Spaces:
Running
Running
Commit
·
c5911ab
1
Parent(s):
956cf49
delete finetrainers
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- finetrainers/__init__.py +0 -5
- finetrainers/args.py +0 -865
- finetrainers/config.py +0 -58
- finetrainers/constants.py +0 -83
- finetrainers/data/__init__.py +0 -27
- finetrainers/data/_artifact.py +0 -29
- finetrainers/data/dataloader.py +0 -40
- finetrainers/data/dataset.py +0 -978
- finetrainers/data/precomputation.py +0 -376
- finetrainers/data/sampler.py +0 -58
- finetrainers/data/utils.py +0 -20
- finetrainers/functional/__init__.py +0 -16
- finetrainers/functional/diffusion.py +0 -11
- finetrainers/functional/image.py +0 -54
- finetrainers/functional/text.py +0 -26
- finetrainers/functional/video.py +0 -94
- finetrainers/logging.py +0 -111
- finetrainers/models/__init__.py +0 -1
- finetrainers/models/cogvideox/__init__.py +0 -1
- finetrainers/models/cogvideox/base_specification.py +0 -423
- finetrainers/models/cogvideox/utils.py +0 -51
- finetrainers/models/cogview4/__init__.py +0 -1
- finetrainers/models/cogview4/base_specification.py +0 -395
- finetrainers/models/hunyuan_video/__init__.py +0 -1
- finetrainers/models/hunyuan_video/base_specification.py +0 -410
- finetrainers/models/ltx_video/__init__.py +0 -1
- finetrainers/models/ltx_video/base_specification.py +0 -517
- finetrainers/models/modeling_utils.py +0 -289
- finetrainers/models/utils.py +0 -62
- finetrainers/models/wan/__init__.py +0 -1
- finetrainers/models/wan/base_specification.py +0 -393
- finetrainers/optimizer.py +0 -449
- finetrainers/parallel/__init__.py +0 -22
- finetrainers/parallel/accelerate.py +0 -218
- finetrainers/parallel/base.py +0 -96
- finetrainers/parallel/deepspeed.py +0 -7
- finetrainers/parallel/ptd.py +0 -228
- finetrainers/parallel/utils.py +0 -99
- finetrainers/patches/__init__.py +0 -28
- finetrainers/patches/dependencies/peft/patch.py +0 -25
- finetrainers/patches/models/ltx_video/patch.py +0 -127
- finetrainers/patches/models/wan/patch.py +0 -33
- finetrainers/patches/utils.py +0 -18
- finetrainers/processors/__init__.py +0 -6
- finetrainers/processors/base.py +0 -20
- finetrainers/processors/clip.py +0 -65
- finetrainers/processors/glm.py +0 -74
- finetrainers/processors/llama.py +0 -118
- finetrainers/processors/t5.py +0 -73
- finetrainers/processors/text.py +0 -22
finetrainers/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
from .args import BaseArgs
|
2 |
-
from .config import ModelType, TrainingType
|
3 |
-
from .logging import get_logger
|
4 |
-
from .models import ModelSpecification
|
5 |
-
from .trainer import SFTTrainer
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/args.py
DELETED
@@ -1,865 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import pathlib
|
4 |
-
import sys
|
5 |
-
from typing import Any, Callable, Dict, List, Optional
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from .config import SUPPORTED_MODEL_CONFIGS, ModelType, TrainingType
|
10 |
-
from .logging import get_logger
|
11 |
-
from .parallel import ParallelBackendEnum
|
12 |
-
from .utils import get_non_null_items
|
13 |
-
|
14 |
-
|
15 |
-
logger = get_logger()
|
16 |
-
|
17 |
-
|
18 |
-
class BaseArgs:
|
19 |
-
r"""
|
20 |
-
The arguments for the finetrainers training script.
|
21 |
-
|
22 |
-
For helpful information about arguments, run `python train.py --help`.
|
23 |
-
|
24 |
-
TODO(aryan): add `python train.py --recommend_configs --model_name <model_name>` to recommend
|
25 |
-
good training configs for a model after extensive testing.
|
26 |
-
TODO(aryan): add `python train.py --memory_requirements --model_name <model_name>` to show
|
27 |
-
memory requirements per model, per training type with sensible training settings.
|
28 |
-
|
29 |
-
PARALLEL ARGUMENTS
|
30 |
-
------------------
|
31 |
-
parallel_backend (`str`, defaults to `accelerate`):
|
32 |
-
The parallel backend to use for training. Choose between ['accelerate', 'ptd'].
|
33 |
-
pp_degree (`int`, defaults to `1`):
|
34 |
-
The degree of pipeline parallelism.
|
35 |
-
dp_degree (`int`, defaults to `1`):
|
36 |
-
The degree of data parallelism (number of model replicas).
|
37 |
-
dp_shards (`int`, defaults to `-1`):
|
38 |
-
The number of data parallel shards (number of model partitions).
|
39 |
-
cp_degree (`int`, defaults to `1`):
|
40 |
-
The degree of context parallelism.
|
41 |
-
|
42 |
-
MODEL ARGUMENTS
|
43 |
-
---------------
|
44 |
-
model_name (`str`):
|
45 |
-
Name of model to train. To get a list of models, run `python train.py --list_models`.
|
46 |
-
pretrained_model_name_or_path (`str`):
|
47 |
-
Path to pretrained model or model identifier from https://huggingface.co/models. The model should be
|
48 |
-
loadable based on specified `model_name`.
|
49 |
-
revision (`str`, defaults to `None`):
|
50 |
-
If provided, the model will be loaded from a specific branch of the model repository.
|
51 |
-
variant (`str`, defaults to `None`):
|
52 |
-
Variant of model weights to use. Some models provide weight variants, such as `fp16`, to reduce disk
|
53 |
-
storage requirements.
|
54 |
-
cache_dir (`str`, defaults to `None`):
|
55 |
-
The directory where the downloaded models and datasets will be stored, or loaded from.
|
56 |
-
tokenizer_id (`str`, defaults to `None`):
|
57 |
-
Identifier for the tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
58 |
-
tokenizer_2_id (`str`, defaults to `None`):
|
59 |
-
Identifier for the second tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
60 |
-
tokenizer_3_id (`str`, defaults to `None`):
|
61 |
-
Identifier for the third tokenizer model. This is useful when using a different tokenizer than the default from `pretrained_model_name_or_path`.
|
62 |
-
text_encoder_id (`str`, defaults to `None`):
|
63 |
-
Identifier for the text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
64 |
-
text_encoder_2_id (`str`, defaults to `None`):
|
65 |
-
Identifier for the second text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
66 |
-
text_encoder_3_id (`str`, defaults to `None`):
|
67 |
-
Identifier for the third text encoder model. This is useful when using a different text encoder than the default from `pretrained_model_name_or_path`.
|
68 |
-
transformer_id (`str`, defaults to `None`):
|
69 |
-
Identifier for the transformer model. This is useful when using a different transformer model than the default from `pretrained_model_name_or_path`.
|
70 |
-
vae_id (`str`, defaults to `None`):
|
71 |
-
Identifier for the VAE model. This is useful when using a different VAE model than the default from `pretrained_model_name_or_path`.
|
72 |
-
text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
73 |
-
Data type for the text encoder when generating text embeddings.
|
74 |
-
text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
75 |
-
Data type for the text encoder 2 when generating text embeddings.
|
76 |
-
text_encoder_3_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
77 |
-
Data type for the text encoder 3 when generating text embeddings.
|
78 |
-
transformer_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
79 |
-
Data type for the transformer model.
|
80 |
-
vae_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
|
81 |
-
Data type for the VAE model.
|
82 |
-
layerwise_upcasting_modules (`List[str]`, defaults to `[]`):
|
83 |
-
Modules that should have fp8 storage weights but higher precision computation. Choose between ['transformer'].
|
84 |
-
layerwise_upcasting_storage_dtype (`torch.dtype`, defaults to `float8_e4m3fn`):
|
85 |
-
Data type for the layerwise upcasting storage. Choose between ['float8_e4m3fn', 'float8_e5m2'].
|
86 |
-
layerwise_upcasting_skip_modules_pattern (`List[str]`, defaults to `["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"]`):
|
87 |
-
Modules to skip for layerwise upcasting. Layers such as normalization and modulation, when casted to fp8 precision
|
88 |
-
naively (as done in layerwise upcasting), can lead to poorer training and inference quality. We skip these layers
|
89 |
-
by default, and recommend adding more layers to the default list based on the model architecture.
|
90 |
-
|
91 |
-
DATASET ARGUMENTS
|
92 |
-
-----------------
|
93 |
-
dataset_config (`str`):
|
94 |
-
File to a dataset file containing information about training data. This file can contain information about one or
|
95 |
-
more datasets in JSON format. The file must have a key called "datasets", which is a list of dictionaries. Each
|
96 |
-
dictionary must contain the following keys:
|
97 |
-
- "data_root": (`str`)
|
98 |
-
The root directory containing the dataset. This parameter must be provided if `dataset_file` is not provided.
|
99 |
-
- "dataset_file": (`str`)
|
100 |
-
Path to a CSV/JSON/JSONL/PARQUET/ARROW/HF_HUB_DATASET file containing metadata for training. This parameter
|
101 |
-
must be provided if `data_root` is not provided.
|
102 |
-
- "dataset_type": (`str`)
|
103 |
-
Type of dataset. Choose between ['image', 'video'].
|
104 |
-
- "id_token": (`str`)
|
105 |
-
Identifier token appended to the start of each prompt if provided. This is useful for LoRA-type training
|
106 |
-
for single subject/concept/style training, but is not necessary.
|
107 |
-
- "image_resolution_buckets": (`List[Tuple[int, int]]`)
|
108 |
-
Resolution buckets for image. This should be a list of tuples containing 2 values, where each tuple
|
109 |
-
represents the resolution (height, width). All images will be resized to the nearest bucket resolution.
|
110 |
-
This parameter must be provided if `dataset_type` is 'image'.
|
111 |
-
- "video_resolution_buckets": (`List[Tuple[int, int, int]]`)
|
112 |
-
Resolution buckets for video. This should be a list of tuples containing 3 values, where each tuple
|
113 |
-
represents the resolution (num_frames, height, width). All videos will be resized to the nearest bucket
|
114 |
-
resolution. This parameter must be provided if `dataset_type` is 'video'.
|
115 |
-
- "reshape_mode": (`str`)
|
116 |
-
All input images/videos are reshaped using this mode. Choose between the following:
|
117 |
-
["center_crop", "random_crop", "bicubic"].
|
118 |
-
- "remove_common_llm_caption_prefixes": (`boolean`)
|
119 |
-
Whether or not to remove common LLM caption prefixes. See `~constants.py` for the list of common prefixes.
|
120 |
-
dataset_shuffle_buffer_size (`int`, defaults to `1`):
|
121 |
-
The buffer size for shuffling the dataset. This is useful for shuffling the dataset before training. The default
|
122 |
-
value of `1` means that the dataset will not be shuffled.
|
123 |
-
precomputation_items (`int`, defaults to `512`):
|
124 |
-
Number of data samples to precompute at once for memory-efficient training. The higher this value,
|
125 |
-
the more disk memory will be used to save the precomputed samples (conditions and latents).
|
126 |
-
precomputation_dir (`str`, defaults to `None`):
|
127 |
-
The directory where the precomputed samples will be stored. If not provided, the precomputed samples
|
128 |
-
will be stored in a temporary directory of the output directory.
|
129 |
-
precomputation_once (`bool`, defaults to `False`):
|
130 |
-
Precompute embeddings from all datasets at once before training. This is useful to save time during training
|
131 |
-
with smaller datasets. If set to `False`, will save disk space by precomputing embeddings on-the-fly during
|
132 |
-
training when required. Make sure to set `precomputation_items` to a reasonable value in line with the size
|
133 |
-
of your dataset(s).
|
134 |
-
|
135 |
-
DATALOADER_ARGUMENTS
|
136 |
-
--------------------
|
137 |
-
See https://pytorch.org/docs/stable/data.html for more information.
|
138 |
-
|
139 |
-
dataloader_num_workers (`int`, defaults to `0`):
|
140 |
-
Number of subprocesses to use for data loading. `0` means that the data will be loaded in a blocking manner
|
141 |
-
on the main process.
|
142 |
-
pin_memory (`bool`, defaults to `False`):
|
143 |
-
Whether or not to use the pinned memory setting in PyTorch dataloader. This is useful for faster data loading.
|
144 |
-
|
145 |
-
DIFFUSION ARGUMENTS
|
146 |
-
-------------------
|
147 |
-
flow_resolution_shifting (`bool`, defaults to `False`):
|
148 |
-
Resolution-dependent shifting of timestep schedules.
|
149 |
-
[Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206).
|
150 |
-
TODO(aryan): We don't support this yet.
|
151 |
-
flow_base_seq_len (`int`, defaults to `256`):
|
152 |
-
Base number of tokens for images/video when applying resolution-dependent shifting.
|
153 |
-
flow_max_seq_len (`int`, defaults to `4096`):
|
154 |
-
Maximum number of tokens for images/video when applying resolution-dependent shifting.
|
155 |
-
flow_base_shift (`float`, defaults to `0.5`):
|
156 |
-
Base shift for timestep schedules when applying resolution-dependent shifting.
|
157 |
-
flow_max_shift (`float`, defaults to `1.15`):
|
158 |
-
Maximum shift for timestep schedules when applying resolution-dependent shifting.
|
159 |
-
flow_shift (`float`, defaults to `1.0`):
|
160 |
-
Instead of training with uniform/logit-normal sigmas, shift them as (shift * sigma) / (1 + (shift - 1) * sigma).
|
161 |
-
Setting it higher is helpful when trying to train models for high-resolution generation or to produce better
|
162 |
-
samples in lower number of inference steps.
|
163 |
-
flow_weighting_scheme (`str`, defaults to `none`):
|
164 |
-
We default to the "none" weighting scheme for uniform sampling and uniform loss.
|
165 |
-
Choose between ['sigma_sqrt', 'logit_normal', 'mode', 'cosmap', 'none'].
|
166 |
-
flow_logit_mean (`float`, defaults to `0.0`):
|
167 |
-
Mean to use when using the `'logit_normal'` weighting scheme.
|
168 |
-
flow_logit_std (`float`, defaults to `1.0`):
|
169 |
-
Standard deviation to use when using the `'logit_normal'` weighting scheme.
|
170 |
-
flow_mode_scale (`float`, defaults to `1.29`):
|
171 |
-
Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.
|
172 |
-
|
173 |
-
TRAINING ARGUMENTS
|
174 |
-
------------------
|
175 |
-
training_type (`str`, defaults to `None`):
|
176 |
-
Type of training to perform. Choose between ['lora'].
|
177 |
-
seed (`int`, defaults to `42`):
|
178 |
-
A seed for reproducible training.
|
179 |
-
batch_size (`int`, defaults to `1`):
|
180 |
-
Per-device batch size.
|
181 |
-
train_steps (`int`, defaults to `1000`):
|
182 |
-
Total number of training steps to perform.
|
183 |
-
max_data_samples (`int`, defaults to `2**64`):
|
184 |
-
Maximum number of data samples observed during training training. If lesser than that required by `train_steps`,
|
185 |
-
the training will stop early.
|
186 |
-
gradient_accumulation_steps (`int`, defaults to `1`):
|
187 |
-
Number of gradients steps to accumulate before performing an optimizer step.
|
188 |
-
gradient_checkpointing (`bool`, defaults to `False`):
|
189 |
-
Whether or not to use gradient/activation checkpointing to save memory at the expense of slower
|
190 |
-
backward pass.
|
191 |
-
checkpointing_steps (`int`, defaults to `500`):
|
192 |
-
Save a checkpoint of the training state every X training steps. These checkpoints can be used both
|
193 |
-
as final checkpoints in case they are better than the last checkpoint, and are also suitable for
|
194 |
-
resuming training using `resume_from_checkpoint`.
|
195 |
-
checkpointing_limit (`int`, defaults to `None`):
|
196 |
-
Max number of checkpoints to store.
|
197 |
-
resume_from_checkpoint (`str`, defaults to `None`):
|
198 |
-
Whether training should be resumed from a previous checkpoint. Use a path saved by `checkpointing_steps`,
|
199 |
-
or `"latest"` to automatically select the last available checkpoint.
|
200 |
-
|
201 |
-
OPTIMIZER ARGUMENTS
|
202 |
-
-------------------
|
203 |
-
optimizer (`str`, defaults to `adamw`):
|
204 |
-
The optimizer type to use. Choose between the following:
|
205 |
-
- Torch optimizers: ["adam", "adamw"]
|
206 |
-
- Bitsandbytes optimizers: ["adam-bnb", "adamw-bnb", "adam-bnb-8bit", "adamw-bnb-8bit"]
|
207 |
-
lr (`float`, defaults to `1e-4`):
|
208 |
-
Initial learning rate (after the potential warmup period) to use.
|
209 |
-
lr_scheduler (`str`, defaults to `cosine_with_restarts`):
|
210 |
-
The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial',
|
211 |
-
'constant', 'constant_with_warmup'].
|
212 |
-
lr_warmup_steps (`int`, defaults to `500`):
|
213 |
-
Number of steps for the warmup in the lr scheduler.
|
214 |
-
lr_num_cycles (`int`, defaults to `1`):
|
215 |
-
Number of hard resets of the lr in cosine_with_restarts scheduler.
|
216 |
-
lr_power (`float`, defaults to `1.0`):
|
217 |
-
Power factor of the polynomial scheduler.
|
218 |
-
beta1 (`float`, defaults to `0.9`):
|
219 |
-
beta2 (`float`, defaults to `0.95`):
|
220 |
-
beta3 (`float`, defaults to `0.999`):
|
221 |
-
weight_decay (`float`, defaults to `0.0001`):
|
222 |
-
Penalty for large weights in the model.
|
223 |
-
epsilon (`float`, defaults to `1e-8`):
|
224 |
-
Small value to avoid division by zero in the optimizer.
|
225 |
-
max_grad_norm (`float`, defaults to `1.0`):
|
226 |
-
Maximum gradient norm to clip the gradients.
|
227 |
-
|
228 |
-
VALIDATION ARGUMENTS
|
229 |
-
--------------------
|
230 |
-
validation_dataset_file (`str`, defaults to `None`):
|
231 |
-
Path to a CSV/JSON/PARQUET/ARROW file containing information for validation. The file must contain atleast the
|
232 |
-
"caption" column. Other columns such as "image_path" and "video_path" can be provided too. If provided, "image_path"
|
233 |
-
will be used to load a PIL.Image.Image and set the "image" key in the sample dictionary. Similarly, "video_path"
|
234 |
-
will be used to load a List[PIL.Image.Image] and set the "video" key in the sample dictionary.
|
235 |
-
The validation dataset file may contain other attributes specific to inference/validation such as:
|
236 |
-
- "height" and "width" and "num_frames": Resolution
|
237 |
-
- "num_inference_steps": Number of inference steps
|
238 |
-
- "guidance_scale": Classifier-free Guidance Scale
|
239 |
-
- ... (any number of additional attributes can be provided. The ModelSpecification::validate method will be
|
240 |
-
invoked with the sample dictionary to validate the sample.)
|
241 |
-
validation_steps (`int`, defaults to `500`):
|
242 |
-
Number of training steps after which a validation step is performed.
|
243 |
-
enable_model_cpu_offload (`bool`, defaults to `False`):
|
244 |
-
Whether or not to offload different modeling components to CPU during validation.
|
245 |
-
|
246 |
-
MISCELLANEOUS ARGUMENTS
|
247 |
-
-----------------------
|
248 |
-
tracker_name (`str`, defaults to `finetrainers`):
|
249 |
-
Name of the tracker/project to use for logging training metrics.
|
250 |
-
push_to_hub (`bool`, defaults to `False`):
|
251 |
-
Whether or not to push the model to the Hugging Face Hub.
|
252 |
-
hub_token (`str`, defaults to `None`):
|
253 |
-
The API token to use for pushing the model to the Hugging Face Hub.
|
254 |
-
hub_model_id (`str`, defaults to `None`):
|
255 |
-
The model identifier to use for pushing the model to the Hugging Face Hub.
|
256 |
-
output_dir (`str`, defaults to `None`):
|
257 |
-
The directory where the model checkpoints and logs will be stored.
|
258 |
-
logging_dir (`str`, defaults to `logs`):
|
259 |
-
The directory where the logs will be stored.
|
260 |
-
logging_steps (`int`, defaults to `1`):
|
261 |
-
Training logs will be tracked every `logging_steps` steps.
|
262 |
-
allow_tf32 (`bool`, defaults to `False`):
|
263 |
-
Whether or not to allow the use of TF32 matmul on compatible hardware.
|
264 |
-
nccl_timeout (`int`, defaults to `1800`):
|
265 |
-
Timeout for the NCCL communication.
|
266 |
-
report_to (`str`, defaults to `wandb`):
|
267 |
-
The name of the logger to use for logging training metrics. Choose between ['wandb'].
|
268 |
-
verbose (`int`, defaults to `1`):
|
269 |
-
Whether or not to print verbose logs.
|
270 |
-
- 0: Diffusers/Transformers warning logging on local main process only
|
271 |
-
- 1: Diffusers/Transformers info logging on local main process only
|
272 |
-
- 2: Diffusers/Transformers debug logging on local main process only
|
273 |
-
- 3: Diffusers/Transformers debug logging on all processes
|
274 |
-
"""
|
275 |
-
|
276 |
-
# Parallel arguments
|
277 |
-
parallel_backend = ParallelBackendEnum.ACCELERATE
|
278 |
-
pp_degree: int = 1
|
279 |
-
dp_degree: int = 1
|
280 |
-
dp_shards: int = 1
|
281 |
-
cp_degree: int = 1
|
282 |
-
tp_degree: int = 1
|
283 |
-
|
284 |
-
# Model arguments
|
285 |
-
model_name: str = None
|
286 |
-
pretrained_model_name_or_path: str = None
|
287 |
-
revision: Optional[str] = None
|
288 |
-
variant: Optional[str] = None
|
289 |
-
cache_dir: Optional[str] = None
|
290 |
-
tokenizer_id: Optional[str] = None
|
291 |
-
tokenizer_2_id: Optional[str] = None
|
292 |
-
tokenizer_3_id: Optional[str] = None
|
293 |
-
text_encoder_id: Optional[str] = None
|
294 |
-
text_encoder_2_id: Optional[str] = None
|
295 |
-
text_encoder_3_id: Optional[str] = None
|
296 |
-
transformer_id: Optional[str] = None
|
297 |
-
vae_id: Optional[str] = None
|
298 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16
|
299 |
-
text_encoder_2_dtype: torch.dtype = torch.bfloat16
|
300 |
-
text_encoder_3_dtype: torch.dtype = torch.bfloat16
|
301 |
-
transformer_dtype: torch.dtype = torch.bfloat16
|
302 |
-
vae_dtype: torch.dtype = torch.bfloat16
|
303 |
-
layerwise_upcasting_modules: List[str] = []
|
304 |
-
layerwise_upcasting_storage_dtype: torch.dtype = torch.float8_e4m3fn
|
305 |
-
layerwise_upcasting_skip_modules_pattern: List[str] = [
|
306 |
-
"patch_embed",
|
307 |
-
"pos_embed",
|
308 |
-
"x_embedder",
|
309 |
-
"context_embedder",
|
310 |
-
"time_embed",
|
311 |
-
"^proj_in$",
|
312 |
-
"^proj_out$",
|
313 |
-
"norm",
|
314 |
-
]
|
315 |
-
|
316 |
-
# Dataset arguments
|
317 |
-
dataset_config: str = None
|
318 |
-
dataset_shuffle_buffer_size: int = 1
|
319 |
-
enable_precomputation: bool = False
|
320 |
-
precomputation_items: int = 512
|
321 |
-
precomputation_dir: Optional[str] = None
|
322 |
-
precomputation_once: bool = False
|
323 |
-
|
324 |
-
# Dataloader arguments
|
325 |
-
dataloader_num_workers: int = 0
|
326 |
-
pin_memory: bool = False
|
327 |
-
|
328 |
-
# Diffusion arguments
|
329 |
-
flow_resolution_shifting: bool = False
|
330 |
-
flow_base_seq_len: int = 256
|
331 |
-
flow_max_seq_len: int = 4096
|
332 |
-
flow_base_shift: float = 0.5
|
333 |
-
flow_max_shift: float = 1.15
|
334 |
-
flow_shift: float = 1.0
|
335 |
-
flow_weighting_scheme: str = "none"
|
336 |
-
flow_logit_mean: float = 0.0
|
337 |
-
flow_logit_std: float = 1.0
|
338 |
-
flow_mode_scale: float = 1.29
|
339 |
-
|
340 |
-
# Training arguments
|
341 |
-
training_type: str = None
|
342 |
-
seed: int = 42
|
343 |
-
batch_size: int = 1
|
344 |
-
train_steps: int = 1000
|
345 |
-
max_data_samples: int = 2**64
|
346 |
-
gradient_accumulation_steps: int = 1
|
347 |
-
gradient_checkpointing: bool = False
|
348 |
-
checkpointing_steps: int = 500
|
349 |
-
checkpointing_limit: Optional[int] = None
|
350 |
-
resume_from_checkpoint: Optional[str] = None
|
351 |
-
enable_slicing: bool = False
|
352 |
-
enable_tiling: bool = False
|
353 |
-
|
354 |
-
# Optimizer arguments
|
355 |
-
optimizer: str = "adamw"
|
356 |
-
lr: float = 1e-4
|
357 |
-
lr_scheduler: str = "cosine_with_restarts"
|
358 |
-
lr_warmup_steps: int = 0
|
359 |
-
lr_num_cycles: int = 1
|
360 |
-
lr_power: float = 1.0
|
361 |
-
beta1: float = 0.9
|
362 |
-
beta2: float = 0.95
|
363 |
-
beta3: float = 0.999
|
364 |
-
weight_decay: float = 0.0001
|
365 |
-
epsilon: float = 1e-8
|
366 |
-
max_grad_norm: float = 1.0
|
367 |
-
|
368 |
-
# Validation arguments
|
369 |
-
validation_dataset_file: Optional[str] = None
|
370 |
-
validation_steps: int = 500
|
371 |
-
enable_model_cpu_offload: bool = False
|
372 |
-
|
373 |
-
# Miscellaneous arguments
|
374 |
-
tracker_name: str = "finetrainers"
|
375 |
-
push_to_hub: bool = False
|
376 |
-
hub_token: Optional[str] = None
|
377 |
-
hub_model_id: Optional[str] = None
|
378 |
-
output_dir: str = None
|
379 |
-
logging_dir: Optional[str] = "logs"
|
380 |
-
logging_steps: int = 1
|
381 |
-
allow_tf32: bool = False
|
382 |
-
init_timeout: int = 300 # 5 minutes
|
383 |
-
nccl_timeout: int = 600 # 10 minutes, considering that validation may be performed
|
384 |
-
report_to: str = "wandb"
|
385 |
-
verbose: int = 1
|
386 |
-
|
387 |
-
def to_dict(self) -> Dict[str, Any]:
|
388 |
-
parallel_arguments = {
|
389 |
-
"pp_degree": self.pp_degree,
|
390 |
-
"dp_degree": self.dp_degree,
|
391 |
-
"dp_shards": self.dp_shards,
|
392 |
-
"cp_degree": self.cp_degree,
|
393 |
-
"tp_degree": self.tp_degree,
|
394 |
-
}
|
395 |
-
|
396 |
-
model_arguments = {
|
397 |
-
"model_name": self.model_name,
|
398 |
-
"pretrained_model_name_or_path": self.pretrained_model_name_or_path,
|
399 |
-
"revision": self.revision,
|
400 |
-
"variant": self.variant,
|
401 |
-
"cache_dir": self.cache_dir,
|
402 |
-
"tokenizer_id": self.tokenizer_id,
|
403 |
-
"tokenizer_2_id": self.tokenizer_2_id,
|
404 |
-
"tokenizer_3_id": self.tokenizer_3_id,
|
405 |
-
"text_encoder_id": self.text_encoder_id,
|
406 |
-
"text_encoder_2_id": self.text_encoder_2_id,
|
407 |
-
"text_encoder_3_id": self.text_encoder_3_id,
|
408 |
-
"transformer_id": self.transformer_id,
|
409 |
-
"vae_id": self.vae_id,
|
410 |
-
"text_encoder_dtype": self.text_encoder_dtype,
|
411 |
-
"text_encoder_2_dtype": self.text_encoder_2_dtype,
|
412 |
-
"text_encoder_3_dtype": self.text_encoder_3_dtype,
|
413 |
-
"transformer_dtype": self.transformer_dtype,
|
414 |
-
"vae_dtype": self.vae_dtype,
|
415 |
-
"layerwise_upcasting_modules": self.layerwise_upcasting_modules,
|
416 |
-
"layerwise_upcasting_storage_dtype": self.layerwise_upcasting_storage_dtype,
