+
self._start_copy_files_bg(enable_splitting)
|
|
|
99 |
msg = "Copying videos without splitting..."
|
100 |
|
101 |
self.app.tabs["caption_tab"].copy_files_to_training_dir(prompt_prefix)
|
102 |
|
103 |
+
# Start auto-captioning if enabled
|
104 |
if enable_automatic_content_captioning:
|
105 |
+
self._start_captioning_bg(DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, prompt_prefix)
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
# Return the correct tuple of values as expected by the UI
|
108 |
+
return gr.update(selected="split_tab"), videos, msg
|
109 |
+
|
110 |
+
def _start_scene_detection_bg(self, enable_splitting):
|
111 |
+
"""Start scene detection in a background thread"""
|
112 |
+
def run_async_in_thread():
|
113 |
+
loop = asyncio.new_event_loop()
|
114 |
+
asyncio.set_event_loop(loop)
|
115 |
+
try:
|
116 |
+
loop.run_until_complete(
|
117 |
+
self.app.tabs["split_tab"].start_scene_detection(enable_splitting)
|
118 |
+
)
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Error in background scene detection: {str(e)}", exc_info=True)
|
121 |
+
finally:
|
122 |
+
loop.close()
|
123 |
+
|
124 |
+
thread = threading.Thread(target=run_async_in_thread)
|
125 |
+
thread.daemon = True
|
126 |
+
thread.start()
|
127 |
+
|
128 |
+
def _start_copy_files_bg(self, enable_splitting):
|
129 |
+
"""Start copying files in a background thread"""
|
130 |
+
def run_async_in_thread():
|
131 |
+
loop = asyncio.new_event_loop()
|
132 |
+
asyncio.set_event_loop(loop)
|
133 |
+
try:
|
134 |
+
async def copy_files():
|
135 |
+
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
136 |
+
await self.app.splitter.process_video(video_file, enable_splitting=False)
|
137 |
+
|
138 |
+
loop.run_until_complete(copy_files())
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error in background file copying: {str(e)}", exc_info=True)
|
141 |
+
finally:
|
142 |
+
loop.close()
|
143 |
+
|
144 |
+
thread = threading.Thread(target=run_async_in_thread)
|
145 |
+
thread.daemon = True
|
146 |
+
thread.start()
|
147 |
+
|
148 |
+
def _start_captioning_bg(self, instructions, prompt_prefix):
|
149 |
+
"""Start captioning in a background thread"""
|
150 |
+
def run_async_in_thread():
|
151 |
+
loop = asyncio.new_event_loop()
|
152 |
+
asyncio.set_event_loop(loop)
|
153 |
+
try:
|
154 |
+
loop.run_until_complete(
|
155 |
+
self.app.tabs["caption_tab"]._process_caption_generator(
|
156 |
+
instructions, prompt_prefix
|
157 |
+
)
|
158 |
+
)
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Error in background captioning: {str(e)}", exc_info=True)
|
161 |
+
finally:
|
162 |
+
loop.close()
|
163 |
+
|
164 |
+
thread = threading.Thread(target=run_async_in_thread)
|
165 |
+
thread.daemon = True
|
166 |
+
thread.start()
|
167 |
|
168 |
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
169 |
"""Handle post-import updates including titles"""
|
170 |
+
# Call the non-async version since we need to return immediately for the UI
|
171 |
+
tabs, video_list, detect_status = self.on_import_success(
|
172 |
+
enable_splitting, enable_automatic_content_captioning, prompt_prefix
|
173 |
+
)
|
174 |
+
|
175 |
+
# Get updated titles
|
176 |
titles = self.app.update_titles()
|
177 |
+
|
178 |
+
# Return all expected outputs
|
179 |
+
return tabs, video_list, detect_status, *titles
|
|
|
|
|
|
vms/ui/video_trainer_ui.py
CHANGED
@@ -72,7 +72,33 @@ class VideoTrainerUI:
|
|
72 |
|
73 |
# Log recovery status
|
74 |
logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def create_ui(self):
|
77 |
"""Create the main Gradio UI"""
|
78 |
with gr.Blocks(title="🎥 Video Model Studio") as app:
|
|
|
72 |
|
73 |
# Log recovery status
|
74 |
logger.info(f"Initialization complete. Recovery status: {self.recovery_status}")
|
75 |
+
|
76 |
+
def add_periodic_callback(self, callback_fn, interval=1.0):
|
77 |
+
"""Add a periodic callback function to the UI
|
78 |
|
79 |
+
Args:
|
80 |
+
callback_fn: Function to call periodically
|
81 |
+
interval: Time in seconds between calls (default: 1.0)
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Store a reference to the callback function
|
85 |
+
if not hasattr(self, "_periodic_callbacks"):
|
86 |
+
self._periodic_callbacks = []
|
87 |
+
|
88 |
+
self._periodic_callbacks.append(callback_fn)
|
89 |
+
|
90 |
+
# Add the callback to the Gradio app
|
91 |
+
self.app.add_callback(
|
92 |
+
interval, # Interval in seconds
|
93 |
+
callback_fn, # Function to call
|
94 |
+
inputs=None, # No inputs needed
|
95 |
+
outputs=list(self.components.values()) # All components as possible outputs
|
96 |
+
)
|
97 |
+
|
98 |
+
logger.info(f"Added periodic callback {callback_fn.__name__} with interval {interval}s")
|
99 |
+
except Exception as e:
|
100 |
+
logger.error(f"Error adding periodic callback: {e}", exc_info=True)
|
101 |
+
|
102 |
def create_ui(self):
|
103 |
"""Create the main Gradio UI"""
|
104 |
with gr.Blocks(title="🎥 Video Model Studio") as app:
|