|
417 |
-
"layerwise_upcasting_skip_modules_pattern": self.layerwise_upcasting_skip_modules_pattern,
|
418 |
-
}
|
419 |
-
model_arguments = get_non_null_items(model_arguments)
|
420 |
-
|
421 |
-
dataset_arguments = {
|
422 |
-
"dataset_config": self.dataset_config,
|
423 |
-
"dataset_shuffle_buffer_size": self.dataset_shuffle_buffer_size,
|
424 |
-
"enable_precomputation": self.enable_precomputation,
|
425 |
-
"precomputation_items": self.precomputation_items,
|
426 |
-
"precomputation_dir": self.precomputation_dir,
|
427 |
-
"precomputation_once": self.precomputation_once,
|
428 |
-
}
|
429 |
-
dataset_arguments = get_non_null_items(dataset_arguments)
|
430 |
-
|
431 |
-
dataloader_arguments = {
|
432 |
-
"dataloader_num_workers": self.dataloader_num_workers,
|
433 |
-
"pin_memory": self.pin_memory,
|
434 |
-
}
|
435 |
-
|
436 |
-
diffusion_arguments = {
|
437 |
-
"flow_resolution_shifting": self.flow_resolution_shifting,
|
438 |
-
"flow_base_seq_len": self.flow_base_seq_len,
|
439 |
-
"flow_max_seq_len": self.flow_max_seq_len,
|
440 |
-
"flow_base_shift": self.flow_base_shift,
|
441 |
-
"flow_max_shift": self.flow_max_shift,
|
442 |
-
"flow_shift": self.flow_shift,
|
443 |
-
"flow_weighting_scheme": self.flow_weighting_scheme,
|
444 |
-
"flow_logit_mean": self.flow_logit_mean,
|
445 |
-
"flow_logit_std": self.flow_logit_std,
|
446 |
-
"flow_mode_scale": self.flow_mode_scale,
|
447 |
-
}
|
448 |
-
|
449 |
-
training_arguments = {
|
450 |
-
"training_type": self.training_type,
|
451 |
-
"seed": self.seed,
|
452 |
-
"batch_size": self.batch_size,
|
453 |
-
"train_steps": self.train_steps,
|
454 |
-
"max_data_samples": self.max_data_samples,
|
455 |
-
"gradient_accumulation_steps": self.gradient_accumulation_steps,
|
456 |
-
"gradient_checkpointing": self.gradient_checkpointing,
|
457 |
-
"checkpointing_steps": self.checkpointing_steps,
|
458 |
-
"checkpointing_limit": self.checkpointing_limit,
|
459 |
-
"resume_from_checkpoint": self.resume_from_checkpoint,
|
460 |
-
"enable_slicing": self.enable_slicing,
|
461 |
-
"enable_tiling": self.enable_tiling,
|
462 |
-
}
|
463 |
-
training_arguments = get_non_null_items(training_arguments)
|
464 |
-
|
465 |
-
optimizer_arguments = {
|
466 |
-
"optimizer": self.optimizer,
|
467 |
-
"lr": self.lr,
|
468 |
-
"lr_scheduler": self.lr_scheduler,
|
469 |
-
"lr_warmup_steps": self.lr_warmup_steps,
|
470 |
-
"lr_num_cycles": self.lr_num_cycles,
|
471 |
-
"lr_power": self.lr_power,
|
472 |
-
"beta1": self.beta1,
|
473 |
-
"beta2": self.beta2,
|
474 |
-
"beta3": self.beta3,
|
475 |
-
"weight_decay": self.weight_decay,
|
476 |
-
"epsilon": self.epsilon,
|
477 |
-
"max_grad_norm": self.max_grad_norm,
|
478 |
-
}
|
479 |
-
optimizer_arguments = get_non_null_items(optimizer_arguments)
|
480 |
-
|
481 |
-
validation_arguments = {
|
482 |
-
"validation_dataset_file": self.validation_dataset_file,
|
483 |
-
"validation_steps": self.validation_steps,
|
484 |
-
"enable_model_cpu_offload": self.enable_model_cpu_offload,
|
485 |
-
}
|
486 |
-
validation_arguments = get_non_null_items(validation_arguments)
|
487 |
-
|
488 |
-
miscellaneous_arguments = {
|
489 |
-
"tracker_name": self.tracker_name,
|
490 |
-
"push_to_hub": self.push_to_hub,
|
491 |
-
"hub_token": self.hub_token,
|
492 |
-
"hub_model_id": self.hub_model_id,
|
493 |
-
"output_dir": self.output_dir,
|
494 |
-
"logging_dir": self.logging_dir,
|
495 |
-
"logging_steps": self.logging_steps,
|
496 |
-
"allow_tf32": self.allow_tf32,
|
497 |
-
"init_timeout": self.init_timeout,
|
498 |
-
"nccl_timeout": self.nccl_timeout,
|
499 |
-
"report_to": self.report_to,
|
500 |
-
"verbose": self.verbose,
|
501 |
-
}
|
502 |
-
miscellaneous_arguments = get_non_null_items(miscellaneous_arguments)
|
503 |
-
|
504 |
-
return {
|
505 |
-
"parallel_arguments": parallel_arguments,
|
506 |
-
"model_arguments": model_arguments,
|
507 |
-
"dataset_arguments": dataset_arguments,
|
508 |
-
"dataloader_arguments": dataloader_arguments,
|
509 |
-
"diffusion_arguments": diffusion_arguments,
|
510 |
-
"training_arguments": training_arguments,
|
511 |
-
"optimizer_arguments": optimizer_arguments,
|
512 |
-
"validation_arguments": validation_arguments,
|
513 |
-
"miscellaneous_arguments": miscellaneous_arguments,
|
514 |
-
}
|
515 |
-
|
516 |
-
def extend_args(
|
517 |
-
self,
|
518 |
-
add_fn: Callable[[argparse.ArgumentParser], None],
|
519 |
-
map_fn: Callable[["BaseArgs"], None],
|
520 |
-
validate_fn: Callable[["BaseArgs"], None],
|
521 |
-
) -> None:
|
522 |
-
if not hasattr(self, "_extended_add_arguments"):
|
523 |
-
self._extended_add_arguments = []
|
524 |
-
self._extended_add_arguments.append((add_fn, validate_fn, map_fn))
|
525 |
-
|
526 |
-
def parse_args(self):
|
527 |
-
_LIST_MODELS = "--list_models"
|
528 |
-
|
529 |
-
parser = argparse.ArgumentParser()
|
530 |
-
|
531 |
-
special_args = [_LIST_MODELS]
|
532 |
-
if any(arg in sys.argv for arg in special_args):
|
533 |
-
_add_helper_arguments(parser)
|
534 |
-
args = parser.parse_args()
|
535 |
-
_display_helper_messages(args)
|
536 |
-
sys.exit(0)
|
537 |
-
else:
|
538 |
-
_add_args(parser)
|
539 |
-
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
540 |
-
add_fn, _, _ = extended_add_arg_fns
|
541 |
-
add_fn(parser)
|
542 |
-
|
543 |
-
args, remaining_args = parser.parse_known_args()
|
544 |
-
logger.debug(f"Remaining unparsed arguments: {remaining_args}")
|
545 |
-
|
546 |
-
mapped_args = _map_to_args_type(args)
|
547 |
-
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
548 |
-
_, _, map_fn = extended_add_arg_fns
|
549 |
-
map_fn(args, mapped_args)
|
550 |
-
|
551 |
-
_validate_args(mapped_args)
|
552 |
-
for extended_add_arg_fns in getattr(self, "_extended_add_arguments", []):
|
553 |
-
_, validate_fn, _ = extended_add_arg_fns
|
554 |
-
validate_fn(mapped_args)
|
555 |
-
|
556 |
-
return mapped_args
|
557 |
-
|
558 |
-
|
559 |
-
def _add_args(parser: argparse.ArgumentParser) -> None:
|
560 |
-
_add_parallel_arguments(parser)
|
561 |
-
_add_model_arguments(parser)
|
562 |
-
_add_dataset_arguments(parser)
|
563 |
-
_add_dataloader_arguments(parser)
|
564 |
-
_add_diffusion_arguments(parser)
|
565 |
-
_add_training_arguments(parser)
|
566 |
-
_add_optimizer_arguments(parser)
|
567 |
-
_add_validation_arguments(parser)
|
568 |
-
_add_miscellaneous_arguments(parser)
|
569 |
-
|
570 |
-
|
571 |
-
def _validate_args(args: BaseArgs):
|
572 |
-
_validate_model_args(args)
|
573 |
-
_validate_dataset_args(args)
|
574 |
-
_validate_validation_args(args)
|
575 |
-
|
576 |
-
|
577 |
-
def _add_parallel_arguments(parser: argparse.ArgumentParser) -> None:
|
578 |
-
parser.add_argument(
|
579 |
-
"--parallel_backend",
|
580 |
-
type=str,
|
581 |
-
default=ParallelBackendEnum.ACCELERATE,
|
582 |
-
choices=[ParallelBackendEnum.ACCELERATE, ParallelBackendEnum.PTD],
|
583 |
-
)
|
584 |
-
parser.add_argument("--pp_degree", type=int, default=1)
|
585 |
-
parser.add_argument("--dp_degree", type=int, default=1)
|
586 |
-
parser.add_argument("--dp_shards", type=int, default=1)
|
587 |
-
parser.add_argument("--cp_degree", type=int, default=1)
|
588 |
-
parser.add_argument("--tp_degree", type=int, default=1)
|
589 |
-
|
590 |
-
|
591 |
-
def _add_model_arguments(parser: argparse.ArgumentParser) -> None:
|
592 |
-
parser.add_argument(
|
593 |
-
"--model_name", type=str, required=True, choices=[x.value for x in ModelType.__members__.values()]
|
594 |
-
)
|
595 |
-
parser.add_argument("--pretrained_model_name_or_path", type=str, required=True)
|
596 |
-
parser.add_argument("--revision", type=str, default=None, required=False)
|
597 |
-
parser.add_argument("--variant", type=str, default=None)
|
598 |
-
parser.add_argument("--cache_dir", type=str, default=None)
|
599 |
-
parser.add_argument("--tokenizer_id", type=str, default=None)
|
600 |
-
parser.add_argument("--tokenizer_2_id", type=str, default=None)
|
601 |
-
parser.add_argument("--tokenizer_3_id", type=str, default=None)
|
602 |
-
parser.add_argument("--text_encoder_id", type=str, default=None)
|
603 |
-
parser.add_argument("--text_encoder_2_id", type=str, default=None)
|
604 |
-
parser.add_argument("--text_encoder_3_id", type=str, default=None)
|
605 |
-
parser.add_argument("--transformer_id", type=str, default=None)
|
606 |
-
parser.add_argument("--vae_id", type=str, default=None)
|
607 |
-
parser.add_argument("--text_encoder_dtype", type=str, default="bf16")
|
608 |
-
parser.add_argument("--text_encoder_2_dtype", type=str, default="bf16")
|
609 |
-
parser.add_argument("--text_encoder_3_dtype", type=str, default="bf16")
|
610 |
-
parser.add_argument("--transformer_dtype", type=str, default="bf16")
|
611 |
-
parser.add_argument("--vae_dtype", type=str, default="bf16")
|
612 |
-
parser.add_argument("--layerwise_upcasting_modules", type=str, default=[], nargs="+", choices=["transformer"])
|
613 |
-
parser.add_argument(
|
614 |
-
"--layerwise_upcasting_storage_dtype",
|
615 |
-
type=str,
|
616 |
-
default="float8_e4m3fn",
|
617 |
-
choices=["float8_e4m3fn", "float8_e5m2"],
|
618 |
-
)
|
619 |
-
parser.add_argument(
|
620 |
-
"--layerwise_upcasting_skip_modules_pattern",
|
621 |
-
type=str,
|
622 |
-
default=["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"],
|
623 |
-
nargs="+",
|
624 |
-
)
|
625 |
-
|
626 |
-
|
627 |
-
def _add_dataset_arguments(parser: argparse.ArgumentParser) -> None:
|
628 |
-
parser.add_argument("--dataset_config", type=str, required=True)
|
629 |
-
parser.add_argument("--dataset_shuffle_buffer_size", type=int, default=1)
|
630 |
-
parser.add_argument("--enable_precomputation", action="store_true")
|
631 |
-
parser.add_argument("--precomputation_items", type=int, default=512)
|
632 |
-
parser.add_argument("--precomputation_dir", type=str, default=None)
|
633 |
-
parser.add_argument("--precomputation_once", action="store_true")
|
634 |
-
|
635 |
-
|
636 |
-
def _add_dataloader_arguments(parser: argparse.ArgumentParser) -> None:
|
637 |
-
parser.add_argument("--dataloader_num_workers", type=int, default=0)
|
638 |
-
parser.add_argument("--pin_memory", action="store_true")
|
639 |
-
|
640 |
-
|
641 |
-
def _add_diffusion_arguments(parser: argparse.ArgumentParser) -> None:
|
642 |
-
parser.add_argument("--flow_resolution_shifting", action="store_true")
|
643 |
-
parser.add_argument("--flow_base_seq_len", type=int, default=256)
|
644 |
-
parser.add_argument("--flow_max_seq_len", type=int, default=4096)
|
645 |
-
parser.add_argument("--flow_base_shift", type=float, default=0.5)
|
646 |
-
parser.add_argument("--flow_max_shift", type=float, default=1.15)
|
647 |
-
parser.add_argument("--flow_shift", type=float, default=1.0)
|
648 |
-
parser.add_argument(
|
649 |
-
"--flow_weighting_scheme",
|
650 |
-
type=str,
|
651 |
-
default="none",
|
652 |
-
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
|
653 |
-
)
|
654 |
-
parser.add_argument("--flow_logit_mean", type=float, default=0.0)
|
655 |
-
parser.add_argument("--flow_logit_std", type=float, default=1.0)
|
656 |
-
parser.add_argument("--flow_mode_scale", type=float, default=1.29)
|
657 |
-
|
658 |
-
|
659 |
-
def _add_training_arguments(parser: argparse.ArgumentParser) -> None:
|
660 |
-
parser.add_argument(
|
661 |
-
"--training_type", type=str, choices=[x.value for x in TrainingType.__members__.values()], required=True
|
662 |
-
)
|
663 |
-
parser.add_argument("--seed", type=int, default=None)
|
664 |
-
parser.add_argument("--batch_size", type=int, default=1)
|
665 |
-
parser.add_argument("--train_steps", type=int, default=1000)
|
666 |
-
parser.add_argument("--max_data_samples", type=int, default=2**64)
|
667 |
-
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
668 |
-
parser.add_argument("--gradient_checkpointing", action="store_true")
|
669 |
-
parser.add_argument("--checkpointing_steps", type=int, default=500)
|
670 |
-
parser.add_argument("--checkpointing_limit", type=int, default=None)
|
671 |
-
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
|
672 |
-
parser.add_argument("--enable_slicing", action="store_true")
|
673 |
-
parser.add_argument("--enable_tiling", action="store_true")
|
674 |
-
|
675 |
-
|
676 |
-
def _add_optimizer_arguments(parser: argparse.ArgumentParser) -> None:
|
677 |
-
parser.add_argument("--lr", type=float, default=1e-4)
|
678 |
-
parser.add_argument("--lr_scheduler", type=str, default="constant")
|
679 |
-
parser.add_argument("--lr_warmup_steps", type=int, default=500)
|
680 |
-
parser.add_argument("--lr_num_cycles", type=int, default=1)
|
681 |
-
parser.add_argument("--lr_power", type=float, default=1.0)
|
682 |
-
parser.add_argument(
|
683 |
-
"--optimizer",
|
684 |
-
type=lambda s: s.lower(),
|
685 |
-
default="adam",
|
686 |
-
choices=["adam", "adamw", "adam-bnb", "adamw-bnb", "adam-bnb-8bit", "adamw-bnb-8bit"],
|
687 |
-
)
|
688 |
-
parser.add_argument("--beta1", type=float, default=0.9)
|
689 |
-
parser.add_argument("--beta2", type=float, default=0.95)
|
690 |
-
parser.add_argument("--beta3", type=float, default=None)
|
691 |
-
parser.add_argument("--weight_decay", type=float, default=1e-04)
|
692 |
-
parser.add_argument("--epsilon", type=float, default=1e-8)
|
693 |
-
parser.add_argument("--max_grad_norm", default=1.0, type=float)
|
694 |
-
|
695 |
-
|
696 |
-
def _add_validation_arguments(parser: argparse.ArgumentParser) -> None:
|
697 |
-
parser.add_argument("--validation_dataset_file", type=str, default=None)
|
698 |
-
parser.add_argument("--validation_steps", type=int, default=500)
|
699 |
-
parser.add_argument("--enable_model_cpu_offload", action="store_true")
|
700 |
-
|
701 |
-
|
702 |
-
def _add_miscellaneous_arguments(parser: argparse.ArgumentParser) -> None:
|
703 |
-
parser.add_argument("--tracker_name", type=str, default="finetrainers")
|
704 |
-
parser.add_argument("--push_to_hub", action="store_true")
|
705 |
-
parser.add_argument("--hub_token", type=str, default=None)
|
706 |
-
parser.add_argument("--hub_model_id", type=str, default=None)
|
707 |
-
parser.add_argument("--output_dir", type=str, default="finetrainers-training")
|
708 |
-
parser.add_argument("--logging_dir", type=str, default="logs")
|
709 |
-
parser.add_argument("--logging_steps", type=int, default=1)
|
710 |
-
parser.add_argument("--allow_tf32", action="store_true")
|
711 |
-
parser.add_argument("--init_timeout", type=int, default=300)
|
712 |
-
parser.add_argument("--nccl_timeout", type=int, default=600)
|
713 |
-
parser.add_argument("--report_to", type=str, default="none", choices=["none", "wandb"])
|
714 |
-
parser.add_argument("--verbose", type=int, default=0, choices=[0, 1, 2, 3])
|
715 |
-
|
716 |
-
|
717 |
-
def _add_helper_arguments(parser: argparse.ArgumentParser) -> None:
|
718 |
-
parser.add_argument("--list_models", action="store_true")
|
719 |
-
|
720 |
-
|
721 |
-
_DTYPE_MAP = {
|
722 |
-
"bf16": torch.bfloat16,
|
723 |
-
"fp16": torch.float16,
|
724 |
-
"fp32": torch.float32,
|
725 |
-
"float8_e4m3fn": torch.float8_e4m3fn,
|
726 |
-
"float8_e5m2": torch.float8_e5m2,
|
727 |
-
}
|
728 |
-
|
729 |
-
|
730 |
-
def _map_to_args_type(args: Dict[str, Any]) -> BaseArgs:
|
731 |
-
result_args = BaseArgs()
|
732 |
-
|
733 |
-
# Parallel arguments
|
734 |
-
result_args.parallel_backend = args.parallel_backend
|
735 |
-
result_args.pp_degree = args.pp_degree
|
736 |
-
result_args.dp_degree = args.dp_degree
|
737 |
-
result_args.dp_shards = args.dp_shards
|
738 |
-
result_args.cp_degree = args.cp_degree
|
739 |
-
result_args.tp_degree = args.tp_degree
|
740 |
-
|
741 |
-
# Model arguments
|
742 |
-
result_args.model_name = args.model_name
|
743 |
-
result_args.pretrained_model_name_or_path = args.pretrained_model_name_or_path
|
744 |
-
result_args.revision = args.revision
|
745 |
-
result_args.variant = args.variant
|
746 |
-
result_args.cache_dir = args.cache_dir
|
747 |
-
result_args.tokenizer_id = args.tokenizer_id
|
748 |
-
result_args.tokenizer_2_id = args.tokenizer_2_id
|
749 |
-
result_args.tokenizer_3_id = args.tokenizer_3_id
|
750 |
-
result_args.text_encoder_id = args.text_encoder_id
|
751 |
-
result_args.text_encoder_2_id = args.text_encoder_2_id
|
752 |
-
result_args.text_encoder_3_id = args.text_encoder_3_id
|
753 |
-
result_args.transformer_id = args.transformer_id
|
754 |
-
result_args.vae_id = args.vae_id
|
755 |
-
result_args.text_encoder_dtype = _DTYPE_MAP[args.text_encoder_dtype]
|
756 |
-
result_args.text_encoder_2_dtype = _DTYPE_MAP[args.text_encoder_2_dtype]
|
757 |
-
result_args.text_encoder_3_dtype = _DTYPE_MAP[args.text_encoder_3_dtype]
|
758 |
-
result_args.transformer_dtype = _DTYPE_MAP[args.transformer_dtype]
|
759 |
-
result_args.vae_dtype = _DTYPE_MAP[args.vae_dtype]
|
760 |
-
result_args.layerwise_upcasting_modules = args.layerwise_upcasting_modules
|
761 |
-
result_args.layerwise_upcasting_storage_dtype = _DTYPE_MAP[args.layerwise_upcasting_storage_dtype]
|
762 |
-
result_args.layerwise_upcasting_skip_modules_pattern = args.layerwise_upcasting_skip_modules_pattern
|
763 |
-
|
764 |
-
# Dataset arguments
|
765 |
-
result_args.dataset_config = args.dataset_config
|
766 |
-
result_args.dataset_shuffle_buffer_size = args.dataset_shuffle_buffer_size
|
767 |
-
result_args.enable_precomputation = args.enable_precomputation
|
768 |
-
result_args.precomputation_items = args.precomputation_items
|
769 |
-
result_args.precomputation_dir = args.precomputation_dir or os.path.join(args.output_dir, "precomputed")
|
770 |
-
result_args.precomputation_once = args.precomputation_once
|
771 |
-
|
772 |
-
# Dataloader arguments
|
773 |
-
result_args.dataloader_num_workers = args.dataloader_num_workers
|
774 |
-
result_args.pin_memory = args.pin_memory
|
775 |
-
|
776 |
-
# Diffusion arguments
|
777 |
-
result_args.flow_resolution_shifting = args.flow_resolution_shifting
|
778 |
-
result_args.flow_base_seq_len = args.flow_base_seq_len
|
779 |
-
result_args.flow_max_seq_len = args.flow_max_seq_len
|
780 |
-
result_args.flow_base_shift = args.flow_base_shift
|
781 |
-
result_args.flow_max_shift = args.flow_max_shift
|
782 |
-
result_args.flow_shift = args.flow_shift
|
783 |
-
result_args.flow_weighting_scheme = args.flow_weighting_scheme
|
784 |
-
result_args.flow_logit_mean = args.flow_logit_mean
|
785 |
-
result_args.flow_logit_std = args.flow_logit_std
|
786 |
-
result_args.flow_mode_scale = args.flow_mode_scale
|
787 |
-
|
788 |
-
# Training arguments
|
789 |
-
result_args.training_type = args.training_type
|
790 |
-
result_args.seed = args.seed
|
791 |
-
result_args.batch_size = args.batch_size
|
792 |
-
result_args.train_steps = args.train_steps
|
793 |
-
result_args.max_data_samples = args.max_data_samples
|
794 |
-
result_args.gradient_accumulation_steps = args.gradient_accumulation_steps
|
795 |
-
result_args.gradient_checkpointing = args.gradient_checkpointing
|
796 |
-
result_args.checkpointing_steps = args.checkpointing_steps
|
797 |
-
result_args.checkpointing_limit = args.checkpointing_limit
|
798 |
-
result_args.resume_from_checkpoint = args.resume_from_checkpoint
|
799 |
-
result_args.enable_slicing = args.enable_slicing
|
800 |
-
result_args.enable_tiling = args.enable_tiling
|
801 |
-
|
802 |
-
# Optimizer arguments
|
803 |
-
result_args.optimizer = args.optimizer or "adamw"
|
804 |
-
result_args.lr = args.lr or 1e-4
|
805 |
-
result_args.lr_scheduler = args.lr_scheduler
|
806 |
-
result_args.lr_warmup_steps = args.lr_warmup_steps
|
807 |
-
result_args.lr_num_cycles = args.lr_num_cycles
|
808 |
-
result_args.lr_power = args.lr_power
|
809 |
-
result_args.beta1 = args.beta1
|
810 |
-
result_args.beta2 = args.beta2
|
811 |
-
result_args.beta3 = args.beta3
|
812 |
-
result_args.weight_decay = args.weight_decay
|
813 |
-
result_args.epsilon = args.epsilon
|
814 |
-
result_args.max_grad_norm = args.max_grad_norm
|
815 |
-
|
816 |
-
# Validation arguments
|
817 |
-
result_args.validation_dataset_file = args.validation_dataset_file
|
818 |
-
result_args.validation_steps = args.validation_steps
|
819 |
-
result_args.enable_model_cpu_offload = args.enable_model_cpu_offload
|
820 |
-
|
821 |
-
# Miscellaneous arguments
|
822 |
-
result_args.tracker_name = args.tracker_name
|
823 |
-
result_args.push_to_hub = args.push_to_hub
|
824 |
-
result_args.hub_token = args.hub_token
|
825 |
-
result_args.hub_model_id = args.hub_model_id
|
826 |
-
result_args.output_dir = args.output_dir
|
827 |
-
result_args.logging_dir = args.logging_dir
|
828 |
-
result_args.logging_steps = args.logging_steps
|
829 |
-
result_args.allow_tf32 = args.allow_tf32
|
830 |
-
result_args.init_timeout = args.init_timeout
|
831 |
-
result_args.nccl_timeout = args.nccl_timeout
|
832 |
-
result_args.report_to = args.report_to
|
833 |
-
result_args.verbose = args.verbose
|
834 |
-
|
835 |
-
return result_args
|
836 |
-
|
837 |
-
|
838 |
-
def _validate_model_args(args: BaseArgs):
|
839 |
-
if args.training_type == "full-finetune":
|
840 |
-
assert (
|
841 |
-
"transformer" not in args.layerwise_upcasting_modules
|
842 |
-
), "Layerwise upcasting is not supported for full-finetune training"
|
843 |
-
|
844 |
-
|
845 |
-
def _validate_dataset_args(args: BaseArgs):
|
846 |
-
dataset_config = pathlib.Path(args.dataset_config)
|
847 |
-
if not dataset_config.exists():
|
848 |
-
raise ValueError(f"Dataset config file {args.dataset_config} does not exist.")
|
849 |
-
if args.dataset_shuffle_buffer_size < 1:
|
850 |
-
raise ValueError("Dataset shuffle buffer size must be greater than 0.")
|
851 |
-
if args.precomputation_items < 1:
|
852 |
-
raise ValueError("Precomputation items must be greater than 0.")
|
853 |
-
|
854 |
-
|
855 |
-
def _validate_validation_args(args: BaseArgs):
|
856 |
-
if args.enable_model_cpu_offload:
|
857 |
-
if any(x > 1 for x in [args.pp_degree, args.dp_degree, args.dp_shards, args.cp_degree, args.tp_degree]):
|
858 |
-
raise ValueError("Model CPU offload is not supported on multi-GPU at the moment.")
|
859 |
-
|
860 |
-
|
861 |
-
def _display_helper_messages(args: argparse.Namespace):
|
862 |
-
if args.list_models:
|
863 |
-
print("Supported models:")
|
864 |
-
for index, model_name in enumerate(SUPPORTED_MODEL_CONFIGS.keys()):
|
865 |
-
print(f" {index + 1}. {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/config.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
from enum import Enum
|
2 |
-
from typing import Type
|
3 |
-
|
4 |
-
from .models import ModelSpecification
|
5 |
-
from .models.cogvideox import CogVideoXModelSpecification
|
6 |
-
from .models.cogview4 import CogView4ModelSpecification
|
7 |
-
from .models.hunyuan_video import HunyuanVideoModelSpecification
|
8 |
-
from .models.ltx_video import LTXVideoModelSpecification
|
9 |
-
from .models.wan import WanModelSpecification
|
10 |
-
|
11 |
-
|
12 |
-
class ModelType(str, Enum):
|
13 |
-
COGVIDEOX = "cogvideox"
|
14 |
-
COGVIEW4 = "cogview4"
|
15 |
-
HUNYUAN_VIDEO = "hunyuan_video"
|
16 |
-
LTX_VIDEO = "ltx_video"
|
17 |
-
WAN = "wan"
|
18 |
-
|
19 |
-
|
20 |
-
class TrainingType(str, Enum):
|
21 |
-
LORA = "lora"
|
22 |
-
FULL_FINETUNE = "full-finetune"
|
23 |
-
|
24 |
-
|
25 |
-
SUPPORTED_MODEL_CONFIGS = {
|
26 |
-
ModelType.COGVIDEOX: {
|
27 |
-
TrainingType.LORA: CogVideoXModelSpecification,
|
28 |
-
TrainingType.FULL_FINETUNE: CogVideoXModelSpecification,
|
29 |
-
},
|
30 |
-
ModelType.COGVIEW4: {
|
31 |
-
TrainingType.LORA: CogView4ModelSpecification,
|
32 |
-
TrainingType.FULL_FINETUNE: CogView4ModelSpecification,
|
33 |
-
},
|
34 |
-
ModelType.HUNYUAN_VIDEO: {
|
35 |
-
TrainingType.LORA: HunyuanVideoModelSpecification,
|
36 |
-
TrainingType.FULL_FINETUNE: HunyuanVideoModelSpecification,
|
37 |
-
},
|
38 |
-
ModelType.LTX_VIDEO: {
|
39 |
-
TrainingType.LORA: LTXVideoModelSpecification,
|
40 |
-
TrainingType.FULL_FINETUNE: LTXVideoModelSpecification,
|
41 |
-
},
|
42 |
-
ModelType.WAN: {
|
43 |
-
TrainingType.LORA: WanModelSpecification,
|
44 |
-
TrainingType.FULL_FINETUNE: WanModelSpecification,
|
45 |
-
},
|
46 |
-
}
|
47 |
-
|
48 |
-
|
49 |
-
def _get_model_specifiction_cls(model_name: str, training_type: str) -> Type[ModelSpecification]:
|
50 |
-
if model_name not in SUPPORTED_MODEL_CONFIGS:
|
51 |
-
raise ValueError(
|
52 |
-
f"Model {model_name} not supported. Supported models are: {list(SUPPORTED_MODEL_CONFIGS.keys())}"
|
53 |
-
)
|
54 |
-
if training_type not in SUPPORTED_MODEL_CONFIGS[model_name]:
|
55 |
-
raise ValueError(
|
56 |
-
f"Training type {training_type} not supported for model {model_name}. Supported training types are: {list(SUPPORTED_MODEL_CONFIGS[model_name].keys())}"
|
57 |
-
)
|
58 |
-
return SUPPORTED_MODEL_CONFIGS[model_name][training_type]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/constants.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
|
4 |
-
DEFAULT_HEIGHT_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
|
5 |
-
DEFAULT_WIDTH_BUCKETS = [256, 320, 384, 480, 512, 576, 720, 768, 960, 1024, 1280, 1536]
|
6 |
-
DEFAULT_FRAME_BUCKETS = [49]
|
7 |
-
|
8 |
-
DEFAULT_IMAGE_RESOLUTION_BUCKETS = []
|
9 |
-
for height in DEFAULT_HEIGHT_BUCKETS:
|
10 |
-
for width in DEFAULT_WIDTH_BUCKETS:
|
11 |
-
DEFAULT_IMAGE_RESOLUTION_BUCKETS.append((height, width))
|
12 |
-
|
13 |
-
DEFAULT_VIDEO_RESOLUTION_BUCKETS = []
|
14 |
-
for frames in DEFAULT_FRAME_BUCKETS:
|
15 |
-
for height in DEFAULT_HEIGHT_BUCKETS:
|
16 |
-
for width in DEFAULT_WIDTH_BUCKETS:
|
17 |
-
DEFAULT_VIDEO_RESOLUTION_BUCKETS.append((frames, height, width))
|
18 |
-
|
19 |
-
|
20 |
-
FINETRAINERS_LOG_LEVEL = os.environ.get("FINETRAINERS_LOG_LEVEL", "INFO")
|
21 |
-
|
22 |
-
PRECOMPUTED_DIR_NAME = "precomputed"
|
23 |
-
PRECOMPUTED_CONDITIONS_DIR_NAME = "conditions"
|
24 |
-
PRECOMPUTED_LATENTS_DIR_NAME = "latents"
|
25 |
-
|
26 |
-
MODEL_DESCRIPTION = r"""
|
27 |
-
\# {model_id} {training_type} finetune
|
28 |
-
|
29 |
-
<Gallery />
|
30 |
-
|
31 |
-
\#\# Model Description
|
32 |
-
|
33 |
-
This model is a {training_type} of the `{model_id}` model.
|
34 |
-
|
35 |
-
This model was trained using the `fine-video-trainers` library - a repository containing memory-optimized scripts for training video models with [Diffusers](https://github.com/huggingface/diffusers).
|
36 |
-
|
37 |
-
\#\# Download model
|
38 |
-
|
39 |
-
[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab.
|
40 |
-
|
41 |
-
\#\# Usage
|
42 |
-
|
43 |
-
Requires [🧨 Diffusers](https://github.com/huggingface/diffusers) installed.
|
44 |
-
|
45 |
-
```python
|
46 |
-
{model_example}
|
47 |
-
```
|
48 |
-
|
49 |
-
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.
|
50 |
-
|
51 |
-
\#\# License
|
52 |
-
|
53 |
-
Please adhere to the license of the base model.
|
54 |
-
""".strip()
|
55 |
-
|
56 |
-
_COMMON_BEGINNING_PHRASES = (
|
57 |
-
"This video",
|
58 |
-
"The video",
|
59 |
-
"This clip",
|
60 |
-
"The clip",
|
61 |
-
"The animation",
|
62 |
-
"This image",
|
63 |
-
"The image",
|
64 |
-
"This picture",
|
65 |
-
"The picture",
|
66 |
-
)
|
67 |
-
_COMMON_CONTINUATION_WORDS = ("shows", "depicts", "features", "captures", "highlights", "introduces", "presents")
|
68 |
-
|
69 |
-
COMMON_LLM_START_PHRASES = (
|
70 |
-
"In the video,",
|
71 |
-
"In this video,",
|
72 |
-
"In this video clip,",
|
73 |
-
"In the clip,",
|
74 |
-
"Caption:",
|
75 |
-
*(
|
76 |
-
f"{beginning} {continuation}"
|
77 |
-
for beginning in _COMMON_BEGINNING_PHRASES
|
78 |
-
for continuation in _COMMON_CONTINUATION_WORDS
|
79 |
-
),
|
80 |
-
)
|
81 |
-
|
82 |
-
SUPPORTED_IMAGE_FILE_EXTENSIONS = ("jpg", "jpeg", "png")
|
83 |
-
SUPPORTED_VIDEO_FILE_EXTENSIONS = ("mp4", "mov")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/__init__.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
from ._artifact import ImageArtifact, VideoArtifact
|
2 |
-
from .dataloader import DPDataLoader
|
3 |
-
from .dataset import (
|
4 |
-
ImageCaptionFilePairDataset,
|
5 |
-
ImageFileCaptionFileListDataset,
|
6 |
-
ImageFolderDataset,
|
7 |
-
ImageWebDataset,
|
8 |
-
ValidationDataset,
|
9 |
-
VideoCaptionFilePairDataset,
|
10 |
-
VideoFileCaptionFileListDataset,
|
11 |
-
VideoFolderDataset,
|
12 |
-
VideoWebDataset,
|
13 |
-
combine_datasets,
|
14 |
-
initialize_dataset,
|
15 |
-
wrap_iterable_dataset_for_preprocessing,
|
16 |
-
)
|
17 |
-
from .precomputation import (
|
18 |
-
InMemoryDataIterable,
|
19 |
-
InMemoryDistributedDataPreprocessor,
|
20 |
-
InMemoryOnceDataIterable,
|
21 |
-
PrecomputedDataIterable,
|
22 |
-
PrecomputedDistributedDataPreprocessor,
|
23 |
-
PrecomputedOnceDataIterable,
|
24 |
-
initialize_preprocessor,
|
25 |
-
)
|
26 |
-
from .sampler import ResolutionSampler
|
27 |
-
from .utils import find_files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/_artifact.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
# ===== THIS FILE ONLY EXISTS FOR THE TIME BEING SINCE I DID NOT KNOW WHERE TO PUT IT =====
|
2 |
-
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Any, List
|
5 |
-
|
6 |
-
from PIL.Image import Image
|
7 |
-
|
8 |
-
|
9 |
-
@dataclass
|
10 |
-
class Artifact:
|
11 |
-
type: str
|
12 |
-
value: Any
|
13 |
-
file_extension: str
|
14 |
-
|
15 |
-
|
16 |
-
@dataclass
|
17 |
-
class ImageArtifact(Artifact):
|
18 |
-
value: Image
|
19 |
-
|
20 |
-
def __init__(self, value: Image):
|
21 |
-
super().__init__(type="image", value=value, file_extension="png")
|
22 |
-
|
23 |
-
|
24 |
-
@dataclass
|
25 |
-
class VideoArtifact(Artifact):
|
26 |
-
value: List[Image]
|
27 |
-
|
28 |
-
def __init__(self, value: List[Image]):
|
29 |
-
super().__init__(type="video", value=value, file_extension="mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/dataloader.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
from typing import Any, Dict
|
3 |
-
|
4 |
-
import torch.distributed.checkpoint.stateful
|
5 |
-
import torchdata.stateful_dataloader
|
6 |
-
|
7 |
-
from ..logging import get_logger
|
8 |
-
|
9 |
-
|
10 |
-
logger = get_logger()
|
11 |
-
|
12 |
-
|
13 |
-
class DPDataLoader(torchdata.stateful_dataloader.StatefulDataLoader, torch.distributed.checkpoint.stateful.Stateful):
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
rank: int,
|
17 |
-
dataset: torch.utils.data.IterableDataset,
|
18 |
-
batch_size: int = 1,
|
19 |
-
num_workers: int = 0,
|
20 |
-
collate_fn=None,
|
21 |
-
) -> None:
|
22 |
-
super().__init__(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn)
|
23 |
-
|
24 |
-
self._dp_rank = rank
|
25 |
-
self._rank_id = f"dp_rank_{rank}"
|
26 |
-
|
27 |
-
def state_dict(self) -> Dict[str, Any]:
|
28 |
-
# Store state only for dp rank to avoid replicating the same state across other dimensions
|
29 |
-
return {self._rank_id: pickle.dumps(super().state_dict())}
|
30 |
-
|
31 |
-
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
32 |
-
# State being empty is valid
|
33 |
-
if not state_dict:
|
34 |
-
return
|
35 |
-
|
36 |
-
if self._rank_id not in state_dict:
|
37 |
-
logger.warning(f"DataLoader state is empty for dp rank {self._dp_rank}, expected key {self._rank_id}")
|
38 |
-
return
|
39 |
-
|
40 |
-
super().load_state_dict(pickle.loads(state_dict[self._rank_id]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/dataset.py
DELETED
@@ -1,978 +0,0 @@
|
|
1 |
-
import pathlib
|
2 |
-
import random
|
3 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
-
|
5 |
-
import datasets
|
6 |
-
import datasets.data_files
|
7 |
-
import datasets.distributed
|
8 |
-
import datasets.exceptions
|
9 |
-
import huggingface_hub
|
10 |
-
import huggingface_hub.errors
|
11 |
-
import numpy as np
|
12 |
-
import PIL.Image
|
13 |
-
import torch
|
14 |
-
import torch.distributed.checkpoint.stateful
|
15 |
-
from diffusers.utils import load_image, load_video
|
16 |
-
from huggingface_hub import list_repo_files, repo_exists, snapshot_download
|
17 |
-
from tqdm.auto import tqdm
|
18 |
-
|
19 |
-
from .. import constants
|
20 |
-
from .. import functional as FF
|
21 |
-
from ..logging import get_logger
|
22 |
-
from . import utils
|
23 |
-
|
24 |
-
|
25 |
-
import decord # isort:skip
|
26 |
-
|
27 |
-
decord.bridge.set_bridge("torch")
|
28 |
-
|
29 |
-
logger = get_logger()
|
30 |
-
|
31 |
-
|
32 |
-
# fmt: off
|
33 |
-
MAX_PRECOMPUTABLE_ITEMS_LIMIT = 1024
|
34 |
-
COMMON_CAPTION_FILES = ["prompt.txt", "prompts.txt", "caption.txt", "captions.txt"]
|
35 |
-
COMMON_VIDEO_FILES = ["video.txt", "videos.txt"]
|
36 |
-
COMMON_IMAGE_FILES = ["image.txt", "images.txt"]
|
37 |
-
COMMON_WDS_CAPTION_COLUMN_NAMES = ["txt", "text", "caption", "captions", "short_caption", "long_caption", "prompt", "prompts", "short_prompt", "long_prompt", "description", "descriptions", "alt_text", "alt_texts", "alt_caption", "alt_captions", "alt_prompt", "alt_prompts", "alt_description", "alt_descriptions", "image_description", "image_descriptions", "image_caption", "image_captions", "image_prompt", "image_prompts", "image_alt_text", "image_alt_texts", "image_alt_caption", "image_alt_captions", "image_alt_prompt", "image_alt_prompts", "image_alt_description", "image_alt_descriptions", "video_description", "video_descriptions", "video_caption", "video_captions", "video_prompt", "video_prompts", "video_alt_text", "video_alt_texts", "video_alt_caption", "video_alt_captions", "video_alt_prompt", "video_alt_prompts", "video_alt_description"]
|
38 |
-
# fmt: on
|
39 |
-
|
40 |
-
|
41 |
-
class ImageCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
42 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
43 |
-
super().__init__()
|
44 |
-
|
45 |
-
self.root = pathlib.Path(root)
|
46 |
-
self.infinite = infinite
|
47 |
-
|
48 |
-
data = []
|
49 |
-
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
|
50 |
-
for caption_file in caption_files:
|
51 |
-
data_file = self._find_data_file(caption_file)
|
52 |
-
if data_file:
|
53 |
-
data.append(
|
54 |
-
{
|
55 |
-
"caption": (self.root / caption_file).as_posix(),
|
56 |
-
"image": (self.root / data_file).as_posix(),
|
57 |
-
}
|
58 |
-
)
|
59 |
-
|
60 |
-
data = datasets.Dataset.from_list(data)
|
61 |
-
data = data.cast_column("image", datasets.Image(mode="RGB"))
|
62 |
-
|
63 |
-
self._data = data.to_iterable_dataset()
|
64 |
-
self._sample_index = 0
|
65 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
66 |
-
|
67 |
-
def _get_data_iter(self):
|
68 |
-
if self._sample_index == 0:
|
69 |
-
return iter(self._data)
|
70 |
-
return iter(self._data.skip(self._sample_index))
|
71 |
-
|
72 |
-
def __iter__(self):
|
73 |
-
while True:
|
74 |
-
for sample in self._get_data_iter():
|
75 |
-
self._sample_index += 1
|
76 |
-
sample["caption"] = _read_caption_from_file(sample["caption"])
|
77 |
-
sample["image"] = _preprocess_image(sample["image"])
|
78 |
-
yield sample
|
79 |
-
|
80 |
-
if not self.infinite:
|
81 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
82 |
-
break
|
83 |
-
else:
|
84 |
-
self._sample_index = 0
|
85 |
-
|
86 |
-
def load_state_dict(self, state_dict):
|
87 |
-
self._sample_index = state_dict["sample_index"]
|
88 |
-
|
89 |
-
def state_dict(self):
|
90 |
-
return {"sample_index": self._sample_index}
|
91 |
-
|
92 |
-
def _find_data_file(self, caption_file: str) -> str:
|
93 |
-
caption_file = pathlib.Path(caption_file)
|
94 |
-
data_file = None
|
95 |
-
found_data = 0
|
96 |
-
|
97 |
-
for extension in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
|
98 |
-
image_filename = caption_file.with_suffix(f".{extension}")
|
99 |
-
if image_filename.exists():
|
100 |
-
found_data += 1
|
101 |
-
data_file = image_filename
|
102 |
-
|
103 |
-
if found_data == 0:
|
104 |
-
return False
|
105 |
-
elif found_data > 1:
|
106 |
-
raise ValueError(
|
107 |
-
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
|
108 |
-
f"file per caption file. The following extensions are supported:\n"
|
109 |
-
f" - Images: {constants.SUPPORTED_IMAGE_FILE_EXTENSIONS}\n"
|
110 |
-
)
|
111 |
-
|
112 |
-
return data_file.as_posix()
|
113 |
-
|
114 |
-
|
115 |
-
class VideoCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
116 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
117 |
-
super().__init__()
|
118 |
-
|
119 |
-
self.root = pathlib.Path(root)
|
120 |
-
self.infinite = infinite
|
121 |
-
|
122 |
-
data = []
|
123 |
-
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
|
124 |
-
for caption_file in caption_files:
|
125 |
-
data_file = self._find_data_file(caption_file)
|
126 |
-
if data_file:
|
127 |
-
data.append(
|
128 |
-
{
|
129 |
-
"caption": (self.root / caption_file).as_posix(),
|
130 |
-
"video": (self.root / data_file).as_posix(),
|
131 |
-
}
|
132 |
-
)
|
133 |
-
|
134 |
-
data = datasets.Dataset.from_list(data)
|
135 |
-
data = data.cast_column("video", datasets.Video())
|
136 |
-
|
137 |
-
self._data = data.to_iterable_dataset()
|
138 |
-
self._sample_index = 0
|
139 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
140 |
-
|
141 |
-
def _get_data_iter(self):
|
142 |
-
if self._sample_index == 0:
|
143 |
-
return iter(self._data)
|
144 |
-
return iter(self._data.skip(self._sample_index))
|
145 |
-
|
146 |
-
def __iter__(self):
|
147 |
-
while True:
|
148 |
-
for sample in self._get_data_iter():
|
149 |
-
self._sample_index += 1
|
150 |
-
sample["caption"] = _read_caption_from_file(sample["caption"])
|
151 |
-
sample["video"] = _preprocess_video(sample["video"])
|
152 |
-
yield sample
|
153 |
-
|
154 |
-
if not self.infinite:
|
155 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
156 |
-
break
|
157 |
-
else:
|
158 |
-
self._sample_index = 0
|
159 |
-
|
160 |
-
def load_state_dict(self, state_dict):
|
161 |
-
self._sample_index = state_dict["sample_index"]
|
162 |
-
|
163 |
-
def state_dict(self):
|
164 |
-
return {"sample_index": self._sample_index}
|
165 |
-
|
166 |
-
def _find_data_file(self, caption_file: str) -> str:
|
167 |
-
caption_file = pathlib.Path(caption_file)
|
168 |
-
data_file = None
|
169 |
-
found_data = 0
|
170 |
-
|
171 |
-
for extension in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
|
172 |
-
video_filename = caption_file.with_suffix(f".{extension}")
|
173 |
-
if video_filename.exists():
|
174 |
-
found_data += 1
|
175 |
-
data_file = video_filename
|
176 |
-
|
177 |
-
if found_data == 0:
|
178 |
-
return False
|
179 |
-
elif found_data > 1:
|
180 |
-
raise ValueError(
|
181 |
-
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
|
182 |
-
f"file per caption file. The following extensions are supported:\n"
|
183 |
-
f" - Videos: {constants.SUPPORTED_VIDEO_FILE_EXTENSIONS}\n"
|
184 |
-
)
|
185 |
-
|
186 |
-
return data_file.as_posix()
|
187 |
-
|
188 |
-
|
189 |
-
class ImageFileCaptionFileListDataset(
|
190 |
-
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
191 |
-
):
|
192 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
193 |
-
super().__init__()
|
194 |
-
|
195 |
-
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
|
196 |
-
VALID_IMAGE_FILES = ["image.txt", "images.txt"]
|
197 |
-
|
198 |
-
self.root = pathlib.Path(root)
|
199 |
-
self.infinite = infinite
|
200 |
-
|
201 |
-
data = []
|
202 |
-
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
|
203 |
-
existing_image_files = [file for file in VALID_IMAGE_FILES if (self.root / file).exists()]
|
204 |
-
|
205 |
-
if len(existing_caption_files) == 0:
|
206 |
-
raise FileNotFoundError(
|
207 |
-
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
208 |
-
)
|
209 |
-
if len(existing_image_files) == 0:
|
210 |
-
raise FileNotFoundError(
|
211 |
-
f"No image file found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
|
212 |
-
)
|
213 |
-
if len(existing_caption_files) > 1:
|
214 |
-
raise ValueError(
|
215 |
-
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
216 |
-
)
|
217 |
-
if len(existing_image_files) > 1:
|
218 |
-
raise ValueError(
|
219 |
-
f"Multiple image files found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
|
220 |
-
)
|
221 |
-
|
222 |
-
caption_file = existing_caption_files[0]
|
223 |
-
image_file = existing_image_files[0]
|
224 |
-
|
225 |
-
with open((self.root / caption_file).as_posix(), "r") as f:
|
226 |
-
captions = f.read().splitlines()
|
227 |
-
with open((self.root / image_file).as_posix(), "r") as f:
|
228 |
-
images = f.read().splitlines()
|
229 |
-
images = [(self.root / image).as_posix() for image in images]
|
230 |
-
|
231 |
-
if len(captions) != len(images):
|
232 |
-
raise ValueError(f"Number of captions ({len(captions)}) must match number of images ({len(images)})")
|
233 |
-
|
234 |
-
for caption, image in zip(captions, images):
|
235 |
-
data.append({"caption": caption, "image": image})
|
236 |
-
|
237 |
-
data = datasets.Dataset.from_list(data)
|
238 |
-
data = data.cast_column("image", datasets.Image(mode="RGB"))
|
239 |
-
|
240 |
-
self._data = data.to_iterable_dataset()
|
241 |
-
self._sample_index = 0
|
242 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
243 |
-
|
244 |
-
def _get_data_iter(self):
|
245 |
-
if self._sample_index == 0:
|
246 |
-
return iter(self._data)
|
247 |
-
return iter(self._data.skip(self._sample_index))
|
248 |
-
|
249 |
-
def __iter__(self):
|
250 |
-
while True:
|
251 |
-
for sample in self._get_data_iter():
|
252 |
-
self._sample_index += 1
|
253 |
-
sample["image"] = _preprocess_image(sample["image"])
|
254 |
-
yield sample
|
255 |
-
|
256 |
-
if not self.infinite:
|
257 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
258 |
-
break
|
259 |
-
else:
|
260 |
-
self._sample_index = 0
|
261 |
-
|
262 |
-
def load_state_dict(self, state_dict):
|
263 |
-
self._sample_index = state_dict["sample_index"]
|
264 |
-
|
265 |
-
def state_dict(self):
|
266 |
-
return {"sample_index": self._sample_index}
|
267 |
-
|
268 |
-
|
269 |
-
class VideoFileCaptionFileListDataset(
|
270 |
-
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
271 |
-
):
|
272 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
273 |
-
super().__init__()
|
274 |
-
|
275 |
-
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
|
276 |
-
VALID_VIDEO_FILES = ["video.txt", "videos.txt"]
|
277 |
-
|
278 |
-
self.root = pathlib.Path(root)
|
279 |
-
self.infinite = infinite
|
280 |
-
|
281 |
-
data = []
|
282 |
-
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
|
283 |
-
existing_video_files = [file for file in VALID_VIDEO_FILES if (self.root / file).exists()]
|
284 |
-
|
285 |
-
if len(existing_caption_files) == 0:
|
286 |
-
raise FileNotFoundError(
|
287 |
-
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
288 |
-
)
|
289 |
-
if len(existing_video_files) == 0:
|
290 |
-
raise FileNotFoundError(
|
291 |
-
f"No video file found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
|
292 |
-
)
|
293 |
-
if len(existing_caption_files) > 1:
|
294 |
-
raise ValueError(
|
295 |
-
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
|
296 |
-
)
|
297 |
-
if len(existing_video_files) > 1:
|
298 |
-
raise ValueError(
|
299 |
-
f"Multiple video files found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
|
300 |
-
)
|
301 |
-
|
302 |
-
caption_file = existing_caption_files[0]
|
303 |
-
video_file = existing_video_files[0]
|
304 |
-
|
305 |
-
with open((self.root / caption_file).as_posix(), "r") as f:
|
306 |
-
captions = f.read().splitlines()
|
307 |
-
with open((self.root / video_file).as_posix(), "r") as f:
|
308 |
-
videos = f.read().splitlines()
|
309 |
-
videos = [(self.root / video).as_posix() for video in videos]
|
310 |
-
|
311 |
-
if len(captions) != len(videos):
|
312 |
-
raise ValueError(f"Number of captions ({len(captions)}) must match number of videos ({len(videos)})")
|
313 |
-
|
314 |
-
for caption, video in zip(captions, videos):
|
315 |
-
data.append({"caption": caption, "video": video})
|
316 |
-
|
317 |
-
data = datasets.Dataset.from_list(data)
|
318 |
-
data = data.cast_column("video", datasets.Video())
|
319 |
-
|
320 |
-
self._data = data.to_iterable_dataset()
|
321 |
-
self._sample_index = 0
|
322 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
323 |
-
|
324 |
-
def _get_data_iter(self):
|
325 |
-
if self._sample_index == 0:
|
326 |
-
return iter(self._data)
|
327 |
-
return iter(self._data.skip(self._sample_index))
|
328 |
-
|
329 |
-
def __iter__(self):
|
330 |
-
while True:
|
331 |
-
for sample in self._get_data_iter():
|
332 |
-
self._sample_index += 1
|
333 |
-
sample["video"] = _preprocess_video(sample["video"])
|
334 |
-
yield sample
|
335 |
-
|
336 |
-
if not self.infinite:
|
337 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
338 |
-
break
|
339 |
-
else:
|
340 |
-
self._sample_index = 0
|
341 |
-
|
342 |
-
def load_state_dict(self, state_dict):
|
343 |
-
self._sample_index = state_dict["sample_index"]
|
344 |
-
|
345 |
-
def state_dict(self):
|
346 |
-
return {"sample_index": self._sample_index}
|
347 |
-
|
348 |
-
|
349 |
-
class ImageFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
350 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
351 |
-
super().__init__()
|
352 |
-
|
353 |
-
self.root = pathlib.Path(root)
|
354 |
-
self.infinite = infinite
|
355 |
-
|
356 |
-
data = datasets.load_dataset("imagefolder", data_dir=self.root.as_posix(), split="train")
|
357 |
-
|
358 |
-
self._data = data.to_iterable_dataset()
|
359 |
-
self._sample_index = 0
|
360 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
361 |
-
|
362 |
-
def _get_data_iter(self):
|
363 |
-
if self._sample_index == 0:
|
364 |
-
return iter(self._data)
|
365 |
-
return iter(self._data.skip(self._sample_index))
|
366 |
-
|
367 |
-
def __iter__(self):
|
368 |
-
while True:
|
369 |
-
for sample in self._get_data_iter():
|
370 |
-
self._sample_index += 1
|
371 |
-
sample["image"] = _preprocess_image(sample["image"])
|
372 |
-
yield sample
|
373 |
-
|
374 |
-
if not self.infinite:
|
375 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
376 |
-
break
|
377 |
-
else:
|
378 |
-
self._sample_index = 0
|
379 |
-
|
380 |
-
def load_state_dict(self, state_dict):
|
381 |
-
self._sample_index = state_dict["sample_index"]
|
382 |
-
|
383 |
-
def state_dict(self):
|
384 |
-
return {"sample_index": self._sample_index}
|
385 |
-
|
386 |
-
|
387 |
-
class VideoFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
388 |
-
def __init__(self, root: str, infinite: bool = False) -> None:
|
389 |
-
super().__init__()
|
390 |
-
|
391 |
-
self.root = pathlib.Path(root)
|
392 |
-
self.infinite = infinite
|
393 |
-
|
394 |
-
data = datasets.load_dataset("videofolder", data_dir=self.root.as_posix(), split="train")
|
395 |
-
|
396 |
-
self._data = data.to_iterable_dataset()
|
397 |
-
self._sample_index = 0
|
398 |
-
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
|
399 |
-
|
400 |
-
def _get_data_iter(self):
|
401 |
-
if self._sample_index == 0:
|
402 |
-
return iter(self._data)
|
403 |
-
return iter(self._data.skip(self._sample_index))
|
404 |
-
|
405 |
-
def __iter__(self):
|
406 |
-
while True:
|
407 |
-
for sample in self._get_data_iter():
|
408 |
-
self._sample_index += 1
|
409 |
-
sample["video"] = _preprocess_video(sample["video"])
|
410 |
-
yield sample
|
411 |
-
|
412 |
-
if not self.infinite:
|
413 |
-
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
|
414 |
-
break
|
415 |
-
else:
|
416 |
-
self._sample_index = 0
|
417 |
-
|
418 |
-
def load_state_dict(self, state_dict):
|
419 |
-
self._sample_index = state_dict["sample_index"]
|
420 |
-
|
421 |
-
def state_dict(self):
|
422 |
-
return {"sample_index": self._sample_index}
|
423 |
-
|
424 |
-
|
425 |
-
class ImageWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
426 |
-
def __init__(
|
427 |
-
self,
|
428 |
-
dataset_name: str,
|
429 |
-
infinite: bool = False,
|
430 |
-
column_names: Union[str, List[str]] = "__auto__",
|
431 |
-
weights: Dict[str, float] = -1,
|
432 |
-
**kwargs,
|
433 |
-
) -> None:
|
434 |
-
super().__init__()
|
435 |
-
|
436 |
-
assert weights == -1 or isinstance(
|
437 |
-
weights, dict
|
438 |
-
), "`weights` must be a dictionary of probabilities for each caption column"
|
439 |
-
|
440 |
-
self.dataset_name = dataset_name
|
441 |
-
self.infinite = infinite
|
442 |
-
|
443 |
-
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
|
444 |
-
|
445 |
-
if column_names == "__auto__":
|
446 |
-
if weights == -1:
|
447 |
-
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
|
448 |
-
if len(caption_columns) == 0:
|
449 |
-
raise ValueError(
|
450 |
-
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}"
|
451 |
-
)
|
452 |
-
weights = [1] * len(caption_columns)
|
453 |
-
else:
|
454 |
-
caption_columns = list(weights.keys())
|
455 |
-
weights = list(weights.values())
|
456 |
-
if not all(column in data.column_names for column in caption_columns):
|
457 |
-
raise ValueError(
|
458 |
-
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
|
459 |
-
)
|
460 |
-
else:
|
461 |
-
if isinstance(column_names, str):
|
462 |
-
if column_names not in data.column_names:
|
463 |
-
raise ValueError(
|
464 |
-
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
|
465 |
-
)
|
466 |
-
caption_columns = [column_names]
|
467 |
-
weights = [1] if weights == -1 else [weights.get(column_names)]
|
468 |
-
elif isinstance(column_names, list):
|
469 |
-
if not all(column in data.column_names for column in column_names):
|
470 |
-
raise ValueError(
|
471 |
-
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
|
472 |
-
)
|
473 |
-
caption_columns = column_names
|
474 |
-
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
|
475 |
-
else:
|
476 |
-
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
|
477 |
-
|
478 |
-
for column_names in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
|
479 |
-
if column_names in data.column_names:
|
480 |
-
data = data.cast_column(column_names, datasets.Image(mode="RGB"))
|
481 |
-
data = data.rename_column(column_names, "image")
|
482 |
-
break
|
483 |
-
|
484 |
-
self._data = data
|
485 |
-
self._sample_index = 0
|
486 |
-
self._precomputable_once = False
|
487 |
-
self._caption_columns = caption_columns
|
488 |
-
self._weights = weights
|
489 |
-
|
490 |
-
def _get_data_iter(self):
|
491 |
-
if self._sample_index == 0:
|
492 |
-
return iter(self._data)
|
493 |
-
return iter(self._data.skip(self._sample_index))
|
494 |
-
|
495 |
-
def __iter__(self):
|
496 |
-
while True:
|
497 |
-
for sample in self._get_data_iter():
|
498 |
-
self._sample_index += 1
|
499 |
-
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
|
500 |
-
sample["caption"] = sample[caption_column]
|
501 |
-
sample["image"] = _preprocess_image(sample["image"])
|
502 |
-
yield sample
|
503 |
-
|
504 |
-
if not self.infinite:
|
505 |
-
logger.warning(f"Dataset {self.dataset_name} has run out of data")
|
506 |
-
break
|
507 |
-
else:
|
508 |
-
# Reset offset for the next iteration
|
509 |
-
self._sample_index = 0
|
510 |
-
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
|
511 |
-
|
512 |
-
def load_state_dict(self, state_dict):
|
513 |
-
self._sample_index = state_dict["sample_index"]
|
514 |
-
|
515 |
-
def state_dict(self):
|
516 |
-
return {"sample_index": self._sample_index}
|
517 |
-
|
518 |
-
|
519 |
-
class VideoWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
520 |
-
def __init__(
|
521 |
-
self,
|
522 |
-
dataset_name: str,
|
523 |
-
infinite: bool = False,
|
524 |
-
column_names: Union[str, List[str]] = "__auto__",
|
525 |
-
weights: Dict[str, float] = -1,
|
526 |
-
**kwargs,
|
527 |
-
) -> None:
|
528 |
-
super().__init__()
|
529 |
-
|
530 |
-
assert weights == -1 or isinstance(
|
531 |
-
weights, dict
|
532 |
-
), "`weights` must be a dictionary of probabilities for each caption column"
|
533 |
-
|
534 |
-
self.dataset_name = dataset_name
|
535 |
-
self.infinite = infinite
|
536 |
-
|
537 |
-
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
|
538 |
-
|
539 |
-
if column_names == "__auto__":
|
540 |
-
if weights == -1:
|
541 |
-
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
|
542 |
-
if len(caption_columns) == 0:
|
543 |
-
raise ValueError(
|
544 |
-
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}"
|
545 |
-
)
|
546 |
-
weights = [1] * len(caption_columns)
|
547 |
-
else:
|
548 |
-
caption_columns = list(weights.keys())
|
549 |
-
weights = list(weights.values())
|
550 |
-
if not all(column in data.column_names for column in caption_columns):
|
551 |
-
raise ValueError(
|
552 |
-
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
|
553 |
-
)
|
554 |
-
else:
|
555 |
-
if isinstance(column_names, str):
|
556 |
-
if column_names not in data.column_names:
|
557 |
-
raise ValueError(
|
558 |
-
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
|
559 |
-
)
|
560 |
-
caption_columns = [column_names]
|
561 |
-
weights = [1] if weights == -1 else [weights.get(column_names)]
|
562 |
-
elif isinstance(column_names, list):
|
563 |
-
if not all(column in data.column_names for column in column_names):
|
564 |
-
raise ValueError(
|
565 |
-
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
|
566 |
-
)
|
567 |
-
caption_columns = column_names
|
568 |
-
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
|
569 |
-
else:
|
570 |
-
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
|
571 |
-
|
572 |
-
for column_names in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
|
573 |
-
if column_names in data.column_names:
|
574 |
-
data = data.cast_column(column_names, datasets.Video())
|
575 |
-
data = data.rename_column(column_names, "video")
|
576 |
-
break
|
577 |
-
|
578 |
-
self._data = data
|
579 |
-
self._sample_index = 0
|
580 |
-
self._precomputable_once = False
|
581 |
-
self._caption_columns = caption_columns
|
582 |
-
self._weights = weights
|
583 |
-
|
584 |
-
def _get_data_iter(self):
|
585 |
-
if self._sample_index == 0:
|
586 |
-
return iter(self._data)
|
587 |
-
return iter(self._data.skip(self._sample_index))
|
588 |
-
|
589 |
-
def __iter__(self):
|
590 |
-
while True:
|
591 |
-
for sample in self._get_data_iter():
|
592 |
-
self._sample_index += 1
|
593 |
-
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
|
594 |
-
sample["caption"] = sample[caption_column]
|
595 |
-
sample["video"] = _preprocess_video(sample["video"])
|
596 |
-
yield sample
|
597 |
-
|
598 |
-
if not self.infinite:
|
599 |
-
logger.warning(f"Dataset {self.dataset_name} has run out of data")
|
600 |
-
break
|
601 |
-
else:
|
602 |
-
# Reset offset for the next iteration
|
603 |
-
self._sample_index = 0
|
604 |
-
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
|
605 |
-
|
606 |
-
def load_state_dict(self, state_dict):
|
607 |
-
self._sample_index = state_dict["sample_index"]
|
608 |
-
|
609 |
-
def state_dict(self):
|
610 |
-
return {"sample_index": self._sample_index}
|
611 |
-
|
612 |
-
|
613 |
-
class ValidationDataset(torch.utils.data.IterableDataset):
|
614 |
-
def __init__(self, filename: str):
|
615 |
-
super().__init__()
|
616 |
-
|
617 |
-
self.filename = pathlib.Path(filename)
|
618 |
-
|
619 |
-
if not self.filename.exists():
|
620 |
-
raise FileNotFoundError(f"File {self.filename.as_posix()} does not exist")
|
621 |
-
|
622 |
-
if self.filename.suffix == ".csv":
|
623 |
-
data = datasets.load_dataset("csv", data_files=self.filename.as_posix(), split="train")
|
624 |
-
elif self.filename.suffix == ".json":
|
625 |
-
data = datasets.load_dataset("json", data_files=self.filename.as_posix(), split="train", field="data")
|
626 |
-
elif self.filename.suffix == ".parquet":
|
627 |
-
data = datasets.load_dataset("parquet", data_files=self.filename.as_posix(), split="train")
|
628 |
-
elif self.filename.suffix == ".arrow":
|
629 |
-
data = datasets.load_dataset("arrow", data_files=self.filename.as_posix(), split="train")
|
630 |
-
else:
|
631 |
-
_SUPPORTED_FILE_FORMATS = [".csv", ".json", ".parquet", ".arrow"]
|
632 |
-
raise ValueError(
|
633 |
-
f"Unsupported file format {self.filename.suffix} for validation dataset. Supported formats are: {_SUPPORTED_FILE_FORMATS}"
|
634 |
-
)
|
635 |
-
|
636 |
-
self._data = data.to_iterable_dataset()
|
637 |
-
|
638 |
-
def __iter__(self):
|
639 |
-
for sample in self._data:
|
640 |
-
# For consistency reasons, we mandate that "caption" is always present in the validation dataset.
|
641 |
-
# However, since the model specifications use "prompt", we create an alias here.
|
642 |
-
sample["prompt"] = sample["caption"]
|
643 |
-
|
644 |
-
# Load image or video if the path is provided
|
645 |
-
# TODO(aryan): need to handle custom columns here for control conditions
|
646 |
-
sample["image"] = None
|
647 |
-
sample["video"] = None
|
648 |
-
|
649 |
-
if sample.get("image_path", None) is not None:
|
650 |
-
image_path = pathlib.Path(sample["image_path"])
|
651 |
-
if not image_path.is_file():
|
652 |
-
logger.warning(f"Image file {image_path.as_posix()} does not exist.")
|
653 |
-
else:
|
654 |
-
sample["image"] = load_image(sample["image_path"])
|
655 |
-
|
656 |
-
if sample.get("video_path", None) is not None:
|
657 |
-
video_path = pathlib.Path(sample["video_path"])
|
658 |
-
if not video_path.is_file():
|
659 |
-
logger.warning(f"Video file {video_path.as_posix()} does not exist.")
|
660 |
-
else:
|
661 |
-
sample["video"] = load_video(sample["video_path"])
|
662 |
-
|
663 |
-
sample = {k: v for k, v in sample.items() if v is not None}
|
664 |
-
yield sample
|
665 |
-
|
666 |
-
|
667 |
-
class IterableDatasetPreprocessingWrapper(
|
668 |
-
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
|
669 |
-
):
|
670 |
-
def __init__(
|
671 |
-
self,
|
672 |
-
dataset: torch.utils.data.IterableDataset,
|
673 |
-
dataset_type: str,
|
674 |
-
id_token: Optional[str] = None,
|
675 |
-
image_resolution_buckets: List[Tuple[int, int]] = None,
|
676 |
-
video_resolution_buckets: List[Tuple[int, int, int]] = None,
|
677 |
-
reshape_mode: str = "bicubic",
|
678 |
-
remove_common_llm_caption_prefixes: bool = False,
|
679 |
-
**kwargs,
|
680 |
-
):
|
681 |
-
super().__init__()
|
682 |
-
|
683 |
-
self.dataset = dataset
|
684 |
-
self.dataset_type = dataset_type
|
685 |
-
self.id_token = id_token
|
686 |
-
self.image_resolution_buckets = image_resolution_buckets
|
687 |
-
self.video_resolution_buckets = video_resolution_buckets
|
688 |
-
self.reshape_mode = reshape_mode
|
689 |
-
self.remove_common_llm_caption_prefixes = remove_common_llm_caption_prefixes
|
690 |
-
|
691 |
-
logger.info(
|
692 |
-
f"Initializing IterableDatasetPreprocessingWrapper for the dataset with the following configuration:\n"
|
693 |
-
f" - Dataset Type: {dataset_type}\n"
|
694 |
-
f" - ID Token: {id_token}\n"
|
695 |
-
f" - Image Resolution Buckets: {image_resolution_buckets}\n"
|
696 |
-
f" - Video Resolution Buckets: {video_resolution_buckets}\n"
|
697 |
-
f" - Reshape Mode: {reshape_mode}\n"
|
698 |
-
f" - Remove Common LLM Caption Prefixes: {remove_common_llm_caption_prefixes}\n"
|
699 |
-
)
|
700 |
-
|
701 |
-
def __iter__(self):
|
702 |
-
logger.info("Starting IterableDatasetPreprocessingWrapper for the dataset")
|
703 |
-
for sample in iter(self.dataset):
|
704 |
-
if self.dataset_type == "image":
|
705 |
-
if self.image_resolution_buckets:
|
706 |
-
sample["_original_num_frames"] = 1
|
707 |
-
sample["_original_height"] = sample["image"].size(1)
|
708 |
-
sample["_original_width"] = sample["image"].size(2)
|
709 |
-
sample["image"] = FF.resize_to_nearest_bucket_image(
|
710 |
-
sample["image"], self.image_resolution_buckets, self.reshape_mode
|
711 |
-
)
|
712 |
-
elif self.dataset_type == "video":
|
713 |
-
if self.video_resolution_buckets:
|
714 |
-
sample["_original_num_frames"] = sample["video"].size(0)
|
715 |
-
sample["_original_height"] = sample["video"].size(2)
|
716 |
-
sample["_original_width"] = sample["video"].size(3)
|
717 |
-
sample["video"], _first_frame_only = FF.resize_to_nearest_bucket_video(
|
718 |
-
sample["video"], self.video_resolution_buckets, self.reshape_mode
|
719 |
-
)
|
720 |
-
if _first_frame_only:
|
721 |
-
msg = (
|
722 |
-
"The number of frames in the video is less than the minimum bucket size "
|
723 |
-
"specified. The first frame is being used as a single frame video. This "
|
724 |
-
"message is logged at the first occurence and for every 128th occurence "
|
725 |
-
"after that."
|
726 |
-
)
|
727 |
-
logger.log_freq("WARNING", "BUCKET_TEMPORAL_SIZE_UNAVAILABLE", msg, frequency=128)
|
728 |
-
sample["video"] = sample["video"][0]
|
729 |
-
|
730 |
-
if self.remove_common_llm_caption_prefixes:
|
731 |
-
sample["caption"] = FF.remove_prefix(sample["caption"], constants.COMMON_LLM_START_PHRASES)
|
732 |
-
|
733 |
-
if self.id_token is not None:
|
734 |
-
sample["caption"] = f"{self.id_token} {sample['caption']}"
|
735 |
-
|
736 |
-
yield sample
|
737 |
-
|
738 |
-
def load_state_dict(self, state_dict):
|
739 |
-
self.dataset.load_state_dict(state_dict["dataset"])
|
740 |
-
|
741 |
-
def state_dict(self):
|
742 |
-
return {"dataset": self.dataset.state_dict()}
|
743 |
-
|
744 |
-
|
745 |
-
class IterableCombinedDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
|
746 |
-
def __init__(self, datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False):
|
747 |
-
super().__init__()
|
748 |
-
|
749 |
-
self.datasets = datasets
|
750 |
-
self.buffer_size = buffer_size
|
751 |
-
self.shuffle = shuffle
|
752 |
-
|
753 |
-
logger.info(
|
754 |
-
f"Initializing IterableCombinedDataset with the following configuration:\n"
|
755 |
-
f" - Number of Datasets: {len(datasets)}\n"
|
756 |
-
f" - Buffer Size: {buffer_size}\n"
|
757 |
-
f" - Shuffle: {shuffle}\n"
|
758 |
-
)
|
759 |
-
|
760 |
-
def __iter__(self):
|
761 |
-
logger.info(f"Starting IterableCombinedDataset with {len(self.datasets)} datasets")
|
762 |
-
iterators = [iter(dataset) for dataset in self.datasets]
|
763 |
-
buffer = []
|
764 |
-
per_iter = max(1, self.buffer_size // len(iterators))
|
765 |
-
|
766 |
-
for index, it in enumerate(iterators):
|
767 |
-
for _ in tqdm(range(per_iter), desc=f"Filling buffer from data iterator {index}"):
|
768 |
-
try:
|
769 |
-
buffer.append((it, next(it)))
|
770 |
-
except StopIteration:
|
771 |
-
continue
|
772 |
-
|
773 |
-
while len(buffer) > 0:
|
774 |
-
idx = 0
|
775 |
-
if self.shuffle:
|
776 |
-
idx = random.randint(0, len(buffer) - 1)
|
777 |
-
current_it, sample = buffer.pop(idx)
|
778 |
-
yield sample
|
779 |
-
try:
|
780 |
-
buffer.append((current_it, next(current_it)))
|
781 |
-
except StopIteration:
|
782 |
-
pass
|
783 |
-
|
784 |
-
def load_state_dict(self, state_dict):
|
785 |
-
for dataset, dataset_state_dict in zip(self.datasets, state_dict["datasets"]):
|
786 |
-
dataset.load_state_dict(dataset_state_dict)
|
787 |
-
|
788 |
-
def state_dict(self):
|
789 |
-
return {"datasets": [dataset.state_dict() for dataset in self.datasets]}
|
790 |
-
|
791 |
-
|
792 |
-
# TODO(aryan): maybe write a test for this
|
793 |
-
def initialize_dataset(
|
794 |
-
dataset_name_or_root: str,
|
795 |
-
dataset_type: str = "video",
|
796 |
-
streaming: bool = True,
|
797 |
-
infinite: bool = False,
|
798 |
-
*,
|
799 |
-
_caption_options: Optional[Dict[str, Any]] = None,
|
800 |
-
) -> torch.utils.data.IterableDataset:
|
801 |
-
assert dataset_type in ["image", "video"]
|
802 |
-
|
803 |
-
try:
|
804 |
-
does_repo_exist_on_hub = repo_exists(dataset_name_or_root, repo_type="dataset")
|
805 |
-
except huggingface_hub.errors.HFValidationError:
|
806 |
-
does_repo_exist_on_hub = False
|
807 |
-
|
808 |
-
if does_repo_exist_on_hub:
|
809 |
-
return _initialize_hub_dataset(dataset_name_or_root, dataset_type, infinite, _caption_options=_caption_options)
|
810 |
-
else:
|
811 |
-
return _initialize_local_dataset(dataset_name_or_root, dataset_type, infinite)
|
812 |
-
|
813 |
-
|
814 |
-
def combine_datasets(
|
815 |
-
datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False
|
816 |
-
) -> torch.utils.data.IterableDataset:
|
817 |
-
return IterableCombinedDataset(datasets=datasets, buffer_size=buffer_size, shuffle=shuffle)
|
818 |
-
|
819 |
-
|
820 |
-
def wrap_iterable_dataset_for_preprocessing(
|
821 |
-
dataset: torch.utils.data.IterableDataset, dataset_type: str, config: Dict[str, Any]
|
822 |
-
) -> torch.utils.data.IterableDataset:
|
823 |
-
return IterableDatasetPreprocessingWrapper(dataset, dataset_type, **config)
|
824 |
-
|
825 |
-
|
826 |
-
def _initialize_local_dataset(dataset_name_or_root: str, dataset_type: str, infinite: bool = False):
|
827 |
-
root = pathlib.Path(dataset_name_or_root)
|
828 |
-
supported_metadata_files = ["metadata.json", "metadata.jsonl", "metadata.csv"]
|
829 |
-
metadata_files = [root / metadata_file for metadata_file in supported_metadata_files]
|
830 |
-
metadata_files = [metadata_file for metadata_file in metadata_files if metadata_file.exists()]
|
831 |
-
|
832 |
-
if len(metadata_files) > 1:
|
833 |
-
raise ValueError("Found multiple metadata files. Please ensure there is only one metadata file.")
|
834 |
-
|
835 |
-
if len(metadata_files) == 1:
|
836 |
-
if dataset_type == "image":
|
837 |
-
dataset = ImageFolderDataset(root.as_posix(), infinite=infinite)
|
838 |
-
else:
|
839 |
-
dataset = VideoFolderDataset(root.as_posix(), infinite=infinite)
|
840 |
-
return dataset
|
841 |
-
|
842 |
-
if _has_data_caption_file_pairs(root, remote=False):
|
843 |
-
if dataset_type == "image":
|
844 |
-
dataset = ImageCaptionFilePairDataset(root.as_posix(), infinite=infinite)
|
845 |
-
else:
|
846 |
-
dataset = VideoCaptionFilePairDataset(root.as_posix(), infinite=infinite)
|
847 |
-
elif _has_data_file_caption_file_lists(root, remote=False):
|
848 |
-
if dataset_type == "image":
|
849 |
-
dataset = ImageFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
|
850 |
-
else:
|
851 |
-
dataset = VideoFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
|
852 |
-
else:
|
853 |
-
raise ValueError(
|
854 |
-
f"Could not find any supported dataset structure in the directory {root}. Please open an issue at "
|
855 |
-
f"https://github.com/a-r-r-o-w/finetrainers with information about your dataset structure and we will "
|
856 |
-
f"help you set it up."
|
857 |
-
)
|
858 |
-
|
859 |
-
return dataset
|
860 |
-
|
861 |
-
|
862 |
-
def _initialize_hub_dataset(
|
863 |
-
dataset_name: str, dataset_type: str, infinite: bool = False, *, _caption_options: Optional[Dict[str, Any]] = None
|
864 |
-
):
|
865 |
-
repo_file_list = list_repo_files(dataset_name, repo_type="dataset")
|
866 |
-
if _has_data_caption_file_pairs(repo_file_list, remote=True):
|
867 |
-
return _initialize_data_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
|
868 |
-
elif _has_data_file_caption_file_lists(repo_file_list, remote=True):
|
869 |
-
return _initialize_data_file_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
|
870 |
-
|
871 |
-
has_tar_files = any(file.endswith(".tar") or file.endswith(".parquet") for file in repo_file_list)
|
872 |
-
if has_tar_files:
|
873 |
-
return _initialize_webdataset(dataset_name, dataset_type, infinite, _caption_options=_caption_options)
|
874 |
-
|
875 |
-
# TODO(aryan): This should be improved
|
876 |
-
caption_files = [pathlib.Path(file).name for file in repo_file_list if file.endswith(".txt")]
|
877 |
-
if len(caption_files) < MAX_PRECOMPUTABLE_ITEMS_LIMIT:
|
878 |
-
try:
|
879 |
-
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
|
880 |
-
if dataset_type == "image":
|
881 |
-
dataset = ImageFolderDataset(dataset_root, infinite=infinite)
|
882 |
-
else:
|
883 |
-
dataset = VideoFolderDataset(dataset_root, infinite=infinite)
|
884 |
-
return dataset
|
885 |
-
except Exception:
|
886 |
-
pass
|
887 |
-
|
888 |
-
raise ValueError(f"Could not load dataset {dataset_name} from the HF Hub")
|
889 |
-
|
890 |
-
|
891 |
-
def _initialize_data_caption_file_dataset_from_hub(
|
892 |
-
dataset_name: str, dataset_type: str, infinite: bool = False
|
893 |
-
) -> torch.utils.data.IterableDataset:
|
894 |
-
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
|
895 |
-
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
|
896 |
-
if dataset_type == "image":
|
897 |
-
return ImageCaptionFilePairDataset(dataset_root, infinite=infinite)
|
898 |
-
else:
|
899 |
-
return VideoCaptionFilePairDataset(dataset_root, infinite=infinite)
|
900 |
-
|
901 |
-
|
902 |
-
def _initialize_data_file_caption_file_dataset_from_hub(
|
903 |
-
dataset_name: str, dataset_type: str, infinite: bool = False
|
904 |
-
) -> torch.utils.data.IterableDataset:
|
905 |
-
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
|
906 |
-
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
|
907 |
-
if dataset_type == "image":
|
908 |
-
return ImageFileCaptionFileListDataset(dataset_root, infinite=infinite)
|
909 |
-
else:
|
910 |
-
return VideoFileCaptionFileListDataset(dataset_root, infinite=infinite)
|
911 |
-
|
912 |
-
|
913 |
-
def _initialize_webdataset(
|
914 |
-
dataset_name: str, dataset_type: str, infinite: bool = False, _caption_options: Optional[Dict[str, Any]] = None
|
915 |
-
) -> torch.utils.data.IterableDataset:
|
916 |
-
logger.info(f"Streaming webdataset {dataset_name} from the HF Hub")
|
917 |
-
_caption_options = _caption_options or {}
|
918 |
-
if dataset_type == "image":
|
919 |
-
return ImageWebDataset(dataset_name, infinite=infinite, **_caption_options)
|
920 |
-
else:
|
921 |
-
return VideoWebDataset(dataset_name, infinite=infinite, **_caption_options)
|
922 |
-
|
923 |
-
|
924 |
-
def _has_data_caption_file_pairs(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
|
925 |
-
# TODO(aryan): this logic can be improved
|
926 |
-
if not remote:
|
927 |
-
caption_files = utils.find_files(root.as_posix(), "*.txt", depth=0)
|
928 |
-
for caption_file in caption_files:
|
929 |
-
caption_file = pathlib.Path(caption_file)
|
930 |
-
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
|
931 |
-
data_filename = caption_file.with_suffix(f".{extension}")
|
932 |
-
if data_filename.exists():
|
933 |
-
return True
|
934 |
-
return False
|
935 |
-
else:
|
936 |
-
caption_files = [file for file in root if file.endswith(".txt")]
|
937 |
-
for caption_file in caption_files:
|
938 |
-
caption_file = pathlib.Path(caption_file)
|
939 |
-
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
|
940 |
-
data_filename = caption_file.with_suffix(f".{extension}").name
|
941 |
-
if data_filename in root:
|
942 |
-
return True
|
943 |
-
return False
|
944 |
-
|
945 |
-
|
946 |
-
def _has_data_file_caption_file_lists(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
|
947 |
-
# TODO(aryan): this logic can be improved
|
948 |
-
if not remote:
|
949 |
-
file_list = {x.name for x in root.iterdir()}
|
950 |
-
has_caption_files = any(file in file_list for file in COMMON_CAPTION_FILES)
|
951 |
-
has_video_files = any(file in file_list for file in COMMON_VIDEO_FILES)
|
952 |
-
has_image_files = any(file in file_list for file in COMMON_IMAGE_FILES)
|
953 |
-
return has_caption_files and (has_video_files or has_image_files)
|
954 |
-
else:
|
955 |
-
has_caption_files = any(file in root for file in COMMON_CAPTION_FILES)
|
956 |
-
has_video_files = any(file in root for file in COMMON_VIDEO_FILES)
|
957 |
-
has_image_files = any(file in root for file in COMMON_IMAGE_FILES)
|
958 |
-
return has_caption_files and (has_video_files or has_image_files)
|
959 |
-
|
960 |
-
|
961 |
-
def _read_caption_from_file(filename: str) -> str:
|
962 |
-
with open(filename, "r") as f:
|
963 |
-
return f.read().strip()
|
964 |
-
|
965 |
-
|
966 |
-
def _preprocess_image(image: PIL.Image.Image) -> torch.Tensor:
|
967 |
-
image = image.convert("RGB")
|
968 |
-
image = np.array(image).astype(np.float32)
|
969 |
-
image = torch.from_numpy(image)
|
970 |
-
image = image.permute(2, 0, 1).contiguous() / 127.5 - 1.0
|
971 |
-
return image
|
972 |
-
|
973 |
-
|
974 |
-
def _preprocess_video(video: decord.VideoReader) -> torch.Tensor:
|
975 |
-
video = video.get_batch(list(range(len(video))))
|
976 |
-
video = video.permute(0, 3, 1, 2).contiguous()
|
977 |
-
video = video.float() / 127.5 - 1.0
|
978 |
-
return video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/precomputation.py
DELETED
@@ -1,376 +0,0 @@
|
|
1 |
-
import pathlib
|
2 |
-
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from tqdm.auto import tqdm
|
6 |
-
|
7 |
-
from .. import utils
|
8 |
-
from ..logging import get_logger
|
9 |
-
|
10 |
-
|
11 |
-
logger = get_logger()
|
12 |
-
|
13 |
-
|
14 |
-
def initialize_preprocessor(
|
15 |
-
rank: int,
|
16 |
-
num_items: int,
|
17 |
-
processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
|
18 |
-
save_dir: Optional[str] = None,
|
19 |
-
enable_precomputation: bool = False,
|
20 |
-
) -> Union["InMemoryDistributedDataPreprocessor", "PrecomputedDistributedDataPreprocessor"]:
|
21 |
-
if enable_precomputation:
|
22 |
-
return PrecomputedDistributedDataPreprocessor(rank, num_items, processor_fn, save_dir)
|
23 |
-
return InMemoryDistributedDataPreprocessor(rank, num_items, processor_fn)
|
24 |
-
|
25 |
-
|
26 |
-
class DistributedDataProcessorMixin:
|
27 |
-
def consume(self, *args, **kwargs):
|
28 |
-
raise NotImplementedError("DistributedDataProcessorMixin::consume must be implemented by the subclass.")
|
29 |
-
|
30 |
-
def consume_once(self, *args, **kwargs):
|
31 |
-
raise NotImplementedError("DistributedDataProcessorMixin::consume_once must be implemented by the subclass.")
|
32 |
-
|
33 |
-
@property
|
34 |
-
def requires_data(self):
|
35 |
-
raise NotImplementedError("DistributedDataProcessorMixin::requires_data must be implemented by the subclass.")
|
36 |
-
|
37 |
-
|
38 |
-
class InMemoryDistributedDataPreprocessor(DistributedDataProcessorMixin):
|
39 |
-
def __init__(
|
40 |
-
self, rank: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]]
|
41 |
-
) -> None:
|
42 |
-
super().__init__()
|
43 |
-
|
44 |
-
self._rank = rank
|
45 |
-
self._num_items = num_items
|
46 |
-
self._processor_fn = processor_fn
|
47 |
-
|
48 |
-
self._cached_samples = []
|
49 |
-
self._buffer = InMemoryDataBuffer(num_items)
|
50 |
-
self._preprocessed_iterator: Union["InMemoryDataIterable", "InMemoryOnceDataIterable"] = None
|
51 |
-
|
52 |
-
def consume(
|
53 |
-
self,
|
54 |
-
data_type: str,
|
55 |
-
components: Dict[str, Any],
|
56 |
-
data_iterator,
|
57 |
-
generator: Optional[torch.Generator] = None,
|
58 |
-
cache_samples: bool = False,
|
59 |
-
use_cached_samples: bool = False,
|
60 |
-
drop_samples: bool = False,
|
61 |
-
) -> Iterable[Dict[str, Any]]:
|
62 |
-
if data_type not in self._processor_fn.keys():
|
63 |
-
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
64 |
-
if cache_samples:
|
65 |
-
if use_cached_samples:
|
66 |
-
raise ValueError("Cannot cache and use cached samples at the same time.")
|
67 |
-
if drop_samples:
|
68 |
-
raise ValueError("Cannot cache and drop samples at the same time.")
|
69 |
-
|
70 |
-
for i in range(self._num_items):
|
71 |
-
if use_cached_samples:
|
72 |
-
item = self._cached_samples[i]
|
73 |
-
else:
|
74 |
-
item = next(data_iterator)
|
75 |
-
if cache_samples:
|
76 |
-
self._cached_samples.append(item)
|
77 |
-
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
78 |
-
self._buffer.add(data_type, item)
|
79 |
-
|
80 |
-
if drop_samples:
|
81 |
-
del self._cached_samples
|
82 |
-
self._cached_samples = []
|
83 |
-
|
84 |
-
self._preprocessed_iterator = InMemoryDataIterable(self._rank, data_type, self._buffer)
|
85 |
-
return iter(self._preprocessed_iterator)
|
86 |
-
|
87 |
-
def consume_once(
|
88 |
-
self,
|
89 |
-
data_type: str,
|
90 |
-
components: Dict[str, Any],
|
91 |
-
data_iterator,
|
92 |
-
generator: Optional[torch.Generator] = None,
|
93 |
-
cache_samples: bool = False,
|
94 |
-
use_cached_samples: bool = False,
|
95 |
-
drop_samples: bool = False,
|
96 |
-
) -> Iterable[Dict[str, Any]]:
|
97 |
-
if data_type not in self._processor_fn.keys():
|
98 |
-
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
99 |
-
if cache_samples:
|
100 |
-
if use_cached_samples:
|
101 |
-
raise ValueError("Cannot cache and use cached samples at the same time.")
|
102 |
-
if drop_samples:
|
103 |
-
raise ValueError("Cannot cache and drop samples at the same time.")
|
104 |
-
|
105 |
-
for i in range(self._num_items):
|
106 |
-
if use_cached_samples:
|
107 |
-
item = self._cached_samples[i]
|
108 |
-
else:
|
109 |
-
item = next(data_iterator)
|
110 |
-
if cache_samples:
|
111 |
-
self._cached_samples.append(item)
|
112 |
-
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
113 |
-
self._buffer.add(data_type, item)
|
114 |
-
|
115 |
-
if drop_samples:
|
116 |
-
del self._cached_samples
|
117 |
-
self._cached_samples = []
|
118 |
-
|
119 |
-
self._preprocessed_iterator = InMemoryOnceDataIterable(self._rank, data_type, self._buffer)
|
120 |
-
return iter(self._preprocessed_iterator)
|
121 |
-
|
122 |
-
@property
|
123 |
-
def requires_data(self):
|
124 |
-
if self._preprocessed_iterator is None:
|
125 |
-
return True
|
126 |
-
return self._preprocessed_iterator.requires_data
|
127 |
-
|
128 |
-
|
129 |
-
class PrecomputedDistributedDataPreprocessor(DistributedDataProcessorMixin):
|
130 |
-
def __init__(
|
131 |
-
self,
|
132 |
-
rank: int,
|
133 |
-
num_items: int,
|
134 |
-
processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
|
135 |
-
save_dir: str,
|
136 |
-
) -> None:
|
137 |
-
super().__init__()
|
138 |
-
|
139 |
-
self._rank = rank
|
140 |
-
self._num_items = num_items
|
141 |
-
self._processor_fn = processor_fn
|
142 |
-
self._save_dir = pathlib.Path(save_dir)
|
143 |
-
|
144 |
-
self._cached_samples = []
|
145 |
-
self._preprocessed_iterator: Union["PrecomputedDataIterable", "PrecomputedOnceDataIterable"] = None
|
146 |
-
|
147 |
-
self._save_dir.mkdir(parents=True, exist_ok=True)
|
148 |
-
|
149 |
-
subdirectories = [f for f in self._save_dir.iterdir() if f.is_dir()]
|
150 |
-
utils.delete_files(subdirectories)
|
151 |
-
|
152 |
-
def consume(
|
153 |
-
self,
|
154 |
-
data_type: str,
|
155 |
-
components: Dict[str, Any],
|
156 |
-
data_iterator,
|
157 |
-
generator: Optional[torch.Generator] = None,
|
158 |
-
cache_samples: bool = False,
|
159 |
-
use_cached_samples: bool = False,
|
160 |
-
drop_samples: bool = False,
|
161 |
-
) -> Iterable[Dict[str, Any]]:
|
162 |
-
if data_type not in self._processor_fn.keys():
|
163 |
-
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
164 |
-
if cache_samples:
|
165 |
-
if use_cached_samples:
|
166 |
-
raise ValueError("Cannot cache and use cached samples at the same time.")
|
167 |
-
if drop_samples:
|
168 |
-
raise ValueError("Cannot cache and drop samples at the same time.")
|
169 |
-
|
170 |
-
for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items):
|
171 |
-
if use_cached_samples:
|
172 |
-
item = self._cached_samples[i]
|
173 |
-
else:
|
174 |
-
item = next(data_iterator)
|
175 |
-
if cache_samples:
|
176 |
-
self._cached_samples.append(item)
|
177 |
-
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
178 |
-
_save_item(self._rank, i, item, self._save_dir, data_type)
|
179 |
-
|
180 |
-
if drop_samples:
|
181 |
-
del self._cached_samples
|
182 |
-
self._cached_samples = []
|
183 |
-
|
184 |
-
self._preprocessed_iterator = PrecomputedDataIterable(self._rank, self._save_dir, data_type)
|
185 |
-
return iter(self._preprocessed_iterator)
|
186 |
-
|
187 |
-
def consume_once(
|
188 |
-
self,
|
189 |
-
data_type: str,
|
190 |
-
components: Dict[str, Any],
|
191 |
-
data_iterator,
|
192 |
-
generator: Optional[torch.Generator] = None,
|
193 |
-
cache_samples: bool = False,
|
194 |
-
use_cached_samples: bool = False,
|
195 |
-
drop_samples: bool = False,
|
196 |
-
) -> Iterable[Dict[str, Any]]:
|
197 |
-
if data_type not in self._processor_fn.keys():
|
198 |
-
raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
|
199 |
-
if cache_samples:
|
200 |
-
if use_cached_samples:
|
201 |
-
raise ValueError("Cannot cache and use cached samples at the same time.")
|
202 |
-
if drop_samples:
|
203 |
-
raise ValueError("Cannot cache and drop samples at the same time.")
|
204 |
-
|
205 |
-
for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items):
|
206 |
-
if use_cached_samples:
|
207 |
-
item = self._cached_samples[i]
|
208 |
-
else:
|
209 |
-
item = next(data_iterator)
|
210 |
-
if cache_samples:
|
211 |
-
self._cached_samples.append(item)
|
212 |
-
item = self._processor_fn[data_type](**item, **components, generator=generator)
|
213 |
-
_save_item(self._rank, i, item, self._save_dir, data_type)
|
214 |
-
|
215 |
-
if drop_samples:
|
216 |
-
del self._cached_samples
|
217 |
-
self._cached_samples = []
|
218 |
-
|
219 |
-
self._preprocessed_iterator = PrecomputedOnceDataIterable(self._rank, self._save_dir, data_type)
|
220 |
-
return iter(self._preprocessed_iterator)
|
221 |
-
|
222 |
-
@property
|
223 |
-
def requires_data(self):
|
224 |
-
if self._preprocessed_iterator is None:
|
225 |
-
return True
|
226 |
-
return self._preprocessed_iterator.requires_data
|
227 |
-
|
228 |
-
|
229 |
-
class InMemoryDataIterable:
|
230 |
-
"""
|
231 |
-
An iterator that loads data items from an in-memory buffer. Once all the data is consumed,
|
232 |
-
`requires_data` is set to True, indicating that the more data is required and the preprocessor's
|
233 |
-
consume method should be called again.
|
234 |
-
"""
|
235 |
-
|
236 |
-
def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None:
|
237 |
-
self._rank = rank
|
238 |
-
self._data_type = data_type
|
239 |
-
self._buffer = buffer
|
240 |
-
|
241 |
-
self._requires_data = False
|
242 |
-
|
243 |
-
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
244 |
-
while (length := self._buffer.get_length(self._data_type)) > 0:
|
245 |
-
if length <= 1:
|
246 |
-
self._requires_data = True
|
247 |
-
yield self._buffer.get(self._data_type)
|
248 |
-
|
249 |
-
def __len__(self) -> int:
|
250 |
-
return self._buffer.get_length(self._data_type)
|
251 |
-
|
252 |
-
@property
|
253 |
-
def requires_data(self):
|
254 |
-
return self._requires_data
|
255 |
-
|
256 |
-
|
257 |
-
class InMemoryOnceDataIterable:
|
258 |
-
"""
|
259 |
-
An iterator that loads data items from an in-memory buffer. This iterator will never set
|
260 |
-
`requires_data` to True, as it is assumed that all the data was configured to be preprocessed
|
261 |
-
by the user. The data will indefinitely be cycled from the buffer.
|
262 |
-
"""
|
263 |
-
|
264 |
-
def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None:
|
265 |
-
self._rank = rank
|
266 |
-
self._data_type = data_type
|
267 |
-
self._buffer = buffer
|
268 |
-
|
269 |
-
self._requires_data = False
|
270 |
-
|
271 |
-
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
272 |
-
assert len(self) > 0, "No data available in the buffer."
|
273 |
-
while True:
|
274 |
-
item = self._buffer.get(self._data_type)
|
275 |
-
yield item
|
276 |
-
self._buffer.add(self._data_type, item)
|
277 |
-
|
278 |
-
def __len__(self) -> int:
|
279 |
-
return self._buffer.get_length(self._data_type)
|
280 |
-
|
281 |
-
@property
|
282 |
-
def requires_data(self):
|
283 |
-
return self._requires_data
|
284 |
-
|
285 |
-
|
286 |
-
class PrecomputedDataIterable:
|
287 |
-
"""
|
288 |
-
An iterator that loads preconfigured number of data items from disk. Once all the data is
|
289 |
-
loaded, `requires_data` is set to True, indicating that the more data is required and
|
290 |
-
the preprocessor's consume method should be called again.
|
291 |
-
"""
|
292 |
-
|
293 |
-
def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
|
294 |
-
self._rank = rank
|
295 |
-
self._save_dir = pathlib.Path(save_dir)
|
296 |
-
self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
|
297 |
-
self._data_type = data_type
|
298 |
-
|
299 |
-
self._requires_data = False
|
300 |
-
|
301 |
-
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
302 |
-
for i in range(self._num_items):
|
303 |
-
if i == self._num_items - 1:
|
304 |
-
self._requires_data = True
|
305 |
-
yield _load_item(self._rank, i, self._save_dir, self._data_type)
|
306 |
-
|
307 |
-
def __len__(self) -> int:
|
308 |
-
return self._num_items
|
309 |
-
|
310 |
-
@property
|
311 |
-
def requires_data(self):
|
312 |
-
return self._requires_data
|
313 |
-
|
314 |
-
|
315 |
-
class PrecomputedOnceDataIterable:
|
316 |
-
"""
|
317 |
-
An infinite iterator that loads preprocessed data from disk. Once initialized, this iterator
|
318 |
-
will never set `requires_data` to True, as it is assumed that all the data was configured to
|
319 |
-
be preprocessed by the user.
|
320 |
-
"""
|
321 |
-
|
322 |
-
def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
|
323 |
-
self._rank = rank
|
324 |
-
self._save_dir = pathlib.Path(save_dir)
|
325 |
-
self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
|
326 |
-
self._data_type = data_type
|
327 |
-
|
328 |
-
self._requires_data = False
|
329 |
-
|
330 |
-
def __iter__(self) -> Iterable[Dict[str, Any]]:
|
331 |
-
index = 0
|
332 |
-
while True:
|
333 |
-
yield _load_item(self._rank, index, self._save_dir, self._data_type)
|
334 |
-
index = (index + 1) % self._num_items
|
335 |
-
|
336 |
-
def __len__(self) -> int:
|
337 |
-
return self._num_items
|
338 |
-
|
339 |
-
@property
|
340 |
-
def requires_data(self):
|
341 |
-
return self._requires_data
|
342 |
-
|
343 |
-
|
344 |
-
class InMemoryDataBuffer:
|
345 |
-
def __init__(self, max_limit: int = -1) -> None:
|
346 |
-
self.max_limit = max_limit
|
347 |
-
self.buffer: Dict[str, List[str]] = {}
|
348 |
-
|
349 |
-
def add(self, data_type: str, item: Dict[str, Any]) -> None:
|
350 |
-
if data_type not in self.buffer:
|
351 |
-
self.buffer[data_type] = []
|
352 |
-
if self.max_limit != -1 and len(self.buffer[data_type]) >= self.max_limit:
|
353 |
-
logger.log_freq(
|
354 |
-
"WARN",
|
355 |
-
"IN_MEMORY_DATA_BUFFER_FULL",
|
356 |
-
"Buffer is full. Dropping the oldest item. This message will be logged every 64th time this happens.",
|
357 |
-
64,
|
358 |
-
)
|
359 |
-
self.buffer[data_type].pop(0)
|
360 |
-
self.buffer[data_type].append(item)
|
361 |
-
|
362 |
-
def get(self, data_type: str) -> Dict[str, Any]:
|
363 |
-
return self.buffer[data_type].pop(0)
|
364 |
-
|
365 |
-
def get_length(self, data_type: str) -> int:
|
366 |
-
return len(self.buffer[data_type])
|
367 |
-
|
368 |
-
|
369 |
-
def _save_item(rank: int, index: int, item: Dict[str, Any], directory: pathlib.Path, data_type: str) -> None:
|
370 |
-
filename = directory / f"{data_type}-{rank}-{index}.pt"
|
371 |
-
torch.save(item, filename.as_posix())
|
372 |
-
|
373 |
-
|
374 |
-
def _load_item(rank: int, index: int, directory: pathlib.Path, data_type: str) -> Dict[str, Any]:
|
375 |
-
filename = directory / f"{data_type}-{rank}-{index}.pt"
|
376 |
-
return torch.load(filename.as_posix(), weights_only=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/sampler.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
|
6 |
-
class ResolutionSampler:
|
7 |
-
def __init__(self, batch_size: int = 1, dim_keys: Dict[str, Tuple[int, ...]] = None) -> None:
|
8 |
-
self.batch_size = batch_size
|
9 |
-
self.dim_keys = dim_keys
|
10 |
-
assert dim_keys is not None, "dim_keys must be provided"
|
11 |
-
|
12 |
-
self._chosen_leader_key = None
|
13 |
-
self._unsatisfied_buckets: Dict[Tuple[int, ...], List[Dict[Any, Any]]] = {}
|
14 |
-
self._satisfied_buckets: List[Dict[Any, Any]] = []
|
15 |
-
|
16 |
-
def consume(self, *dict_items: Dict[Any, Any]) -> None:
|
17 |
-
if self._chosen_leader_key is None:
|
18 |
-
self._determine_leader_item(*dict_items)
|
19 |
-
self._update_buckets(*dict_items)
|
20 |
-
|
21 |
-
def get_batch(self) -> List[Dict[str, Any]]:
|
22 |
-
return list(zip(*self._satisfied_buckets.pop(-1)))
|
23 |
-
|
24 |
-
@property
|
25 |
-
def is_ready(self) -> bool:
|
26 |
-
return len(self._satisfied_buckets) > 0
|
27 |
-
|
28 |
-
def _determine_leader_item(self, *dict_items: Dict[Any, Any]) -> None:
|
29 |
-
num_observed = 0
|
30 |
-
for dict_item in dict_items:
|
31 |
-
for key in self.dim_keys.keys():
|
32 |
-
if key in dict_item.keys():
|
33 |
-
self._chosen_leader_key = key
|
34 |
-
if not torch.is_tensor(dict_item[key]):
|
35 |
-
raise ValueError(f"Leader key {key} must be a tensor")
|
36 |
-
num_observed += 1
|
37 |
-
if num_observed > 1:
|
38 |
-
raise ValueError(
|
39 |
-
f"Only one leader key is allowed in provided list of data dictionaries. Found {num_observed} leader keys"
|
40 |
-
)
|
41 |
-
if self._chosen_leader_key is None:
|
42 |
-
raise ValueError("No leader key found in provided list of data dictionaries")
|
43 |
-
|
44 |
-
def _update_buckets(self, *dict_items: Dict[Any, Any]) -> None:
|
45 |
-
chosen_value = [
|
46 |
-
dict_item[self._chosen_leader_key]
|
47 |
-
for dict_item in dict_items
|
48 |
-
if self._chosen_leader_key in dict_item.keys()
|
49 |
-
]
|
50 |
-
if len(chosen_value) == 0:
|
51 |
-
raise ValueError(f"Leader key {self._chosen_leader_key} not found in provided list of data dictionaries")
|
52 |
-
chosen_value = chosen_value[0]
|
53 |
-
dims = tuple(chosen_value.size(x) for x in self.dim_keys[self._chosen_leader_key])
|
54 |
-
if dims not in self._unsatisfied_buckets:
|
55 |
-
self._unsatisfied_buckets[dims] = []
|
56 |
-
self._unsatisfied_buckets[dims].append(dict_items)
|
57 |
-
if len(self._unsatisfied_buckets[dims]) == self.batch_size:
|
58 |
-
self._satisfied_buckets.append(self._unsatisfied_buckets.pop(dims))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/data/utils.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import pathlib
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
|
5 |
-
def find_files(root: str, pattern: str, depth: int = 0) -> List[str]:
|
6 |
-
root_path = pathlib.Path(root)
|
7 |
-
result_files = []
|
8 |
-
|
9 |
-
def within_depth(path: pathlib.Path) -> bool:
|
10 |
-
return len(path.relative_to(root_path).parts) <= depth
|
11 |
-
|
12 |
-
if depth == 0:
|
13 |
-
result_files.extend([str(file) for file in root_path.glob(pattern)])
|
14 |
-
else:
|
15 |
-
# rglob matches all levels, but we filter by depth
|
16 |
-
for file in root_path.rglob(pattern):
|
17 |
-
if file.is_file() and within_depth(file.parent):
|
18 |
-
result_files.append(str(file))
|
19 |
-
|
20 |
-
return result_files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/__init__.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
from .diffusion import flow_match_target, flow_match_xt
|
2 |
-
from .image import (
|
3 |
-
bicubic_resize_image,
|
4 |
-
center_crop_image,
|
5 |
-
find_nearest_resolution_image,
|
6 |
-
resize_crop_image,
|
7 |
-
resize_to_nearest_bucket_image,
|
8 |
-
)
|
9 |
-
from .text import dropout_caption, dropout_embeddings_to_zero, remove_prefix
|
10 |
-
from .video import (
|
11 |
-
bicubic_resize_video,
|
12 |
-
center_crop_video,
|
13 |
-
find_nearest_video_resolution,
|
14 |
-
resize_crop_video,
|
15 |
-
resize_to_nearest_bucket_video,
|
16 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/diffusion.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
def flow_match_xt(x0: torch.Tensor, n: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
5 |
-
r"""Forward process of flow matching."""
|
6 |
-
return (1.0 - t) * x0 + t * n
|
7 |
-
|
8 |
-
|
9 |
-
def flow_match_target(n: torch.Tensor, x0: torch.Tensor) -> torch.Tensor:
|
10 |
-
r"""Loss target for flow matching."""
|
11 |
-
return n - x0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/image.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
from typing import List, Literal, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
def center_crop_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
8 |
-
num_channels, height, width = image.shape
|
9 |
-
crop_h, crop_w = size
|
10 |
-
top = (height - crop_h) // 2
|
11 |
-
left = (width - crop_w) // 2
|
12 |
-
return image[:, top : top + crop_h, left : left + crop_w]
|
13 |
-
|
14 |
-
|
15 |
-
def resize_crop_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
16 |
-
num_channels, height, width = image.shape
|
17 |
-
target_h, target_w = size
|
18 |
-
scale = max(target_h / height, target_w / width)
|
19 |
-
new_h, new_w = int(height * scale), int(width * scale)
|
20 |
-
image = F.interpolate(image, size=(new_h, new_w), mode="bilinear", align_corners=False)
|
21 |
-
return center_crop_image(image, size)
|
22 |
-
|
23 |
-
|
24 |
-
def bicubic_resize_image(image: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
25 |
-
return F.interpolate(image.unsqueeze(0), size=size, mode="bicubic", align_corners=False)[0]
|
26 |
-
|
27 |
-
|
28 |
-
def find_nearest_resolution_image(image: torch.Tensor, resolution_buckets: List[Tuple[int, int]]) -> Tuple[int, int]:
|
29 |
-
num_channels, height, width = image.shape
|
30 |
-
aspect_ratio = width / height
|
31 |
-
|
32 |
-
def aspect_ratio_diff(bucket):
|
33 |
-
return abs((bucket[1] / bucket[0]) - aspect_ratio)
|
34 |
-
|
35 |
-
return min(resolution_buckets, key=aspect_ratio_diff)
|
36 |
-
|
37 |
-
|
38 |
-
def resize_to_nearest_bucket_image(
|
39 |
-
image: torch.Tensor,
|
40 |
-
resolution_buckets: List[Tuple[int, int]],
|
41 |
-
resize_mode: Literal["center_crop", "resize_crop", "bicubic"] = "bicubic",
|
42 |
-
) -> torch.Tensor:
|
43 |
-
target_size = find_nearest_resolution_image(image, resolution_buckets)
|
44 |
-
|
45 |
-
if resize_mode == "center_crop":
|
46 |
-
return center_crop_image(image, target_size)
|
47 |
-
elif resize_mode == "resize_crop":
|
48 |
-
return resize_crop_image(image, target_size)
|
49 |
-
elif resize_mode == "bicubic":
|
50 |
-
return bicubic_resize_image(image, target_size)
|
51 |
-
else:
|
52 |
-
raise ValueError(
|
53 |
-
f"Invalid resize_mode: {resize_mode}. Choose from 'center_crop', 'resize_crop', or 'bicubic'."
|
54 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/text.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
from typing import List, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
def dropout_caption(caption: Union[str, List[str]], dropout_p: float = 0) -> Union[str, List[str]]:
|
8 |
-
if random.random() >= dropout_p:
|
9 |
-
return caption
|
10 |
-
if isinstance(caption, str):
|
11 |
-
return ""
|
12 |
-
return [""] * len(caption)
|
13 |
-
|
14 |
-
|
15 |
-
def dropout_embeddings_to_zero(embed: torch.Tensor, dropout_p: float = 0) -> torch.Tensor:
|
16 |
-
if random.random() >= dropout_p:
|
17 |
-
return embed
|
18 |
-
embed = torch.zeros_like(embed)
|
19 |
-
return embed
|
20 |
-
|
21 |
-
|
22 |
-
def remove_prefix(text: str, prefixes: List[str]) -> str:
|
23 |
-
for prefix in prefixes:
|
24 |
-
if text.startswith(prefix):
|
25 |
-
return text.removeprefix(prefix).strip()
|
26 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/functional/video.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
from typing import List, Literal, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
def center_crop_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
8 |
-
num_frames, num_channels, height, width = video.shape
|
9 |
-
crop_h, crop_w = size
|
10 |
-
top = (height - crop_h) // 2
|
11 |
-
left = (width - crop_w) // 2
|
12 |
-
return video[:, :, top : top + crop_h, left : left + crop_w]
|
13 |
-
|
14 |
-
|
15 |
-
def resize_crop_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
16 |
-
num_frames, num_channels, height, width = video.shape
|
17 |
-
target_h, target_w = size
|
18 |
-
scale = max(target_h / height, target_w / width)
|
19 |
-
new_h, new_w = int(height * scale), int(width * scale)
|
20 |
-
video = F.interpolate(video, size=(new_h, new_w), mode="bilinear", align_corners=False)
|
21 |
-
return center_crop_video(video, size)
|
22 |
-
|
23 |
-
|
24 |
-
def bicubic_resize_video(video: torch.Tensor, size: Tuple[int, int]) -> torch.Tensor:
|
25 |
-
num_frames, num_channels, height, width = video.shape
|
26 |
-
video = F.interpolate(video, size=size, mode="bicubic", align_corners=False)
|
27 |
-
return video
|
28 |
-
|
29 |
-
|
30 |
-
def find_nearest_video_resolution(
|
31 |
-
video: torch.Tensor, resolution_buckets: List[Tuple[int, int, int]]
|
32 |
-
) -> Tuple[int, int, int]:
|
33 |
-
num_frames, num_channels, height, width = video.shape
|
34 |
-
aspect_ratio = width / height
|
35 |
-
possible_buckets = [b for b in resolution_buckets if b[0] <= num_frames]
|
36 |
-
|
37 |
-
if not possible_buckets:
|
38 |
-
best_frame_match = min(resolution_buckets, key=lambda b: abs(b[0] - num_frames))
|
39 |
-
else:
|
40 |
-
best_frame_match = max(possible_buckets, key=lambda b: b[0])
|
41 |
-
|
42 |
-
frame_filtered_buckets = [b for b in resolution_buckets if b[0] == best_frame_match[0]]
|
43 |
-
|
44 |
-
def aspect_ratio_diff(bucket):
|
45 |
-
return abs((bucket[2] / bucket[1]) - aspect_ratio)
|
46 |
-
|
47 |
-
return min(frame_filtered_buckets, key=aspect_ratio_diff)
|
48 |
-
|
49 |
-
|
50 |
-
def resize_to_nearest_bucket_video(
|
51 |
-
video: torch.Tensor,
|
52 |
-
resolution_buckets: List[Tuple[int, int, int]],
|
53 |
-
resize_mode: Literal["center_crop", "resize_crop", "bicubic"] = "bicubic",
|
54 |
-
) -> torch.Tensor:
|
55 |
-
"""
|
56 |
-
Resizes a video tensor to the nearest resolution bucket using the specified mode.
|
57 |
-
- It first finds a frame match with <= T frames.
|
58 |
-
- Then, it selects the closest height/width bucket.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
video (`torch.Tensor`):
|
62 |
-
Input video tensor of shape `(B, T, C, H, W)`.
|
63 |
-
resolution_buckets (`List[Tuple[int, int, int]]`):
|
64 |
-
Available (num_frames, height, width) resolution buckets.
|
65 |
-
resize_mode (`str`):
|
66 |
-
One of ["center_crop", "resize_crop", "bicubic"].
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
`torch.Tensor`:
|
70 |
-
Resized video tensor of the nearest bucket resolution.
|
71 |
-
"""
|
72 |
-
target_frames, target_h, target_w = find_nearest_video_resolution(video, resolution_buckets)
|
73 |
-
|
74 |
-
# Adjust frame count: only interpolate frames if no lesser/equal frame count exists
|
75 |
-
num_frames, num_channels, height, width = video.shape
|
76 |
-
_first_frame_only = False
|
77 |
-
if num_frames > target_frames:
|
78 |
-
# Downsample: Select frames evenly
|
79 |
-
indices = torch.linspace(0, num_frames - 1, target_frames).long()
|
80 |
-
video = video[indices, :, :, :]
|
81 |
-
elif num_frames < target_frames:
|
82 |
-
_first_frame_only = False
|
83 |
-
|
84 |
-
# Resize spatial resolution
|
85 |
-
if resize_mode == "center_crop":
|
86 |
-
return center_crop_video(video, (target_h, target_w)), _first_frame_only
|
87 |
-
elif resize_mode == "resize_crop":
|
88 |
-
return resize_crop_video(video, (target_h, target_w)), _first_frame_only
|
89 |
-
elif resize_mode == "bicubic":
|
90 |
-
return bicubic_resize_video(video, (target_h, target_w)), _first_frame_only
|
91 |
-
else:
|
92 |
-
raise ValueError(
|
93 |
-
f"Invalid resize_mode: {resize_mode}. Choose from 'center_crop', 'resize_crop', or 'bicubic'."
|
94 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/logging.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
from typing import TYPE_CHECKING, Union
|
4 |
-
|
5 |
-
from .constants import FINETRAINERS_LOG_LEVEL
|
6 |
-
|
7 |
-
|
8 |
-
if TYPE_CHECKING:
|
9 |
-
from .parallel import ParallelBackendType
|
10 |
-
|
11 |
-
|
12 |
-
class FinetrainersLoggerAdapter(logging.LoggerAdapter):
|
13 |
-
def __init__(self, logger: logging.Logger, parallel_backend: "ParallelBackendType" = None) -> None:
|
14 |
-
super().__init__(logger, {})
|
15 |
-
self.parallel_backend = parallel_backend
|
16 |
-
self._log_freq = {}
|
17 |
-
self._log_freq_counter = {}
|
18 |
-
|
19 |
-
def log(
|
20 |
-
self,
|
21 |
-
level,
|
22 |
-
msg,
|
23 |
-
*args,
|
24 |
-
main_process_only: bool = False,
|
25 |
-
local_main_process_only: bool = True,
|
26 |
-
in_order: bool = False,
|
27 |
-
**kwargs,
|
28 |
-
):
|
29 |
-
# set `stacklevel` to exclude ourself in `Logger.findCaller()` while respecting user's choice
|
30 |
-
kwargs.setdefault("stacklevel", 2)
|
31 |
-
|
32 |
-
if not self.isEnabledFor(level):
|
33 |
-
return
|
34 |
-
|
35 |
-
if self.parallel_backend is None:
|
36 |
-
if int(os.environ.get("RANK", 0)) == 0:
|
37 |
-
msg, kwargs = self.process(msg, kwargs)
|
38 |
-
self.logger.log(level, msg, *args, **kwargs)
|
39 |
-
return
|
40 |
-
|
41 |
-
if (main_process_only or local_main_process_only) and in_order:
|
42 |
-
raise ValueError(
|
43 |
-
"Cannot set `main_process_only` or `local_main_process_only` to True while `in_order` is True."
|
44 |
-
)
|
45 |
-
|
46 |
-
if (main_process_only and self.parallel_backend.is_main_process) or (
|
47 |
-
local_main_process_only and self.parallel_backend.is_local_main_process
|
48 |
-
):
|
49 |
-
msg, kwargs = self.process(msg, kwargs)
|
50 |
-
self.logger.log(level, msg, *args, **kwargs)
|
51 |
-
return
|
52 |
-
|
53 |
-
if in_order:
|
54 |
-
for i in range(self.parallel_backend.world_size):
|
55 |
-
if self.rank == i:
|
56 |
-
msg, kwargs = self.process(msg, kwargs)
|
57 |
-
self.logger.log(level, msg, *args, **kwargs)
|
58 |
-
self.parallel_backend.wait_for_everyone()
|
59 |
-
return
|
60 |
-
|
61 |
-
if not main_process_only and not local_main_process_only:
|
62 |
-
msg, kwargs = self.process(msg, kwargs)
|
63 |
-
self.logger.log(level, msg, *args, **kwargs)
|
64 |
-
return
|
65 |
-
|
66 |
-
def log_freq(
|
67 |
-
self,
|
68 |
-
level: str,
|
69 |
-
name: str,
|
70 |
-
msg: str,
|
71 |
-
frequency: int,
|
72 |
-
*,
|
73 |
-
main_process_only: bool = False,
|
74 |
-
local_main_process_only: bool = True,
|
75 |
-
in_order: bool = False,
|
76 |
-
**kwargs,
|
77 |
-
) -> None:
|
78 |
-
if frequency <= 0:
|
79 |
-
return
|
80 |
-
if name not in self._log_freq_counter:
|
81 |
-
self._log_freq[name] = frequency
|
82 |
-
self._log_freq_counter[name] = 0
|
83 |
-
if self._log_freq_counter[name] % self._log_freq[name] == 0:
|
84 |
-
self.log(
|
85 |
-
level,
|
86 |
-
msg,
|
87 |
-
main_process_only=main_process_only,
|
88 |
-
local_main_process_only=local_main_process_only,
|
89 |
-
in_order=in_order,
|
90 |
-
**kwargs,
|
91 |
-
)
|
92 |
-
self._log_freq_counter[name] += 1
|
93 |
-
|
94 |
-
|
95 |
-
def get_logger() -> Union[logging.Logger, FinetrainersLoggerAdapter]:
|
96 |
-
global _logger
|
97 |
-
return _logger
|
98 |
-
|
99 |
-
|
100 |
-
def _set_parallel_backend(parallel_backend: "ParallelBackendType") -> FinetrainersLoggerAdapter:
|
101 |
-
_logger.parallel_backend = parallel_backend
|
102 |
-
|
103 |
-
|
104 |
-
_logger = logging.getLogger("finetrainers")
|
105 |
-
_logger.setLevel(FINETRAINERS_LOG_LEVEL)
|
106 |
-
_console_handler = logging.StreamHandler()
|
107 |
-
_console_handler.setLevel(FINETRAINERS_LOG_LEVEL)
|
108 |
-
_formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
109 |
-
_console_handler.setFormatter(_formatter)
|
110 |
-
_logger.addHandler(_console_handler)
|
111 |
-
_logger = FinetrainersLoggerAdapter(_logger)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .modeling_utils import ModelSpecification
|
|
|
|
finetrainers/models/cogvideox/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .base_specification import CogVideoXModelSpecification
|
|
|
|
finetrainers/models/cogvideox/base_specification.py
DELETED
@@ -1,423 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Any, Dict, List, Optional, Tuple
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from accelerate import init_empty_weights
|
6 |
-
from diffusers import (
|
7 |
-
AutoencoderKLCogVideoX,
|
8 |
-
CogVideoXDDIMScheduler,
|
9 |
-
CogVideoXImageToVideoPipeline,
|
10 |
-
CogVideoXPipeline,
|
11 |
-
CogVideoXTransformer3DModel,
|
12 |
-
)
|
13 |
-
from PIL.Image import Image
|
14 |
-
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
|
15 |
-
|
16 |
-
from ... import data
|
17 |
-
from ...logging import get_logger
|
18 |
-
from ...processors import ProcessorMixin, T5Processor
|
19 |
-
from ...typing import ArtifactType, SchedulerType
|
20 |
-
from ...utils import get_non_null_items
|
21 |
-
from ..modeling_utils import ModelSpecification
|
22 |
-
from ..utils import DiagonalGaussianDistribution
|
23 |
-
from .utils import prepare_rotary_positional_embeddings
|
24 |
-
|
25 |
-
|
26 |
-
logger = get_logger()
|
27 |
-
|
28 |
-
|
29 |
-
class CogVideoXLatentEncodeProcessor(ProcessorMixin):
|
30 |
-
r"""
|
31 |
-
Processor to encode image/video into latents using the CogVideoX VAE.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
output_names (`List[str]`):
|
35 |
-
The names of the outputs that the processor returns. The outputs are in the following order:
|
36 |
-
- latents: The latents of the input image/video.
|
37 |
-
"""
|
38 |
-
|
39 |
-
def __init__(self, output_names: List[str]):
|
40 |
-
super().__init__()
|
41 |
-
self.output_names = output_names
|
42 |
-
assert len(self.output_names) == 1
|
43 |
-
|
44 |
-
def forward(
|
45 |
-
self,
|
46 |
-
vae: AutoencoderKLCogVideoX,
|
47 |
-
image: Optional[torch.Tensor] = None,
|
48 |
-
video: Optional[torch.Tensor] = None,
|
49 |
-
generator: Optional[torch.Generator] = None,
|
50 |
-
compute_posterior: bool = True,
|
51 |
-
) -> Dict[str, torch.Tensor]:
|
52 |
-
device = vae.device
|
53 |
-
dtype = vae.dtype
|
54 |
-
|
55 |
-
if image is not None:
|
56 |
-
video = image.unsqueeze(1)
|
57 |
-
|
58 |
-
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
59 |
-
video = video.to(device=device, dtype=vae.dtype)
|
60 |
-
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
61 |
-
|
62 |
-
if compute_posterior:
|
63 |
-
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
64 |
-
latents = latents.to(dtype=dtype)
|
65 |
-
else:
|
66 |
-
if vae.use_slicing and video.shape[0] > 1:
|
67 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
68 |
-
moments = torch.cat(encoded_slices)
|
69 |
-
else:
|
70 |
-
moments = vae._encode(video)
|
71 |
-
latents = moments.to(dtype=dtype)
|
72 |
-
|
73 |
-
latents = latents.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] -> [B, F, C, H, W]
|
74 |
-
return {self.output_names[0]: latents}
|
75 |
-
|
76 |
-
|
77 |
-
class CogVideoXModelSpecification(ModelSpecification):
|
78 |
-
def __init__(
|
79 |
-
self,
|
80 |
-
pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b",
|
81 |
-
tokenizer_id: Optional[str] = None,
|
82 |
-
text_encoder_id: Optional[str] = None,
|
83 |
-
transformer_id: Optional[str] = None,
|
84 |
-
vae_id: Optional[str] = None,
|
85 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
86 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
87 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
88 |
-
revision: Optional[str] = None,
|
89 |
-
cache_dir: Optional[str] = None,
|
90 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
91 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
92 |
-
**kwargs,
|
93 |
-
) -> None:
|
94 |
-
super().__init__(
|
95 |
-
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
96 |
-
tokenizer_id=tokenizer_id,
|
97 |
-
text_encoder_id=text_encoder_id,
|
98 |
-
transformer_id=transformer_id,
|
99 |
-
vae_id=vae_id,
|
100 |
-
text_encoder_dtype=text_encoder_dtype,
|
101 |
-
transformer_dtype=transformer_dtype,
|
102 |
-
vae_dtype=vae_dtype,
|
103 |
-
revision=revision,
|
104 |
-
cache_dir=cache_dir,
|
105 |
-
)
|
106 |
-
|
107 |
-
if condition_model_processors is None:
|
108 |
-
condition_model_processors = [T5Processor(["encoder_hidden_states", "prompt_attention_mask"])]
|
109 |
-
if latent_model_processors is None:
|
110 |
-
latent_model_processors = [CogVideoXLatentEncodeProcessor(["latents"])]
|
111 |
-
|
112 |
-
self.condition_model_processors = condition_model_processors
|
113 |
-
self.latent_model_processors = latent_model_processors
|
114 |
-
|
115 |
-
@property
|
116 |
-
def _resolution_dim_keys(self):
|
117 |
-
return {"latents": (1, 3, 4)}
|
118 |
-
|
119 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
120 |
-
if self.tokenizer_id is not None:
|
121 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
122 |
-
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
123 |
-
)
|
124 |
-
else:
|
125 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
126 |
-
self.pretrained_model_name_or_path,
|
127 |
-
subfolder="tokenizer",
|
128 |
-
revision=self.revision,
|
129 |
-
cache_dir=self.cache_dir,
|
130 |
-
)
|
131 |
-
|
132 |
-
if self.text_encoder_id is not None:
|
133 |
-
text_encoder = AutoModel.from_pretrained(
|
134 |
-
self.text_encoder_id,
|
135 |
-
torch_dtype=self.text_encoder_dtype,
|
136 |
-
revision=self.revision,
|
137 |
-
cache_dir=self.cache_dir,
|
138 |
-
)
|
139 |
-
else:
|
140 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
141 |
-
self.pretrained_model_name_or_path,
|
142 |
-
subfolder="text_encoder",
|
143 |
-
torch_dtype=self.text_encoder_dtype,
|
144 |
-
revision=self.revision,
|
145 |
-
cache_dir=self.cache_dir,
|
146 |
-
)
|
147 |
-
|
148 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
149 |
-
|
150 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
151 |
-
if self.vae_id is not None:
|
152 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(
|
153 |
-
self.vae_id,
|
154 |
-
torch_dtype=self.vae_dtype,
|
155 |
-
revision=self.revision,
|
156 |
-
cache_dir=self.cache_dir,
|
157 |
-
)
|
158 |
-
else:
|
159 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(
|
160 |
-
self.pretrained_model_name_or_path,
|
161 |
-
subfolder="vae",
|
162 |
-
torch_dtype=self.vae_dtype,
|
163 |
-
revision=self.revision,
|
164 |
-
cache_dir=self.cache_dir,
|
165 |
-
)
|
166 |
-
|
167 |
-
return {"vae": vae}
|
168 |
-
|
169 |
-
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
170 |
-
if self.transformer_id is not None:
|
171 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
172 |
-
self.transformer_id,
|
173 |
-
torch_dtype=self.transformer_dtype,
|
174 |
-
revision=self.revision,
|
175 |
-
cache_dir=self.cache_dir,
|
176 |
-
)
|
177 |
-
else:
|
178 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
179 |
-
self.pretrained_model_name_or_path,
|
180 |
-
subfolder="transformer",
|
181 |
-
torch_dtype=self.transformer_dtype,
|
182 |
-
revision=self.revision,
|
183 |
-
cache_dir=self.cache_dir,
|
184 |
-
)
|
185 |
-
|
186 |
-
scheduler = CogVideoXDDIMScheduler.from_pretrained(
|
187 |
-
self.pretrained_model_name_or_path, subfolder="scheduler", revision=self.revision, cache_dir=self.cache_dir
|
188 |
-
)
|
189 |
-
|
190 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
191 |
-
|
192 |
-
def load_pipeline(
|
193 |
-
self,
|
194 |
-
tokenizer: Optional[T5Tokenizer] = None,
|
195 |
-
text_encoder: Optional[T5EncoderModel] = None,
|
196 |
-
transformer: Optional[CogVideoXTransformer3DModel] = None,
|
197 |
-
vae: Optional[AutoencoderKLCogVideoX] = None,
|
198 |
-
scheduler: Optional[CogVideoXDDIMScheduler] = None,
|
199 |
-
enable_slicing: bool = False,
|
200 |
-
enable_tiling: bool = False,
|
201 |
-
enable_model_cpu_offload: bool = False,
|
202 |
-
training: bool = False,
|
203 |
-
**kwargs,
|
204 |
-
) -> CogVideoXPipeline:
|
205 |
-
components = {
|
206 |
-
"tokenizer": tokenizer,
|
207 |
-
"text_encoder": text_encoder,
|
208 |
-
"transformer": transformer,
|
209 |
-
"vae": vae,
|
210 |
-
"scheduler": scheduler,
|
211 |
-
}
|
212 |
-
components = get_non_null_items(components)
|
213 |
-
|
214 |
-
pipe = CogVideoXPipeline.from_pretrained(
|
215 |
-
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
216 |
-
)
|
217 |
-
pipe.text_encoder.to(self.text_encoder_dtype)
|
218 |
-
pipe.vae.to(self.vae_dtype)
|
219 |
-
|
220 |
-
if not training:
|
221 |
-
pipe.transformer.to(self.transformer_dtype)
|
222 |
-
|
223 |
-
if enable_slicing:
|
224 |
-
pipe.vae.enable_slicing()
|
225 |
-
if enable_tiling:
|
226 |
-
pipe.vae.enable_tiling()
|
227 |
-
if enable_model_cpu_offload:
|
228 |
-
pipe.enable_model_cpu_offload()
|
229 |
-
|
230 |
-
return pipe
|
231 |
-
|
232 |
-
@torch.no_grad()
|
233 |
-
def prepare_conditions(
|
234 |
-
self,
|
235 |
-
tokenizer: T5Tokenizer,
|
236 |
-
text_encoder: T5EncoderModel,
|
237 |
-
caption: str,
|
238 |
-
max_sequence_length: int = 226,
|
239 |
-
**kwargs,
|
240 |
-
) -> Dict[str, Any]:
|
241 |
-
conditions = {
|
242 |
-
"tokenizer": tokenizer,
|
243 |
-
"text_encoder": text_encoder,
|
244 |
-
"caption": caption,
|
245 |
-
"max_sequence_length": max_sequence_length,
|
246 |
-
**kwargs,
|
247 |
-
}
|
248 |
-
input_keys = set(conditions.keys())
|
249 |
-
conditions = super().prepare_conditions(**conditions)
|
250 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
251 |
-
conditions.pop("prompt_attention_mask", None)
|
252 |
-
return conditions
|
253 |
-
|
254 |
-
@torch.no_grad()
|
255 |
-
def prepare_latents(
|
256 |
-
self,
|
257 |
-
vae: AutoencoderKLCogVideoX,
|
258 |
-
image: Optional[torch.Tensor] = None,
|
259 |
-
video: Optional[torch.Tensor] = None,
|
260 |
-
generator: Optional[torch.Generator] = None,
|
261 |
-
compute_posterior: bool = True,
|
262 |
-
**kwargs,
|
263 |
-
) -> Dict[str, torch.Tensor]:
|
264 |
-
conditions = {
|
265 |
-
"vae": vae,
|
266 |
-
"image": image,
|
267 |
-
"video": video,
|
268 |
-
"generator": generator,
|
269 |
-
"compute_posterior": compute_posterior,
|
270 |
-
**kwargs,
|
271 |
-
}
|
272 |
-
input_keys = set(conditions.keys())
|
273 |
-
conditions = super().prepare_latents(**conditions)
|
274 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
275 |
-
return conditions
|
276 |
-
|
277 |
-
def forward(
|
278 |
-
self,
|
279 |
-
transformer: CogVideoXTransformer3DModel,
|
280 |
-
scheduler: CogVideoXDDIMScheduler,
|
281 |
-
condition_model_conditions: Dict[str, torch.Tensor],
|
282 |
-
latent_model_conditions: Dict[str, torch.Tensor],
|
283 |
-
sigmas: torch.Tensor,
|
284 |
-
generator: Optional[torch.Generator] = None,
|
285 |
-
compute_posterior: bool = True,
|
286 |
-
**kwargs,
|
287 |
-
) -> Tuple[torch.Tensor, ...]:
|
288 |
-
# Just hardcode for now. In Diffusers, we will refactor such that RoPE would be handled within the model itself.
|
289 |
-
VAE_SPATIAL_SCALE_FACTOR = 8
|
290 |
-
rope_base_height = self.transformer_config.sample_height * VAE_SPATIAL_SCALE_FACTOR
|
291 |
-
rope_base_width = self.transformer_config.sample_width * VAE_SPATIAL_SCALE_FACTOR
|
292 |
-
patch_size = self.transformer_config.patch_size
|
293 |
-
patch_size_t = getattr(self.transformer_config, "patch_size_t", None)
|
294 |
-
|
295 |
-
if compute_posterior:
|
296 |
-
latents = latent_model_conditions.pop("latents")
|
297 |
-
else:
|
298 |
-
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"), _dim=2)
|
299 |
-
latents = posterior.sample(generator=generator)
|
300 |
-
del posterior
|
301 |
-
|
302 |
-
if not getattr(self.vae_config, "invert_scale_latents", False):
|
303 |
-
latents = latents * self.vae_config.scaling_factor
|
304 |
-
|
305 |
-
if patch_size_t is not None:
|
306 |
-
latents = self._pad_frames(latents, patch_size_t)
|
307 |
-
|
308 |
-
timesteps = (sigmas.flatten() * 1000.0).long()
|
309 |
-
|
310 |
-
noise = torch.zeros_like(latents).normal_(generator=generator)
|
311 |
-
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
|
312 |
-
|
313 |
-
batch_size, num_frames, num_channels, height, width = latents.shape
|
314 |
-
ofs_emb = (
|
315 |
-
None
|
316 |
-
if getattr(self.transformer_config, "ofs_embed_dim", None) is None
|
317 |
-
else latents.new_full((batch_size,), fill_value=2.0)
|
318 |
-
)
|
319 |
-
|
320 |
-
image_rotary_emb = (
|
321 |
-
prepare_rotary_positional_embeddings(
|
322 |
-
height=height * VAE_SPATIAL_SCALE_FACTOR,
|
323 |
-
width=width * VAE_SPATIAL_SCALE_FACTOR,
|
324 |
-
num_frames=num_frames,
|
325 |
-
vae_scale_factor_spatial=VAE_SPATIAL_SCALE_FACTOR,
|
326 |
-
patch_size=patch_size,
|
327 |
-
patch_size_t=patch_size_t,
|
328 |
-
attention_head_dim=self.transformer_config.attention_head_dim,
|
329 |
-
device=transformer.device,
|
330 |
-
base_height=rope_base_height,
|
331 |
-
base_width=rope_base_width,
|
332 |
-
)
|
333 |
-
if self.transformer_config.use_rotary_positional_embeddings
|
334 |
-
else None
|
335 |
-
)
|
336 |
-
|
337 |
-
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
338 |
-
latent_model_conditions["image_rotary_emb"] = image_rotary_emb
|
339 |
-
latent_model_conditions["ofs"] = ofs_emb
|
340 |
-
|
341 |
-
velocity = transformer(
|
342 |
-
**latent_model_conditions,
|
343 |
-
**condition_model_conditions,
|
344 |
-
timestep=timesteps,
|
345 |
-
return_dict=False,
|
346 |
-
)[0]
|
347 |
-
# For CogVideoX, the transformer predicts the velocity. The denoised output is calculated by applying the same
|
348 |
-
# code paths as scheduler.get_velocity(), which can be confusing to understand.
|
349 |
-
pred = scheduler.get_velocity(velocity, noisy_latents, timesteps)
|
350 |
-
target = latents
|
351 |
-
|
352 |
-
return pred, target, sigmas
|
353 |
-
|
354 |
-
def validation(
|
355 |
-
self,
|
356 |
-
pipeline: CogVideoXPipeline,
|
357 |
-
prompt: str,
|
358 |
-
image: Optional[Image] = None,
|
359 |
-
height: Optional[int] = None,
|
360 |
-
width: Optional[int] = None,
|
361 |
-
num_frames: Optional[int] = None,
|
362 |
-
num_inference_steps: int = 50,
|
363 |
-
generator: Optional[torch.Generator] = None,
|
364 |
-
**kwargs,
|
365 |
-
) -> List[ArtifactType]:
|
366 |
-
# TODO(aryan): add support for more parameters
|
367 |
-
if image is not None:
|
368 |
-
pipeline = CogVideoXImageToVideoPipeline.from_pipe(pipeline)
|
369 |
-
|
370 |
-
generation_kwargs = {
|
371 |
-
"prompt": prompt,
|
372 |
-
"image": image,
|
373 |
-
"height": height,
|
374 |
-
"width": width,
|
375 |
-
"num_frames": num_frames,
|
376 |
-
"num_inference_steps": num_inference_steps,
|
377 |
-
"generator": generator,
|
378 |
-
"return_dict": True,
|
379 |
-
"output_type": "pil",
|
380 |
-
}
|
381 |
-
generation_kwargs = get_non_null_items(generation_kwargs)
|
382 |
-
video = pipeline(**generation_kwargs).frames[0]
|
383 |
-
return [data.VideoArtifact(value=video)]
|
384 |
-
|
385 |
-
def _save_lora_weights(
|
386 |
-
self,
|
387 |
-
directory: str,
|
388 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
389 |
-
scheduler: Optional[SchedulerType] = None,
|
390 |
-
*args,
|
391 |
-
**kwargs,
|
392 |
-
) -> None:
|
393 |
-
# TODO(aryan): this needs refactoring
|
394 |
-
if transformer_state_dict is not None:
|
395 |
-
CogVideoXPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
396 |
-
if scheduler is not None:
|
397 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
398 |
-
|
399 |
-
def _save_model(
|
400 |
-
self,
|
401 |
-
directory: str,
|
402 |
-
transformer: CogVideoXTransformer3DModel,
|
403 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
404 |
-
scheduler: Optional[SchedulerType] = None,
|
405 |
-
) -> None:
|
406 |
-
# TODO(aryan): this needs refactoring
|
407 |
-
if transformer_state_dict is not None:
|
408 |
-
with init_empty_weights():
|
409 |
-
transformer_copy = CogVideoXTransformer3DModel.from_config(transformer.config)
|
410 |
-
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
411 |
-
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
412 |
-
if scheduler is not None:
|
413 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
414 |
-
|
415 |
-
@staticmethod
|
416 |
-
def _pad_frames(latents: torch.Tensor, patch_size_t: int) -> torch.Tensor:
|
417 |
-
num_frames = latents.size(1)
|
418 |
-
additional_frames = patch_size_t - (num_frames % patch_size_t)
|
419 |
-
if additional_frames > 0:
|
420 |
-
last_frame = latents[:, -1:]
|
421 |
-
padding_frames = last_frame.expand(-1, additional_frames, -1, -1, -1)
|
422 |
-
latents = torch.cat([latents, padding_frames], dim=1)
|
423 |
-
return latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/cogvideox/utils.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
from typing import Optional, Tuple
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
5 |
-
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
6 |
-
|
7 |
-
|
8 |
-
def prepare_rotary_positional_embeddings(
|
9 |
-
height: int,
|
10 |
-
width: int,
|
11 |
-
num_frames: int,
|
12 |
-
vae_scale_factor_spatial: int = 8,
|
13 |
-
patch_size: int = 2,
|
14 |
-
patch_size_t: int = None,
|
15 |
-
attention_head_dim: int = 64,
|
16 |
-
device: Optional[torch.device] = None,
|
17 |
-
base_height: int = 480,
|
18 |
-
base_width: int = 720,
|
19 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
20 |
-
grid_height = height // (vae_scale_factor_spatial * patch_size)
|
21 |
-
grid_width = width // (vae_scale_factor_spatial * patch_size)
|
22 |
-
base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
|
23 |
-
base_size_height = base_height // (vae_scale_factor_spatial * patch_size)
|
24 |
-
|
25 |
-
if patch_size_t is None:
|
26 |
-
# CogVideoX 1.0
|
27 |
-
grid_crops_coords = get_resize_crop_region_for_grid(
|
28 |
-
(grid_height, grid_width), base_size_width, base_size_height
|
29 |
-
)
|
30 |
-
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
31 |
-
embed_dim=attention_head_dim,
|
32 |
-
crops_coords=grid_crops_coords,
|
33 |
-
grid_size=(grid_height, grid_width),
|
34 |
-
temporal_size=num_frames,
|
35 |
-
)
|
36 |
-
else:
|
37 |
-
# CogVideoX 1.5
|
38 |
-
base_num_frames = (num_frames + patch_size_t - 1) // patch_size_t
|
39 |
-
|
40 |
-
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
41 |
-
embed_dim=attention_head_dim,
|
42 |
-
crops_coords=None,
|
43 |
-
grid_size=(grid_height, grid_width),
|
44 |
-
temporal_size=base_num_frames,
|
45 |
-
grid_type="slice",
|
46 |
-
max_size=(base_size_height, base_size_width),
|
47 |
-
)
|
48 |
-
|
49 |
-
freqs_cos = freqs_cos.to(device=device)
|
50 |
-
freqs_sin = freqs_sin.to(device=device)
|
51 |
-
return freqs_cos, freqs_sin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/cogview4/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .base_specification import CogView4ModelSpecification
|
|
|
|
finetrainers/models/cogview4/base_specification.py
DELETED
@@ -1,395 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Any, Dict, List, Optional, Tuple
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from accelerate import init_empty_weights
|
6 |
-
from diffusers import (
|
7 |
-
AutoencoderKL,
|
8 |
-
CogView4Pipeline,
|
9 |
-
CogView4Transformer2DModel,
|
10 |
-
FlowMatchEulerDiscreteScheduler,
|
11 |
-
)
|
12 |
-
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
13 |
-
from transformers import AutoTokenizer, GlmModel
|
14 |
-
|
15 |
-
from ... import data
|
16 |
-
from ... import functional as FF
|
17 |
-
from ...logging import get_logger
|
18 |
-
from ...processors import CogView4GLMProcessor, ProcessorMixin
|
19 |
-
from ...typing import ArtifactType, SchedulerType
|
20 |
-
from ...utils import get_non_null_items
|
21 |
-
from ..modeling_utils import ModelSpecification
|
22 |
-
|
23 |
-
|
24 |
-
logger = get_logger()
|
25 |
-
|
26 |
-
|
27 |
-
class CogView4LatentEncodeProcessor(ProcessorMixin):
|
28 |
-
r"""
|
29 |
-
Processor to encode image/video into latents using the LTX VAE.
|
30 |
-
|
31 |
-
Args:
|
32 |
-
output_names (`List[str]`):
|
33 |
-
The names of the outputs that the processor returns. The outputs are in the following order:
|
34 |
-
- latents: The latents of the input image/video.
|
35 |
-
- original_size: The original size of the input image/video.
|
36 |
-
- target_size: The target size of the input image/video.
|
37 |
-
- crop_coords: The top-left crop coordinates of the input image/video.
|
38 |
-
"""
|
39 |
-
|
40 |
-
def __init__(self, output_names: List[str]):
|
41 |
-
super().__init__()
|
42 |
-
|
43 |
-
self.output_names = output_names
|
44 |
-
assert len(self.output_names) == 4
|
45 |
-
|
46 |
-
def forward(
|
47 |
-
self,
|
48 |
-
vae: AutoencoderKL,
|
49 |
-
image: Optional[torch.Tensor] = None,
|
50 |
-
video: Optional[torch.Tensor] = None,
|
51 |
-
generator: Optional[torch.Generator] = None,
|
52 |
-
compute_posterior: bool = True,
|
53 |
-
_original_height: Optional[int] = None,
|
54 |
-
_original_width: Optional[int] = None,
|
55 |
-
) -> Dict[str, torch.Tensor]:
|
56 |
-
device = vae.device
|
57 |
-
dtype = vae.dtype
|
58 |
-
|
59 |
-
if video is not None:
|
60 |
-
# TODO(aryan): perhaps better would be to flatten(0, 1), but need to account for reshaping sigmas accordingly
|
61 |
-
image = video[:, 0] # [B, F, C, H, W] -> [B, 1, C, H, W]
|
62 |
-
|
63 |
-
assert image.ndim == 4, f"Expected 4D tensor, got {image.ndim}D tensor"
|
64 |
-
image = image.to(device=device, dtype=vae.dtype)
|
65 |
-
|
66 |
-
if compute_posterior:
|
67 |
-
latents = vae.encode(image).latent_dist.sample(generator=generator)
|
68 |
-
latents = latents.to(dtype=dtype)
|
69 |
-
else:
|
70 |
-
if vae.use_slicing and image.shape[0] > 1:
|
71 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in image.split(1)]
|
72 |
-
moments = torch.cat(encoded_slices)
|
73 |
-
else:
|
74 |
-
moments = vae._encode(image)
|
75 |
-
latents = moments.to(dtype=dtype)
|
76 |
-
|
77 |
-
batch_size = latents.size(0)
|
78 |
-
target_height = image.size(2)
|
79 |
-
target_width = image.size(3)
|
80 |
-
original_size = torch.tensor([(_original_height, _original_width)], device=device, dtype=dtype).repeat(
|
81 |
-
batch_size, 1
|
82 |
-
)
|
83 |
-
target_size = torch.tensor([(target_height, target_width)], device=device, dtype=dtype).repeat(batch_size, 1)
|
84 |
-
crop_coords = torch.tensor([(0, 0)], device=device, dtype=dtype).repeat(batch_size, 1)
|
85 |
-
|
86 |
-
return {
|
87 |
-
self.output_names[0]: latents,
|
88 |
-
self.output_names[1]: original_size,
|
89 |
-
self.output_names[2]: target_size,
|
90 |
-
self.output_names[3]: crop_coords,
|
91 |
-
}
|
92 |
-
|
93 |
-
|
94 |
-
class CogView4ModelSpecification(ModelSpecification):
|
95 |
-
def __init__(
|
96 |
-
self,
|
97 |
-
pretrained_model_name_or_path: str = "THUDM/CogView4-6B",
|
98 |
-
tokenizer_id: Optional[str] = None,
|
99 |
-
text_encoder_id: Optional[str] = None,
|
100 |
-
transformer_id: Optional[str] = None,
|
101 |
-
vae_id: Optional[str] = None,
|
102 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
103 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
104 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
105 |
-
revision: Optional[str] = None,
|
106 |
-
cache_dir: Optional[str] = None,
|
107 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
108 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
109 |
-
**kwargs,
|
110 |
-
) -> None:
|
111 |
-
super().__init__(
|
112 |
-
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
113 |
-
tokenizer_id=tokenizer_id,
|
114 |
-
text_encoder_id=text_encoder_id,
|
115 |
-
transformer_id=transformer_id,
|
116 |
-
vae_id=vae_id,
|
117 |
-
text_encoder_dtype=text_encoder_dtype,
|
118 |
-
transformer_dtype=transformer_dtype,
|
119 |
-
vae_dtype=vae_dtype,
|
120 |
-
revision=revision,
|
121 |
-
cache_dir=cache_dir,
|
122 |
-
)
|
123 |
-
|
124 |
-
if condition_model_processors is None:
|
125 |
-
condition_model_processors = [CogView4GLMProcessor(["encoder_hidden_states"])]
|
126 |
-
if latent_model_processors is None:
|
127 |
-
latent_model_processors = [
|
128 |
-
CogView4LatentEncodeProcessor(["latents", "original_size", "target_size", "crop_coords"])
|
129 |
-
]
|
130 |
-
|
131 |
-
self.condition_model_processors = condition_model_processors
|
132 |
-
self.latent_model_processors = latent_model_processors
|
133 |
-
|
134 |
-
@property
|
135 |
-
def _resolution_dim_keys(self):
|
136 |
-
return {"latents": (2, 3)}
|
137 |
-
|
138 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
139 |
-
if self.tokenizer_id is not None:
|
140 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
141 |
-
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
142 |
-
)
|
143 |
-
else:
|
144 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
145 |
-
self.pretrained_model_name_or_path,
|
146 |
-
subfolder="tokenizer",
|
147 |
-
revision=self.revision,
|
148 |
-
cache_dir=self.cache_dir,
|
149 |
-
)
|
150 |
-
|
151 |
-
if self.text_encoder_id is not None:
|
152 |
-
text_encoder = GlmModel.from_pretrained(
|
153 |
-
self.text_encoder_id,
|
154 |
-
torch_dtype=self.text_encoder_dtype,
|
155 |
-
revision=self.revision,
|
156 |
-
cache_dir=self.cache_dir,
|
157 |
-
)
|
158 |
-
else:
|
159 |
-
text_encoder = GlmModel.from_pretrained(
|
160 |
-
self.pretrained_model_name_or_path,
|
161 |
-
subfolder="text_encoder",
|
162 |
-
torch_dtype=self.text_encoder_dtype,
|
163 |
-
revision=self.revision,
|
164 |
-
cache_dir=self.cache_dir,
|
165 |
-
)
|
166 |
-
|
167 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
168 |
-
|
169 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
170 |
-
if self.vae_id is not None:
|
171 |
-
vae = AutoencoderKL.from_pretrained(
|
172 |
-
self.vae_id,
|
173 |
-
torch_dtype=self.vae_dtype,
|
174 |
-
revision=self.revision,
|
175 |
-
cache_dir=self.cache_dir,
|
176 |
-
)
|
177 |
-
else:
|
178 |
-
vae = AutoencoderKL.from_pretrained(
|
179 |
-
self.pretrained_model_name_or_path,
|
180 |
-
subfolder="vae",
|
181 |
-
torch_dtype=self.vae_dtype,
|
182 |
-
revision=self.revision,
|
183 |
-
cache_dir=self.cache_dir,
|
184 |
-
)
|
185 |
-
|
186 |
-
return {"vae": vae}
|
187 |
-
|
188 |
-
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
189 |
-
if self.transformer_id is not None:
|
190 |
-
transformer = CogView4Transformer2DModel.from_pretrained(
|
191 |
-
self.transformer_id,
|
192 |
-
torch_dtype=self.transformer_dtype,
|
193 |
-
revision=self.revision,
|
194 |
-
cache_dir=self.cache_dir,
|
195 |
-
)
|
196 |
-
else:
|
197 |
-
transformer = CogView4Transformer2DModel.from_pretrained(
|
198 |
-
self.pretrained_model_name_or_path,
|
199 |
-
subfolder="transformer",
|
200 |
-
torch_dtype=self.transformer_dtype,
|
201 |
-
revision=self.revision,
|
202 |
-
cache_dir=self.cache_dir,
|
203 |
-
)
|
204 |
-
|
205 |
-
scheduler = FlowMatchEulerDiscreteScheduler()
|
206 |
-
|
207 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
208 |
-
|
209 |
-
def load_pipeline(
|
210 |
-
self,
|
211 |
-
tokenizer: Optional[AutoTokenizer] = None,
|
212 |
-
text_encoder: Optional[GlmModel] = None,
|
213 |
-
transformer: Optional[CogView4Transformer2DModel] = None,
|
214 |
-
vae: Optional[AutoencoderKL] = None,
|
215 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
216 |
-
enable_slicing: bool = False,
|
217 |
-
enable_tiling: bool = False,
|
218 |
-
enable_model_cpu_offload: bool = False,
|
219 |
-
training: bool = False,
|
220 |
-
**kwargs,
|
221 |
-
) -> CogView4Pipeline:
|
222 |
-
components = {
|
223 |
-
"tokenizer": tokenizer,
|
224 |
-
"text_encoder": text_encoder,
|
225 |
-
"transformer": transformer,
|
226 |
-
"vae": vae,
|
227 |
-
# Load the scheduler based on CogView4's config instead of using the default initialization being used for training
|
228 |
-
# "scheduler": scheduler,
|
229 |
-
}
|
230 |
-
components = get_non_null_items(components)
|
231 |
-
|
232 |
-
pipe = CogView4Pipeline.from_pretrained(
|
233 |
-
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
234 |
-
)
|
235 |
-
pipe.text_encoder.to(self.text_encoder_dtype)
|
236 |
-
pipe.vae.to(self.vae_dtype)
|
237 |
-
|
238 |
-
if not training:
|
239 |
-
pipe.transformer.to(self.transformer_dtype)
|
240 |
-
|
241 |
-
if enable_slicing:
|
242 |
-
pipe.vae.enable_slicing()
|
243 |
-
if enable_tiling:
|
244 |
-
pipe.vae.enable_tiling()
|
245 |
-
if enable_model_cpu_offload:
|
246 |
-
pipe.enable_model_cpu_offload()
|
247 |
-
|
248 |
-
return pipe
|
249 |
-
|
250 |
-
@torch.no_grad()
|
251 |
-
def prepare_conditions(
|
252 |
-
self,
|
253 |
-
tokenizer: AutoTokenizer,
|
254 |
-
text_encoder: GlmModel,
|
255 |
-
caption: str,
|
256 |
-
max_sequence_length: int = 1024,
|
257 |
-
**kwargs,
|
258 |
-
) -> Dict[str, Any]:
|
259 |
-
conditions = {
|
260 |
-
"tokenizer": tokenizer,
|
261 |
-
"text_encoder": text_encoder,
|
262 |
-
"caption": caption,
|
263 |
-
"max_sequence_length": max_sequence_length,
|
264 |
-
**kwargs,
|
265 |
-
}
|
266 |
-
input_keys = set(conditions.keys())
|
267 |
-
conditions = super().prepare_conditions(**conditions)
|
268 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
269 |
-
return conditions
|
270 |
-
|
271 |
-
@torch.no_grad()
|
272 |
-
def prepare_latents(
|
273 |
-
self,
|
274 |
-
vae: AutoencoderKL,
|
275 |
-
image: Optional[torch.Tensor] = None,
|
276 |
-
video: Optional[torch.Tensor] = None,
|
277 |
-
generator: Optional[torch.Generator] = None,
|
278 |
-
compute_posterior: bool = True,
|
279 |
-
_original_height: Optional[int] = None,
|
280 |
-
_original_width: Optional[int] = None,
|
281 |
-
**kwargs,
|
282 |
-
) -> Dict[str, torch.Tensor]:
|
283 |
-
conditions = {
|
284 |
-
"vae": vae,
|
285 |
-
"image": image,
|
286 |
-
"video": video,
|
287 |
-
"generator": generator,
|
288 |
-
"compute_posterior": compute_posterior,
|
289 |
-
"_original_height": _original_height,
|
290 |
-
"_original_width": _original_width,
|
291 |
-
**kwargs,
|
292 |
-
}
|
293 |
-
input_keys = set(conditions.keys())
|
294 |
-
conditions = super().prepare_latents(**conditions)
|
295 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
296 |
-
return conditions
|
297 |
-
|
298 |
-
def forward(
|
299 |
-
self,
|
300 |
-
transformer: CogView4Transformer2DModel,
|
301 |
-
condition_model_conditions: Dict[str, torch.Tensor],
|
302 |
-
latent_model_conditions: Dict[str, torch.Tensor],
|
303 |
-
sigmas: torch.Tensor,
|
304 |
-
generator: Optional[torch.Generator] = None,
|
305 |
-
compute_posterior: bool = True,
|
306 |
-
**kwargs,
|
307 |
-
) -> Tuple[torch.Tensor, ...]:
|
308 |
-
if compute_posterior:
|
309 |
-
latents = latent_model_conditions.pop("latents")
|
310 |
-
else:
|
311 |
-
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
312 |
-
latents = posterior.sample(generator=generator)
|
313 |
-
del posterior
|
314 |
-
|
315 |
-
latents = (latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
|
316 |
-
noise = torch.zeros_like(latents).normal_(generator=generator)
|
317 |
-
timesteps = (sigmas.flatten() * 1000.0).long()
|
318 |
-
|
319 |
-
base_image_sequence_length = 256
|
320 |
-
base_shift = 0.25
|
321 |
-
max_shift = 0.75
|
322 |
-
|
323 |
-
image_sequence_length = latents.size(2) * latents.size(3) // self.transformer_config.patch_size**2
|
324 |
-
mu = (image_sequence_length / base_image_sequence_length) ** 0.5
|
325 |
-
mu = mu * max_shift + base_shift
|
326 |
-
shifted_sigmas = mu / (mu + (1 / sigmas - 1) ** 1.0)
|
327 |
-
noisy_latents = FF.flow_match_xt(latents, noise, shifted_sigmas)
|
328 |
-
|
329 |
-
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
330 |
-
|
331 |
-
pred = transformer(
|
332 |
-
**latent_model_conditions,
|
333 |
-
**condition_model_conditions,
|
334 |
-
timestep=timesteps,
|
335 |
-
return_dict=False,
|
336 |
-
)[0]
|
337 |
-
target = FF.flow_match_target(noise, latents)
|
338 |
-
|
339 |
-
# NOTE: shifted_sigmas loss weighting seems to work better than sigmas. Needs more investigation
|
340 |
-
# but let's keep it this way for now. Longer training runs should reveal more insights.
|
341 |
-
# return pred, target, sigmas
|
342 |
-
return pred, target, shifted_sigmas
|
343 |
-
|
344 |
-
def validation(
|
345 |
-
self,
|
346 |
-
pipeline: CogView4Pipeline,
|
347 |
-
prompt: str,
|
348 |
-
height: Optional[int] = None,
|
349 |
-
width: Optional[int] = None,
|
350 |
-
num_inference_steps: int = 50,
|
351 |
-
generator: Optional[torch.Generator] = None,
|
352 |
-
**kwargs,
|
353 |
-
) -> List[ArtifactType]:
|
354 |
-
generation_kwargs = {
|
355 |
-
"prompt": prompt,
|
356 |
-
"height": height,
|
357 |
-
"width": width,
|
358 |
-
"num_inference_steps": num_inference_steps,
|
359 |
-
"generator": generator,
|
360 |
-
"return_dict": True,
|
361 |
-
"output_type": "pil",
|
362 |
-
}
|
363 |
-
generation_kwargs = get_non_null_items(generation_kwargs)
|
364 |
-
image = pipeline(**generation_kwargs).images[0]
|
365 |
-
return [data.ImageArtifact(value=image)]
|
366 |
-
|
367 |
-
def _save_lora_weights(
|
368 |
-
self,
|
369 |
-
directory: str,
|
370 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
371 |
-
scheduler: Optional[SchedulerType] = None,
|
372 |
-
*args,
|
373 |
-
**kwargs,
|
374 |
-
) -> None:
|
375 |
-
# TODO(aryan): this needs refactoring
|
376 |
-
if transformer_state_dict is not None:
|
377 |
-
CogView4Pipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
378 |
-
if scheduler is not None:
|
379 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
380 |
-
|
381 |
-
def _save_model(
|
382 |
-
self,
|
383 |
-
directory: str,
|
384 |
-
transformer: CogView4Transformer2DModel,
|
385 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
386 |
-
scheduler: Optional[SchedulerType] = None,
|
387 |
-
) -> None:
|
388 |
-
# TODO(aryan): this needs refactoring
|
389 |
-
if transformer_state_dict is not None:
|
390 |
-
with init_empty_weights():
|
391 |
-
transformer_copy = CogView4Transformer2DModel.from_config(transformer.config)
|
392 |
-
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
393 |
-
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
394 |
-
if scheduler is not None:
|
395 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/hunyuan_video/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .base_specification import HunyuanVideoModelSpecification
|
|
|
|
finetrainers/models/hunyuan_video/base_specification.py
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Any, Dict, List, Optional, Tuple
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from accelerate import init_empty_weights
|
6 |
-
from diffusers import (
|
7 |
-
AutoencoderKLHunyuanVideo,
|
8 |
-
FlowMatchEulerDiscreteScheduler,
|
9 |
-
HunyuanVideoPipeline,
|
10 |
-
HunyuanVideoTransformer3DModel,
|
11 |
-
)
|
12 |
-
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
13 |
-
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, LlamaModel
|
14 |
-
|
15 |
-
from ... import data
|
16 |
-
from ... import functional as FF
|
17 |
-
from ...logging import get_logger
|
18 |
-
from ...processors import CLIPPooledProcessor, LlamaProcessor, ProcessorMixin
|
19 |
-
from ...typing import ArtifactType, SchedulerType
|
20 |
-
from ...utils import get_non_null_items
|
21 |
-
from ..modeling_utils import ModelSpecification
|
22 |
-
|
23 |
-
|
24 |
-
logger = get_logger()
|
25 |
-
|
26 |
-
|
27 |
-
class HunyuanLatentEncodeProcessor(ProcessorMixin):
|
28 |
-
r"""
|
29 |
-
Processor to encode image/video into latents using the HunyuanVideo VAE.
|
30 |
-
|
31 |
-
Args:
|
32 |
-
output_names (`List[str]`):
|
33 |
-
The names of the outputs that the processor returns. The outputs are in the following order:
|
34 |
-
- latents: The latents of the input image/video.
|
35 |
-
"""
|
36 |
-
|
37 |
-
def __init__(self, output_names: List[str]):
|
38 |
-
super().__init__()
|
39 |
-
self.output_names = output_names
|
40 |
-
assert len(self.output_names) == 1
|
41 |
-
|
42 |
-
def forward(
|
43 |
-
self,
|
44 |
-
vae: AutoencoderKLHunyuanVideo,
|
45 |
-
image: Optional[torch.Tensor] = None,
|
46 |
-
video: Optional[torch.Tensor] = None,
|
47 |
-
generator: Optional[torch.Generator] = None,
|
48 |
-
compute_posterior: bool = True,
|
49 |
-
) -> Dict[str, torch.Tensor]:
|
50 |
-
device = vae.device
|
51 |
-
dtype = vae.dtype
|
52 |
-
|
53 |
-
if image is not None:
|
54 |
-
video = image.unsqueeze(1)
|
55 |
-
|
56 |
-
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
57 |
-
video = video.to(device=device, dtype=vae.dtype)
|
58 |
-
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
59 |
-
|
60 |
-
if compute_posterior:
|
61 |
-
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
62 |
-
latents = latents.to(dtype=dtype)
|
63 |
-
else:
|
64 |
-
if vae.use_slicing and video.shape[0] > 1:
|
65 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
66 |
-
moments = torch.cat(encoded_slices)
|
67 |
-
else:
|
68 |
-
moments = vae._encode(video)
|
69 |
-
latents = moments.to(dtype=dtype)
|
70 |
-
|
71 |
-
return {self.output_names[0]: latents}
|
72 |
-
|
73 |
-
|
74 |
-
class HunyuanVideoModelSpecification(ModelSpecification):
|
75 |
-
def __init__(
|
76 |
-
self,
|
77 |
-
pretrained_model_name_or_path: str = "hunyuanvideo-community/HunyuanVideo",
|
78 |
-
tokenizer_id: Optional[str] = None,
|
79 |
-
text_encoder_id: Optional[str] = None,
|
80 |
-
transformer_id: Optional[str] = None,
|
81 |
-
vae_id: Optional[str] = None,
|
82 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
83 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
84 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
85 |
-
revision: Optional[str] = None,
|
86 |
-
cache_dir: Optional[str] = None,
|
87 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
88 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
89 |
-
**kwargs,
|
90 |
-
) -> None:
|
91 |
-
super().__init__(
|
92 |
-
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
93 |
-
tokenizer_id=tokenizer_id,
|
94 |
-
text_encoder_id=text_encoder_id,
|
95 |
-
transformer_id=transformer_id,
|
96 |
-
vae_id=vae_id,
|
97 |
-
text_encoder_dtype=text_encoder_dtype,
|
98 |
-
transformer_dtype=transformer_dtype,
|
99 |
-
vae_dtype=vae_dtype,
|
100 |
-
revision=revision,
|
101 |
-
cache_dir=cache_dir,
|
102 |
-
)
|
103 |
-
|
104 |
-
if condition_model_processors is None:
|
105 |
-
condition_model_processors = [
|
106 |
-
LlamaProcessor(["encoder_hidden_states", "encoder_attention_mask"]),
|
107 |
-
CLIPPooledProcessor(
|
108 |
-
["pooled_projections"],
|
109 |
-
input_names={"tokenizer_2": "tokenizer", "text_encoder_2": "text_encoder"},
|
110 |
-
),
|
111 |
-
]
|
112 |
-
if latent_model_processors is None:
|
113 |
-
latent_model_processors = [HunyuanLatentEncodeProcessor(["latents"])]
|
114 |
-
|
115 |
-
self.condition_model_processors = condition_model_processors
|
116 |
-
self.latent_model_processors = latent_model_processors
|
117 |
-
|
118 |
-
@property
|
119 |
-
def _resolution_dim_keys(self):
|
120 |
-
return {"latents": (2, 3, 4)}
|
121 |
-
|
122 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
123 |
-
if self.tokenizer_id is not None:
|
124 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
125 |
-
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
126 |
-
)
|
127 |
-
else:
|
128 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
129 |
-
self.pretrained_model_name_or_path,
|
130 |
-
subfolder="tokenizer",
|
131 |
-
revision=self.revision,
|
132 |
-
cache_dir=self.cache_dir,
|
133 |
-
)
|
134 |
-
|
135 |
-
if self.tokenizer_2_id is not None:
|
136 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
137 |
-
self.tokenizer_2_id, revision=self.revision, cache_dir=self.cache_dir
|
138 |
-
)
|
139 |
-
else:
|
140 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
141 |
-
self.pretrained_model_name_or_path,
|
142 |
-
subfolder="tokenizer_2",
|
143 |
-
revision=self.revision,
|
144 |
-
cache_dir=self.cache_dir,
|
145 |
-
)
|
146 |
-
|
147 |
-
if self.text_encoder_id is not None:
|
148 |
-
text_encoder = LlamaModel.from_pretrained(
|
149 |
-
self.text_encoder_id,
|
150 |
-
torch_dtype=self.text_encoder_dtype,
|
151 |
-
revision=self.revision,
|
152 |
-
cache_dir=self.cache_dir,
|
153 |
-
)
|
154 |
-
else:
|
155 |
-
text_encoder = LlamaModel.from_pretrained(
|
156 |
-
self.pretrained_model_name_or_path,
|
157 |
-
subfolder="text_encoder",
|
158 |
-
torch_dtype=self.text_encoder_dtype,
|
159 |
-
revision=self.revision,
|
160 |
-
cache_dir=self.cache_dir,
|
161 |
-
)
|
162 |
-
|
163 |
-
if self.text_encoder_2_id is not None:
|
164 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
165 |
-
self.text_encoder_2_id,
|
166 |
-
torch_dtype=self.text_encoder_2_dtype,
|
167 |
-
revision=self.revision,
|
168 |
-
cache_dir=self.cache_dir,
|
169 |
-
)
|
170 |
-
else:
|
171 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
172 |
-
self.pretrained_model_name_or_path,
|
173 |
-
subfolder="text_encoder_2",
|
174 |
-
torch_dtype=self.text_encoder_2_dtype,
|
175 |
-
revision=self.revision,
|
176 |
-
cache_dir=self.cache_dir,
|
177 |
-
)
|
178 |
-
|
179 |
-
return {
|
180 |
-
"tokenizer": tokenizer,
|
181 |
-
"tokenizer_2": tokenizer_2,
|
182 |
-
"text_encoder": text_encoder,
|
183 |
-
"text_encoder_2": text_encoder_2,
|
184 |
-
}
|
185 |
-
|
186 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
187 |
-
if self.vae_id is not None:
|
188 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
189 |
-
self.vae_id,
|
190 |
-
torch_dtype=self.vae_dtype,
|
191 |
-
revision=self.revision,
|
192 |
-
cache_dir=self.cache_dir,
|
193 |
-
)
|
194 |
-
else:
|
195 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
196 |
-
self.pretrained_model_name_or_path,
|
197 |
-
subfolder="vae",
|
198 |
-
torch_dtype=self.vae_dtype,
|
199 |
-
revision=self.revision,
|
200 |
-
cache_dir=self.cache_dir,
|
201 |
-
)
|
202 |
-
|
203 |
-
return {"vae": vae}
|
204 |
-
|
205 |
-
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
206 |
-
if self.transformer_id is not None:
|
207 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
208 |
-
self.transformer_id,
|
209 |
-
torch_dtype=self.transformer_dtype,
|
210 |
-
revision=self.revision,
|
211 |
-
cache_dir=self.cache_dir,
|
212 |
-
)
|
213 |
-
else:
|
214 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
215 |
-
self.pretrained_model_name_or_path,
|
216 |
-
subfolder="transformer",
|
217 |
-
torch_dtype=self.transformer_dtype,
|
218 |
-
revision=self.revision,
|
219 |
-
cache_dir=self.cache_dir,
|
220 |
-
)
|
221 |
-
|
222 |
-
scheduler = FlowMatchEulerDiscreteScheduler()
|
223 |
-
|
224 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
225 |
-
|
226 |
-
def load_pipeline(
|
227 |
-
self,
|
228 |
-
tokenizer: Optional[AutoTokenizer] = None,
|
229 |
-
tokenizer_2: Optional[CLIPTokenizer] = None,
|
230 |
-
text_encoder: Optional[LlamaModel] = None,
|
231 |
-
text_encoder_2: Optional[CLIPTextModel] = None,
|
232 |
-
transformer: Optional[HunyuanVideoTransformer3DModel] = None,
|
233 |
-
vae: Optional[AutoencoderKLHunyuanVideo] = None,
|
234 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
235 |
-
enable_slicing: bool = False,
|
236 |
-
enable_tiling: bool = False,
|
237 |
-
enable_model_cpu_offload: bool = False,
|
238 |
-
training: bool = False,
|
239 |
-
**kwargs,
|
240 |
-
) -> HunyuanVideoPipeline:
|
241 |
-
components = {
|
242 |
-
"tokenizer": tokenizer,
|
243 |
-
"tokenizer_2": tokenizer_2,
|
244 |
-
"text_encoder": text_encoder,
|
245 |
-
"text_encoder_2": text_encoder_2,
|
246 |
-
"transformer": transformer,
|
247 |
-
"vae": vae,
|
248 |
-
"scheduler": scheduler,
|
249 |
-
}
|
250 |
-
components = get_non_null_items(components)
|
251 |
-
|
252 |
-
pipe = HunyuanVideoPipeline.from_pretrained(
|
253 |
-
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
254 |
-
)
|
255 |
-
pipe.text_encoder.to(self.text_encoder_dtype)
|
256 |
-
pipe.text_encoder_2.to(self.text_encoder_2_dtype)
|
257 |
-
pipe.vae.to(self.vae_dtype)
|
258 |
-
|
259 |
-
if not training:
|
260 |
-
pipe.transformer.to(self.transformer_dtype)
|
261 |
-
|
262 |
-
if enable_slicing:
|
263 |
-
pipe.vae.enable_slicing()
|
264 |
-
if enable_tiling:
|
265 |
-
pipe.vae.enable_tiling()
|
266 |
-
if enable_model_cpu_offload:
|
267 |
-
pipe.enable_model_cpu_offload()
|
268 |
-
|
269 |
-
return pipe
|
270 |
-
|
271 |
-
@torch.no_grad()
|
272 |
-
def prepare_conditions(
|
273 |
-
self,
|
274 |
-
tokenizer: AutoTokenizer,
|
275 |
-
tokenizer_2: CLIPTokenizer,
|
276 |
-
text_encoder: LlamaModel,
|
277 |
-
text_encoder_2: CLIPTextModel,
|
278 |
-
caption: str,
|
279 |
-
max_sequence_length: int = 256,
|
280 |
-
**kwargs,
|
281 |
-
) -> Dict[str, Any]:
|
282 |
-
conditions = {
|
283 |
-
"tokenizer": tokenizer,
|
284 |
-
"tokenizer_2": tokenizer_2,
|
285 |
-
"text_encoder": text_encoder,
|
286 |
-
"text_encoder_2": text_encoder_2,
|
287 |
-
"caption": caption,
|
288 |
-
"max_sequence_length": max_sequence_length,
|
289 |
-
**kwargs,
|
290 |
-
}
|
291 |
-
input_keys = set(conditions.keys())
|
292 |
-
conditions = super().prepare_conditions(**conditions)
|
293 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
294 |
-
return conditions
|
295 |
-
|
296 |
-
@torch.no_grad()
|
297 |
-
def prepare_latents(
|
298 |
-
self,
|
299 |
-
vae: AutoencoderKLHunyuanVideo,
|
300 |
-
image: Optional[torch.Tensor] = None,
|
301 |
-
video: Optional[torch.Tensor] = None,
|
302 |
-
generator: Optional[torch.Generator] = None,
|
303 |
-
compute_posterior: bool = True,
|
304 |
-
**kwargs,
|
305 |
-
) -> Dict[str, torch.Tensor]:
|
306 |
-
conditions = {
|
307 |
-
"vae": vae,
|
308 |
-
"image": image,
|
309 |
-
"video": video,
|
310 |
-
"generator": generator,
|
311 |
-
"compute_posterior": compute_posterior,
|
312 |
-
**kwargs,
|
313 |
-
}
|
314 |
-
input_keys = set(conditions.keys())
|
315 |
-
conditions = super().prepare_latents(**conditions)
|
316 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
317 |
-
return conditions
|
318 |
-
|
319 |
-
def forward(
|
320 |
-
self,
|
321 |
-
transformer: HunyuanVideoTransformer3DModel,
|
322 |
-
condition_model_conditions: Dict[str, torch.Tensor],
|
323 |
-
latent_model_conditions: Dict[str, torch.Tensor],
|
324 |
-
sigmas: torch.Tensor,
|
325 |
-
guidance: float = 1.0,
|
326 |
-
generator: Optional[torch.Generator] = None,
|
327 |
-
compute_posterior: bool = True,
|
328 |
-
**kwargs,
|
329 |
-
) -> Tuple[torch.Tensor, ...]:
|
330 |
-
if compute_posterior:
|
331 |
-
latents = latent_model_conditions.pop("latents")
|
332 |
-
else:
|
333 |
-
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
334 |
-
latents = posterior.sample(generator=generator)
|
335 |
-
del posterior
|
336 |
-
|
337 |
-
latents = latents * self.vae_config.scaling_factor
|
338 |
-
noise = torch.zeros_like(latents).normal_(generator=generator)
|
339 |
-
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
340 |
-
|
341 |
-
timesteps = (sigmas.flatten() * 1000.0).long()
|
342 |
-
guidance = latents.new_full((latents.size(0),), fill_value=guidance) * 1000.0
|
343 |
-
|
344 |
-
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
345 |
-
latent_model_conditions["guidance"] = guidance
|
346 |
-
|
347 |
-
pred = transformer(
|
348 |
-
**latent_model_conditions,
|
349 |
-
**condition_model_conditions,
|
350 |
-
timestep=timesteps,
|
351 |
-
return_dict=False,
|
352 |
-
)[0]
|
353 |
-
target = FF.flow_match_target(noise, latents)
|
354 |
-
|
355 |
-
return pred, target, sigmas
|
356 |
-
|
357 |
-
def validation(
|
358 |
-
self,
|
359 |
-
pipeline: HunyuanVideoPipeline,
|
360 |
-
prompt: str,
|
361 |
-
height: Optional[int] = None,
|
362 |
-
width: Optional[int] = None,
|
363 |
-
num_frames: Optional[int] = None,
|
364 |
-
num_inference_steps: int = 50,
|
365 |
-
generator: Optional[torch.Generator] = None,
|
366 |
-
**kwargs,
|
367 |
-
) -> List[ArtifactType]:
|
368 |
-
generation_kwargs = {
|
369 |
-
"prompt": prompt,
|
370 |
-
"height": height,
|
371 |
-
"width": width,
|
372 |
-
"num_frames": num_frames,
|
373 |
-
"num_inference_steps": num_inference_steps,
|
374 |
-
"generator": generator,
|
375 |
-
"return_dict": True,
|
376 |
-
"output_type": "pil",
|
377 |
-
}
|
378 |
-
generation_kwargs = get_non_null_items(generation_kwargs)
|
379 |
-
video = pipeline(**generation_kwargs).frames[0]
|
380 |
-
return [data.VideoArtifact(value=video)]
|
381 |
-
|
382 |
-
def _save_lora_weights(
|
383 |
-
self,
|
384 |
-
directory: str,
|
385 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
386 |
-
scheduler: Optional[SchedulerType] = None,
|
387 |
-
*args,
|
388 |
-
**kwargs,
|
389 |
-
) -> None:
|
390 |
-
# TODO(aryan): this needs refactoring
|
391 |
-
if transformer_state_dict is not None:
|
392 |
-
HunyuanVideoPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
393 |
-
if scheduler is not None:
|
394 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
395 |
-
|
396 |
-
def _save_model(
|
397 |
-
self,
|
398 |
-
directory: str,
|
399 |
-
transformer: HunyuanVideoTransformer3DModel,
|
400 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
401 |
-
scheduler: Optional[SchedulerType] = None,
|
402 |
-
) -> None:
|
403 |
-
# TODO(aryan): this needs refactoring
|
404 |
-
if transformer_state_dict is not None:
|
405 |
-
with init_empty_weights():
|
406 |
-
transformer_copy = HunyuanVideoTransformer3DModel.from_config(transformer.config)
|
407 |
-
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
408 |
-
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
409 |
-
if scheduler is not None:
|
410 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/ltx_video/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .base_specification import LTXVideoModelSpecification
|
|
|
|
finetrainers/models/ltx_video/base_specification.py
DELETED
@@ -1,517 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
from typing import Any, Dict, List, Optional, Tuple
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from accelerate import init_empty_weights
|
7 |
-
from diffusers import (
|
8 |
-
AutoencoderKLLTXVideo,
|
9 |
-
FlowMatchEulerDiscreteScheduler,
|
10 |
-
LTXImageToVideoPipeline,
|
11 |
-
LTXPipeline,
|
12 |
-
LTXVideoTransformer3DModel,
|
13 |
-
)
|
14 |
-
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
15 |
-
from PIL.Image import Image
|
16 |
-
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
|
17 |
-
|
18 |
-
from ... import data
|
19 |
-
from ... import functional as FF
|
20 |
-
from ...logging import get_logger
|
21 |
-
from ...parallel import ParallelBackendEnum
|
22 |
-
from ...processors import ProcessorMixin, T5Processor
|
23 |
-
from ...typing import ArtifactType, SchedulerType
|
24 |
-
from ...utils import get_non_null_items
|
25 |
-
from ..modeling_utils import ModelSpecification
|
26 |
-
|
27 |
-
|
28 |
-
logger = get_logger()
|
29 |
-
|
30 |
-
|
31 |
-
class LTXLatentEncodeProcessor(ProcessorMixin):
|
32 |
-
r"""
|
33 |
-
Processor to encode image/video into latents using the LTX VAE.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
output_names (`List[str]`):
|
37 |
-
The names of the outputs that the processor returns. The outputs are in the following order:
|
38 |
-
- latents: The latents of the input image/video.
|
39 |
-
- num_frames: The number of frames in the input video.
|
40 |
-
- height: The height of the input image/video.
|
41 |
-
- width: The width of the input image/video.
|
42 |
-
- latents_mean: The latent channel means from the VAE state dict.
|
43 |
-
- latents_std: The latent channel standard deviations from the VAE state dict.
|
44 |
-
"""
|
45 |
-
|
46 |
-
def __init__(self, output_names: List[str]):
|
47 |
-
super().__init__()
|
48 |
-
self.output_names = output_names
|
49 |
-
assert len(self.output_names) == 6
|
50 |
-
|
51 |
-
def forward(
|
52 |
-
self,
|
53 |
-
vae: AutoencoderKLLTXVideo,
|
54 |
-
image: Optional[torch.Tensor] = None,
|
55 |
-
video: Optional[torch.Tensor] = None,
|
56 |
-
generator: Optional[torch.Generator] = None,
|
57 |
-
compute_posterior: bool = True,
|
58 |
-
) -> Dict[str, torch.Tensor]:
|
59 |
-
device = vae.device
|
60 |
-
dtype = vae.dtype
|
61 |
-
|
62 |
-
if image is not None:
|
63 |
-
video = image.unsqueeze(1)
|
64 |
-
|
65 |
-
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
66 |
-
video = video.to(device=device, dtype=vae.dtype)
|
67 |
-
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
68 |
-
|
69 |
-
if compute_posterior:
|
70 |
-
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
71 |
-
latents = latents.to(dtype=dtype)
|
72 |
-
else:
|
73 |
-
if vae.use_slicing and video.shape[0] > 1:
|
74 |
-
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
75 |
-
moments = torch.cat(encoded_slices)
|
76 |
-
else:
|
77 |
-
moments = vae._encode(video)
|
78 |
-
latents = moments.to(dtype=dtype)
|
79 |
-
|
80 |
-
_, _, num_frames, height, width = latents.shape
|
81 |
-
|
82 |
-
return {
|
83 |
-
self.output_names[0]: latents,
|
84 |
-
self.output_names[1]: num_frames,
|
85 |
-
self.output_names[2]: height,
|
86 |
-
self.output_names[3]: width,
|
87 |
-
self.output_names[4]: vae.latents_mean,
|
88 |
-
self.output_names[5]: vae.latents_std,
|
89 |
-
}
|
90 |
-
|
91 |
-
|
92 |
-
class LTXVideoModelSpecification(ModelSpecification):
|
93 |
-
def __init__(
|
94 |
-
self,
|
95 |
-
pretrained_model_name_or_path: str = "Lightricks/LTX-Video",
|
96 |
-
tokenizer_id: Optional[str] = None,
|
97 |
-
text_encoder_id: Optional[str] = None,
|
98 |
-
transformer_id: Optional[str] = None,
|
99 |
-
vae_id: Optional[str] = None,
|
100 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
101 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
102 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
103 |
-
revision: Optional[str] = None,
|
104 |
-
cache_dir: Optional[str] = None,
|
105 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
106 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
107 |
-
**kwargs,
|
108 |
-
) -> None:
|
109 |
-
super().__init__(
|
110 |
-
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
111 |
-
tokenizer_id=tokenizer_id,
|
112 |
-
text_encoder_id=text_encoder_id,
|
113 |
-
transformer_id=transformer_id,
|
114 |
-
vae_id=vae_id,
|
115 |
-
text_encoder_dtype=text_encoder_dtype,
|
116 |
-
transformer_dtype=transformer_dtype,
|
117 |
-
vae_dtype=vae_dtype,
|
118 |
-
revision=revision,
|
119 |
-
cache_dir=cache_dir,
|
120 |
-
)
|
121 |
-
|
122 |
-
if condition_model_processors is None:
|
123 |
-
condition_model_processors = [T5Processor(["encoder_hidden_states", "encoder_attention_mask"])]
|
124 |
-
if latent_model_processors is None:
|
125 |
-
latent_model_processors = [
|
126 |
-
LTXLatentEncodeProcessor(["latents", "num_frames", "height", "width", "latents_mean", "latents_std"])
|
127 |
-
]
|
128 |
-
|
129 |
-
self.condition_model_processors = condition_model_processors
|
130 |
-
self.latent_model_processors = latent_model_processors
|
131 |
-
|
132 |
-
@property
|
133 |
-
def _resolution_dim_keys(self):
|
134 |
-
return {"latents": (2, 3, 4)}
|
135 |
-
|
136 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
137 |
-
if self.tokenizer_id is not None:
|
138 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
139 |
-
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
140 |
-
)
|
141 |
-
else:
|
142 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
143 |
-
self.pretrained_model_name_or_path,
|
144 |
-
subfolder="tokenizer",
|
145 |
-
revision=self.revision,
|
146 |
-
cache_dir=self.cache_dir,
|
147 |
-
)
|
148 |
-
|
149 |
-
if self.text_encoder_id is not None:
|
150 |
-
text_encoder = AutoModel.from_pretrained(
|
151 |
-
self.text_encoder_id,
|
152 |
-
torch_dtype=self.text_encoder_dtype,
|
153 |
-
revision=self.revision,
|
154 |
-
cache_dir=self.cache_dir,
|
155 |
-
)
|
156 |
-
else:
|
157 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
158 |
-
self.pretrained_model_name_or_path,
|
159 |
-
subfolder="text_encoder",
|
160 |
-
torch_dtype=self.text_encoder_dtype,
|
161 |
-
revision=self.revision,
|
162 |
-
cache_dir=self.cache_dir,
|
163 |
-
)
|
164 |
-
|
165 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
166 |
-
|
167 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
168 |
-
if self.vae_id is not None:
|
169 |
-
vae = AutoencoderKLLTXVideo.from_pretrained(
|
170 |
-
self.vae_id,
|
171 |
-
torch_dtype=self.vae_dtype,
|
172 |
-
revision=self.revision,
|
173 |
-
cache_dir=self.cache_dir,
|
174 |
-
)
|
175 |
-
else:
|
176 |
-
vae = AutoencoderKLLTXVideo.from_pretrained(
|
177 |
-
self.pretrained_model_name_or_path,
|
178 |
-
subfolder="vae",
|
179 |
-
torch_dtype=self.vae_dtype,
|
180 |
-
revision=self.revision,
|
181 |
-
cache_dir=self.cache_dir,
|
182 |
-
)
|
183 |
-
|
184 |
-
return {"vae": vae}
|
185 |
-
|
186 |
-
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
187 |
-
if self.transformer_id is not None:
|
188 |
-
transformer = LTXVideoTransformer3DModel.from_pretrained(
|
189 |
-
self.transformer_id,
|
190 |
-
torch_dtype=self.transformer_dtype,
|
191 |
-
revision=self.revision,
|
192 |
-
cache_dir=self.cache_dir,
|
193 |
-
)
|
194 |
-
else:
|
195 |
-
transformer = LTXVideoTransformer3DModel.from_pretrained(
|
196 |
-
self.pretrained_model_name_or_path,
|
197 |
-
subfolder="transformer",
|
198 |
-
torch_dtype=self.transformer_dtype,
|
199 |
-
revision=self.revision,
|
200 |
-
cache_dir=self.cache_dir,
|
201 |
-
)
|
202 |
-
|
203 |
-
scheduler = FlowMatchEulerDiscreteScheduler()
|
204 |
-
|
205 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
206 |
-
|
207 |
-
def load_pipeline(
|
208 |
-
self,
|
209 |
-
tokenizer: Optional[T5Tokenizer] = None,
|
210 |
-
text_encoder: Optional[T5EncoderModel] = None,
|
211 |
-
transformer: Optional[LTXVideoTransformer3DModel] = None,
|
212 |
-
vae: Optional[AutoencoderKLLTXVideo] = None,
|
213 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
214 |
-
enable_slicing: bool = False,
|
215 |
-
enable_tiling: bool = False,
|
216 |
-
enable_model_cpu_offload: bool = False,
|
217 |
-
training: bool = False,
|
218 |
-
**kwargs,
|
219 |
-
) -> LTXPipeline:
|
220 |
-
components = {
|
221 |
-
"tokenizer": tokenizer,
|
222 |
-
"text_encoder": text_encoder,
|
223 |
-
"transformer": transformer,
|
224 |
-
"vae": vae,
|
225 |
-
"scheduler": scheduler,
|
226 |
-
}
|
227 |
-
components = get_non_null_items(components)
|
228 |
-
|
229 |
-
pipe = LTXPipeline.from_pretrained(
|
230 |
-
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
231 |
-
)
|
232 |
-
pipe.text_encoder.to(self.text_encoder_dtype)
|
233 |
-
pipe.vae.to(self.vae_dtype)
|
234 |
-
|
235 |
-
if not training:
|
236 |
-
pipe.transformer.to(self.transformer_dtype)
|
237 |
-
|
238 |
-
if enable_slicing:
|
239 |
-
pipe.vae.enable_slicing()
|
240 |
-
if enable_tiling:
|
241 |
-
pipe.vae.enable_tiling()
|
242 |
-
if enable_model_cpu_offload:
|
243 |
-
pipe.enable_model_cpu_offload()
|
244 |
-
|
245 |
-
return pipe
|
246 |
-
|
247 |
-
@torch.no_grad()
|
248 |
-
def prepare_conditions(
|
249 |
-
self,
|
250 |
-
tokenizer: T5Tokenizer,
|
251 |
-
text_encoder: T5EncoderModel,
|
252 |
-
caption: str,
|
253 |
-
max_sequence_length: int = 128,
|
254 |
-
**kwargs,
|
255 |
-
) -> Dict[str, Any]:
|
256 |
-
conditions = {
|
257 |
-
"tokenizer": tokenizer,
|
258 |
-
"text_encoder": text_encoder,
|
259 |
-
"caption": caption,
|
260 |
-
"max_sequence_length": max_sequence_length,
|
261 |
-
**kwargs,
|
262 |
-
}
|
263 |
-
input_keys = set(conditions.keys())
|
264 |
-
conditions = super().prepare_conditions(**conditions)
|
265 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
266 |
-
return conditions
|
267 |
-
|
268 |
-
@torch.no_grad()
|
269 |
-
def prepare_latents(
|
270 |
-
self,
|
271 |
-
vae: AutoencoderKLLTXVideo,
|
272 |
-
image: Optional[torch.Tensor] = None,
|
273 |
-
video: Optional[torch.Tensor] = None,
|
274 |
-
generator: Optional[torch.Generator] = None,
|
275 |
-
compute_posterior: bool = True,
|
276 |
-
**kwargs,
|
277 |
-
) -> Dict[str, torch.Tensor]:
|
278 |
-
conditions = {
|
279 |
-
"vae": vae,
|
280 |
-
"image": image,
|
281 |
-
"video": video,
|
282 |
-
"generator": generator,
|
283 |
-
"compute_posterior": compute_posterior,
|
284 |
-
**kwargs,
|
285 |
-
}
|
286 |
-
input_keys = set(conditions.keys())
|
287 |
-
conditions = super().prepare_latents(**conditions)
|
288 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
289 |
-
return conditions
|
290 |
-
|
291 |
-
def forward(
|
292 |
-
self,
|
293 |
-
transformer: LTXVideoTransformer3DModel,
|
294 |
-
condition_model_conditions: Dict[str, torch.Tensor],
|
295 |
-
latent_model_conditions: Dict[str, torch.Tensor],
|
296 |
-
sigmas: torch.Tensor,
|
297 |
-
generator: Optional[torch.Generator] = None,
|
298 |
-
compute_posterior: bool = True,
|
299 |
-
**kwargs,
|
300 |
-
) -> Tuple[torch.Tensor, ...]:
|
301 |
-
# TODO(aryan): make this configurable? Should it be?
|
302 |
-
first_frame_conditioning_p = 0.1
|
303 |
-
min_first_frame_sigma = 0.25
|
304 |
-
|
305 |
-
if compute_posterior:
|
306 |
-
latents = latent_model_conditions.pop("latents")
|
307 |
-
else:
|
308 |
-
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
|
309 |
-
latents = posterior.sample(generator=generator)
|
310 |
-
del posterior
|
311 |
-
|
312 |
-
latents_mean = latent_model_conditions.pop("latents_mean")
|
313 |
-
latents_std = latent_model_conditions.pop("latents_std")
|
314 |
-
|
315 |
-
latents = self._normalize_latents(latents, latents_mean, latents_std)
|
316 |
-
noise = torch.zeros_like(latents).normal_(generator=generator)
|
317 |
-
|
318 |
-
if random.random() < first_frame_conditioning_p:
|
319 |
-
# Based on Section 2.4 of the paper, it mentions that the first frame timesteps should be a small random value.
|
320 |
-
# Making as estimated guess, we limit the sigmas to be at least 0.2.
|
321 |
-
# torch.rand_like returns values in [0, 1). We want to make sure that the first frame sigma is <= actual sigmas
|
322 |
-
# for image conditioning. In order to do this, we rescale by multiplying with sigmas so the range is [0, sigmas).
|
323 |
-
first_frame_sigma = torch.rand_like(sigmas) * sigmas
|
324 |
-
first_frame_sigma = torch.min(first_frame_sigma, sigmas.new_full(sigmas.shape, min_first_frame_sigma))
|
325 |
-
|
326 |
-
latents_first_frame, latents_rest = latents[:, :, :1], latents[:, :, 1:]
|
327 |
-
noisy_latents_first_frame = FF.flow_match_xt(latents_first_frame, noise[:, :, :1], first_frame_sigma)
|
328 |
-
noisy_latents_remaining = FF.flow_match_xt(latents_rest, noise[:, :, 1:], sigmas)
|
329 |
-
noisy_latents = torch.cat([noisy_latents_first_frame, noisy_latents_remaining], dim=2)
|
330 |
-
else:
|
331 |
-
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
332 |
-
|
333 |
-
patch_size = self.transformer_config.patch_size
|
334 |
-
patch_size_t = self.transformer_config.patch_size_t
|
335 |
-
|
336 |
-
latents = self._pack_latents(latents, patch_size, patch_size_t)
|
337 |
-
noise = self._pack_latents(noise, patch_size, patch_size_t)
|
338 |
-
noisy_latents = self._pack_latents(noisy_latents, patch_size, patch_size_t)
|
339 |
-
sigmas = sigmas.view(-1, 1, 1).expand(-1, *noisy_latents.shape[1:-1], -1)
|
340 |
-
timesteps = (sigmas * 1000.0).long()
|
341 |
-
|
342 |
-
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
343 |
-
|
344 |
-
# TODO(aryan): make this configurable
|
345 |
-
frame_rate = 25
|
346 |
-
temporal_compression_ratio = 8
|
347 |
-
vae_spatial_compression_ratio = 32
|
348 |
-
latent_frame_rate = frame_rate / temporal_compression_ratio
|
349 |
-
|
350 |
-
rope_interpolation_scale = [
|
351 |
-
1 / latent_frame_rate,
|
352 |
-
vae_spatial_compression_ratio,
|
353 |
-
vae_spatial_compression_ratio,
|
354 |
-
]
|
355 |
-
|
356 |
-
pred = transformer(
|
357 |
-
**latent_model_conditions,
|
358 |
-
**condition_model_conditions,
|
359 |
-
timestep=timesteps,
|
360 |
-
rope_interpolation_scale=rope_interpolation_scale,
|
361 |
-
return_dict=False,
|
362 |
-
)[0]
|
363 |
-
target = FF.flow_match_target(noise, latents)
|
364 |
-
|
365 |
-
return pred, target, sigmas
|
366 |
-
|
367 |
-
def validation(
|
368 |
-
self,
|
369 |
-
pipeline: LTXPipeline,
|
370 |
-
prompt: str,
|
371 |
-
image: Optional[Image] = None,
|
372 |
-
height: Optional[int] = None,
|
373 |
-
width: Optional[int] = None,
|
374 |
-
num_frames: Optional[int] = None,
|
375 |
-
frame_rate: int = 25,
|
376 |
-
num_inference_steps: int = 50,
|
377 |
-
generator: Optional[torch.Generator] = None,
|
378 |
-
**kwargs,
|
379 |
-
) -> List[ArtifactType]:
|
380 |
-
if image is not None:
|
381 |
-
pipeline = LTXImageToVideoPipeline.from_pipe(pipeline)
|
382 |
-
|
383 |
-
generation_kwargs = {
|
384 |
-
"prompt": prompt,
|
385 |
-
"image": image,
|
386 |
-
"height": height,
|
387 |
-
"width": width,
|
388 |
-
"num_frames": num_frames,
|
389 |
-
"frame_rate": frame_rate,
|
390 |
-
"num_inference_steps": num_inference_steps,
|
391 |
-
"generator": generator,
|
392 |
-
"return_dict": True,
|
393 |
-
"output_type": "pil",
|
394 |
-
}
|
395 |
-
generation_kwargs = get_non_null_items(generation_kwargs)
|
396 |
-
video = pipeline(**generation_kwargs).frames[0]
|
397 |
-
return [data.VideoArtifact(value=video)]
|
398 |
-
|
399 |
-
def _save_lora_weights(
|
400 |
-
self,
|
401 |
-
directory: str,
|
402 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
403 |
-
scheduler: Optional[SchedulerType] = None,
|
404 |
-
*args,
|
405 |
-
**kwargs,
|
406 |
-
) -> None:
|
407 |
-
# TODO(aryan): this needs refactoring
|
408 |
-
if transformer_state_dict is not None:
|
409 |
-
LTXPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
410 |
-
if scheduler is not None:
|
411 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
412 |
-
|
413 |
-
def _save_model(
|
414 |
-
self,
|
415 |
-
directory: str,
|
416 |
-
transformer: LTXVideoTransformer3DModel,
|
417 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
418 |
-
scheduler: Optional[SchedulerType] = None,
|
419 |
-
) -> None:
|
420 |
-
# TODO(aryan): this needs refactoring
|
421 |
-
if transformer_state_dict is not None:
|
422 |
-
with init_empty_weights():
|
423 |
-
transformer_copy = LTXVideoTransformer3DModel.from_config(transformer.config)
|
424 |
-
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
425 |
-
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
426 |
-
if scheduler is not None:
|
427 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
428 |
-
|
429 |
-
def apply_tensor_parallel(
|
430 |
-
self,
|
431 |
-
backend: ParallelBackendEnum,
|
432 |
-
device_mesh: torch.distributed.DeviceMesh,
|
433 |
-
transformer: LTXVideoTransformer3DModel,
|
434 |
-
**kwargs,
|
435 |
-
) -> None:
|
436 |
-
if backend == ParallelBackendEnum.PTD:
|
437 |
-
_apply_tensor_parallel_ptd(device_mesh, transformer)
|
438 |
-
else:
|
439 |
-
raise NotImplementedError(f"Parallel backend {backend} is not supported for LTXVideoModelSpecification")
|
440 |
-
|
441 |
-
@staticmethod
|
442 |
-
def _normalize_latents(
|
443 |
-
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
|
444 |
-
) -> torch.Tensor:
|
445 |
-
# Normalize latents across the channel dimension [B, C, F, H, W]
|
446 |
-
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(device=latents.device)
|
447 |
-
latents_std = latents_std.view(1, -1, 1, 1, 1).to(device=latents.device)
|
448 |
-
latents = ((latents.float() - latents_mean) * scaling_factor / latents_std).to(latents)
|
449 |
-
return latents
|
450 |
-
|
451 |
-
@staticmethod
|
452 |
-
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
|
453 |
-
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
|
454 |
-
# The patch dimensions are then permuted and collapsed into the channel dimension of shape:
|
455 |
-
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
|
456 |
-
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
|
457 |
-
batch_size, num_channels, num_frames, height, width = latents.shape
|
458 |
-
post_patch_num_frames = num_frames // patch_size_t
|
459 |
-
post_patch_height = height // patch_size
|
460 |
-
post_patch_width = width // patch_size
|
461 |
-
latents = latents.reshape(
|
462 |
-
batch_size,
|
463 |
-
-1,
|
464 |
-
post_patch_num_frames,
|
465 |
-
patch_size_t,
|
466 |
-
post_patch_height,
|
467 |
-
patch_size,
|
468 |
-
post_patch_width,
|
469 |
-
patch_size,
|
470 |
-
)
|
471 |
-
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
|
472 |
-
return latents
|
473 |
-
|
474 |
-
|
475 |
-
def _apply_tensor_parallel_ptd(
|
476 |
-
device_mesh: torch.distributed.device_mesh.DeviceMesh, transformer: LTXVideoTransformer3DModel
|
477 |
-
) -> None:
|
478 |
-
from torch.distributed.tensor.parallel import parallelize_module
|
479 |
-
from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel
|
480 |
-
|
481 |
-
transformer_plan = {
|
482 |
-
# ===== Condition embeddings =====
|
483 |
-
# "time_embed.emb.timestep_embedder.linear_1": ColwiseParallel(),
|
484 |
-
# "time_embed.emb.timestep_embedder.linear_2": RowwiseParallel(output_layouts=Shard(-1)),
|
485 |
-
# "time_embed.linear": ColwiseParallel(input_layouts=Shard(-1), output_layouts=Replicate()),
|
486 |
-
# "time_embed": PrepareModuleOutput(output_layouts=(Replicate(), Shard(-1)), desired_output_layouts=(Replicate(), Replicate())),
|
487 |
-
# "caption_projection.linear_1": ColwiseParallel(),
|
488 |
-
# "caption_projection.linear_2": RowwiseParallel(),
|
489 |
-
# "rope": PrepareModuleOutput(output_layouts=(Replicate(), Replicate()), desired_output_layouts=(Shard(1), Shard(1)), use_local_output=False),
|
490 |
-
# ===== =====
|
491 |
-
}
|
492 |
-
|
493 |
-
for block in transformer.transformer_blocks:
|
494 |
-
block_plan = {}
|
495 |
-
|
496 |
-
# ===== Attention =====
|
497 |
-
# 8 all-to-all, 3 all-reduce
|
498 |
-
# block_plan["attn1.to_q"] = ColwiseParallel(use_local_output=False)
|
499 |
-
# block_plan["attn1.to_k"] = ColwiseParallel(use_local_output=False)
|
500 |
-
# block_plan["attn1.to_v"] = ColwiseParallel(use_local_output=False)
|
501 |
-
# block_plan["attn1.norm_q"] = SequenceParallel()
|
502 |
-
# block_plan["attn1.norm_k"] = SequenceParallel()
|
503 |
-
# block_plan["attn1.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
|
504 |
-
# block_plan["attn2.to_q"] = ColwiseParallel(use_local_output=False)
|
505 |
-
# block_plan["attn2.to_k"] = ColwiseParallel(use_local_output=False)
|
506 |
-
# block_plan["attn2.to_v"] = ColwiseParallel(use_local_output=False)
|
507 |
-
# block_plan["attn2.norm_q"] = SequenceParallel()
|
508 |
-
# block_plan["attn2.norm_k"] = SequenceParallel()
|
509 |
-
# block_plan["attn2.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
|
510 |
-
# ===== =====
|
511 |
-
|
512 |
-
block_plan["ff.net.0.proj"] = ColwiseParallel()
|
513 |
-
block_plan["ff.net.2"] = RowwiseParallel()
|
514 |
-
|
515 |
-
parallelize_module(block, device_mesh, block_plan)
|
516 |
-
|
517 |
-
parallelize_module(transformer, device_mesh, transformer_plan)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/modeling_utils.py
DELETED
@@ -1,289 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
-
from diffusers.configuration_utils import FrozenDict
|
6 |
-
from PIL.Image import Image
|
7 |
-
|
8 |
-
from ..logging import get_logger
|
9 |
-
from ..parallel import ParallelBackendEnum
|
10 |
-
from ..processors import ProcessorMixin
|
11 |
-
from ..typing import ArtifactType, SchedulerType, TokenizerType
|
12 |
-
from ..utils import resolve_component_cls
|
13 |
-
|
14 |
-
|
15 |
-
logger = get_logger()
|
16 |
-
|
17 |
-
# TODO(aryan): we most likely don't need this. take a look after refactoring more
|
18 |
-
# fmt: off
|
19 |
-
IGNORE_KEYS_FOR_COLLATION = {"height", "width", "num_frames", "frame_rate", "rope_interpolation_scale", "return_dict", "attention_kwargs", "cross_attention_kwargs", "joint_attention_kwargs", "latents_mean", "latents_std"}
|
20 |
-
# fmt: on
|
21 |
-
|
22 |
-
|
23 |
-
class ModelSpecification:
|
24 |
-
r"""
|
25 |
-
The ModelSpecification class is an interface to be used for Diffusion training recipes. It provides
|
26 |
-
loose structure about how to organize the code for training. The trainer implementations will
|
27 |
-
make use of this interface to load models, prepare conditions, prepare latents, forward pass, etc.
|
28 |
-
"""
|
29 |
-
|
30 |
-
def __init__(
|
31 |
-
self,
|
32 |
-
pretrained_model_name_or_path: Optional[str] = None,
|
33 |
-
tokenizer_id: Optional[str] = None,
|
34 |
-
tokenizer_2_id: Optional[str] = None,
|
35 |
-
tokenizer_3_id: Optional[str] = None,
|
36 |
-
text_encoder_id: Optional[str] = None,
|
37 |
-
text_encoder_2_id: Optional[str] = None,
|
38 |
-
text_encoder_3_id: Optional[str] = None,
|
39 |
-
transformer_id: Optional[str] = None,
|
40 |
-
vae_id: Optional[str] = None,
|
41 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
42 |
-
text_encoder_2_dtype: torch.dtype = torch.bfloat16,
|
43 |
-
text_encoder_3_dtype: torch.dtype = torch.bfloat16,
|
44 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
45 |
-
vae_dtype: str = torch.bfloat16,
|
46 |
-
revision: Optional[str] = None,
|
47 |
-
cache_dir: Optional[str] = None,
|
48 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
49 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
50 |
-
) -> None:
|
51 |
-
self.pretrained_model_name_or_path = pretrained_model_name_or_path
|
52 |
-
self.tokenizer_id = tokenizer_id
|
53 |
-
self.tokenizer_2_id = tokenizer_2_id
|
54 |
-
self.tokenizer_3_id = tokenizer_3_id
|
55 |
-
self.text_encoder_id = text_encoder_id
|
56 |
-
self.text_encoder_2_id = text_encoder_2_id
|
57 |
-
self.text_encoder_3_id = text_encoder_3_id
|
58 |
-
self.transformer_id = transformer_id
|
59 |
-
self.vae_id = vae_id
|
60 |
-
self.text_encoder_dtype = text_encoder_dtype
|
61 |
-
self.text_encoder_2_dtype = text_encoder_2_dtype
|
62 |
-
self.text_encoder_3_dtype = text_encoder_3_dtype
|
63 |
-
self.transformer_dtype = transformer_dtype
|
64 |
-
self.vae_dtype = vae_dtype
|
65 |
-
self.revision = revision
|
66 |
-
self.cache_dir = cache_dir
|
67 |
-
self.condition_model_processors = condition_model_processors or []
|
68 |
-
self.latent_model_processors = latent_model_processors or []
|
69 |
-
|
70 |
-
self.transformer_config: Dict[str, Any] = None
|
71 |
-
self.vae_config: Dict[str, Any] = None
|
72 |
-
|
73 |
-
self._load_configs()
|
74 |
-
|
75 |
-
# TODO(aryan): revisit how to do this better without user having to worry about it
|
76 |
-
@property
|
77 |
-
def _resolution_dim_keys(self) -> Dict[str, Tuple[int, ...]]:
|
78 |
-
raise NotImplementedError(
|
79 |
-
f"ModelSpecification::_resolution_dim_keys is not implemented for {self.__class__.__name__}"
|
80 |
-
)
|
81 |
-
|
82 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
83 |
-
raise NotImplementedError(
|
84 |
-
f"ModelSpecification::load_condition_models is not implemented for {self.__class__.__name__}"
|
85 |
-
)
|
86 |
-
|
87 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
88 |
-
raise NotImplementedError(
|
89 |
-
f"ModelSpecification::load_latent_models is not implemented for {self.__class__.__name__}"
|
90 |
-
)
|
91 |
-
|
92 |
-
def load_diffusion_models(self) -> Dict[str, Union[torch.nn.Module]]:
|
93 |
-
raise NotImplementedError(
|
94 |
-
f"ModelSpecification::load_diffusion_models is not implemented for {self.__class__.__name__}"
|
95 |
-
)
|
96 |
-
|
97 |
-
def load_pipeline(
|
98 |
-
self,
|
99 |
-
tokenizer: Optional[TokenizerType] = None,
|
100 |
-
tokenizer_2: Optional[TokenizerType] = None,
|
101 |
-
tokenizer_3: Optional[TokenizerType] = None,
|
102 |
-
text_encoder: Optional[torch.nn.Module] = None,
|
103 |
-
text_encoder_2: Optional[torch.nn.Module] = None,
|
104 |
-
text_encoder_3: Optional[torch.nn.Module] = None,
|
105 |
-
transformer: Optional[torch.nn.Module] = None,
|
106 |
-
vae: Optional[torch.nn.Module] = None,
|
107 |
-
scheduler: Optional[SchedulerType] = None,
|
108 |
-
enable_slicing: bool = False,
|
109 |
-
enable_tiling: bool = False,
|
110 |
-
enable_model_cpu_offload: bool = False,
|
111 |
-
training: bool = False,
|
112 |
-
**kwargs,
|
113 |
-
) -> DiffusionPipeline:
|
114 |
-
raise NotImplementedError(
|
115 |
-
f"ModelSpecification::load_pipeline is not implemented for {self.__class__.__name__}"
|
116 |
-
)
|
117 |
-
|
118 |
-
def prepare_conditions(self, **kwargs) -> Dict[str, Any]:
|
119 |
-
for processor in self.condition_model_processors:
|
120 |
-
result = processor(**kwargs)
|
121 |
-
result_keys = set(result.keys())
|
122 |
-
repeat_keys = result_keys.intersection(kwargs.keys())
|
123 |
-
if repeat_keys:
|
124 |
-
logger.warning(
|
125 |
-
f"Processor {processor.__class__.__name__} returned keys that already exist in "
|
126 |
-
f"conditions: {repeat_keys}. Overwriting the existing values, but this may not "
|
127 |
-
f"be intended. Please rename the keys in the processor to avoid conflicts."
|
128 |
-
)
|
129 |
-
kwargs.update(result)
|
130 |
-
return kwargs
|
131 |
-
|
132 |
-
def prepare_latents(self, **kwargs) -> Dict[str, Any]:
|
133 |
-
for processor in self.latent_model_processors:
|
134 |
-
result = processor(**kwargs)
|
135 |
-
result_keys = set(result.keys())
|
136 |
-
repeat_keys = result_keys.intersection(kwargs.keys())
|
137 |
-
if repeat_keys:
|
138 |
-
logger.warning(
|
139 |
-
f"Processor {processor.__class__.__name__} returned keys that already exist in "
|
140 |
-
f"conditions: {repeat_keys}. Overwriting the existing values, but this may not "
|
141 |
-
f"be intended. Please rename the keys in the processor to avoid conflicts."
|
142 |
-
)
|
143 |
-
kwargs.update(result)
|
144 |
-
return kwargs
|
145 |
-
|
146 |
-
def collate_conditions(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
|
147 |
-
keys = list(data[0].keys())
|
148 |
-
collated_data = {}
|
149 |
-
for key in keys:
|
150 |
-
if key in IGNORE_KEYS_FOR_COLLATION:
|
151 |
-
collated_data[key] = data[0][key]
|
152 |
-
continue
|
153 |
-
collated_d = [d[key] for d in data]
|
154 |
-
if isinstance(collated_d[0], torch.Tensor):
|
155 |
-
collated_d = torch.cat(collated_d)
|
156 |
-
collated_data[key] = collated_d
|
157 |
-
return collated_data
|
158 |
-
|
159 |
-
def collate_latents(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
|
160 |
-
keys = list(data[0].keys())
|
161 |
-
collated_data = {}
|
162 |
-
for key in keys:
|
163 |
-
if key in IGNORE_KEYS_FOR_COLLATION:
|
164 |
-
collated_data[key] = data[0][key]
|
165 |
-
continue
|
166 |
-
collated_d = [d[key] for d in data]
|
167 |
-
# TODO(aryan): Support multi-resolution collation
|
168 |
-
if isinstance(collated_d[0], torch.Tensor):
|
169 |
-
collated_d = torch.cat(collated_d)
|
170 |
-
collated_data[key] = collated_d
|
171 |
-
return collated_data
|
172 |
-
|
173 |
-
def forward(
|
174 |
-
self, transformer: torch.nn.Module, generator: Optional[torch.Generator] = None, **kwargs
|
175 |
-
) -> Dict[str, torch.Tensor]:
|
176 |
-
raise NotImplementedError(f"ModelSpecification::forward is not implemented for {self.__class__.__name__}")
|
177 |
-
|
178 |
-
def validation(
|
179 |
-
self,
|
180 |
-
pipeline: DiffusionPipeline,
|
181 |
-
prompt: Optional[str] = None,
|
182 |
-
image: Optional[Image] = None,
|
183 |
-
video: Optional[List[Image]] = None,
|
184 |
-
height: Optional[int] = None,
|
185 |
-
width: Optional[int] = None,
|
186 |
-
num_frames: Optional[int] = None,
|
187 |
-
frame_rate: Optional[int] = None,
|
188 |
-
generator: Optional[torch.Generator] = None,
|
189 |
-
) -> List[ArtifactType]:
|
190 |
-
raise NotImplementedError(f"ModelSpecification::validation is not implemented for {self.__class__.__name__}")
|
191 |
-
|
192 |
-
def _save_lora_weights(
|
193 |
-
self,
|
194 |
-
directory: str,
|
195 |
-
transformer: torch.nn.Module,
|
196 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
197 |
-
scheduler: Optional[SchedulerType] = None,
|
198 |
-
) -> None:
|
199 |
-
r"""
|
200 |
-
Save the lora state dicts of the model to the given directory.
|
201 |
-
|
202 |
-
This API is not backwards compatible and will be changed in near future.
|
203 |
-
"""
|
204 |
-
raise NotImplementedError(
|
205 |
-
f"ModelSpecification::save_lora_weights is not implemented for {self.__class__.__name__}"
|
206 |
-
)
|
207 |
-
|
208 |
-
def _save_model(
|
209 |
-
self,
|
210 |
-
directory: str,
|
211 |
-
transformer: torch.nn.Module,
|
212 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
213 |
-
scheduler: Optional[SchedulerType] = None,
|
214 |
-
) -> None:
|
215 |
-
r"""
|
216 |
-
Save the state dicts to the given directory.
|
217 |
-
|
218 |
-
This API is not backwards compatible and will be changed in near future.
|
219 |
-
"""
|
220 |
-
raise NotImplementedError(f"ModelSpecification::save_model is not implemented for {self.__class__.__name__}")
|
221 |
-
|
222 |
-
def apply_tensor_parallel(
|
223 |
-
self,
|
224 |
-
backend: ParallelBackendEnum,
|
225 |
-
device_mesh: torch.distributed.DeviceMesh,
|
226 |
-
text_encoder: torch.nn.Module,
|
227 |
-
text_encoder_2: torch.nn.Module,
|
228 |
-
text_encoder_3: torch.nn.Module,
|
229 |
-
transformer: torch.nn.Module,
|
230 |
-
vae: torch.nn.Module,
|
231 |
-
) -> None:
|
232 |
-
raise NotImplementedError(
|
233 |
-
f"ModelSpecification::apply_tensor_parallel is not implemented for {self.__class__.__name__}"
|
234 |
-
)
|
235 |
-
|
236 |
-
def _load_configs(self) -> None:
|
237 |
-
self._load_transformer_config()
|
238 |
-
self._load_vae_config()
|
239 |
-
|
240 |
-
def _load_transformer_config(self) -> None:
|
241 |
-
if self.transformer_id is not None:
|
242 |
-
transformer_cls = resolve_component_cls(
|
243 |
-
self.transformer_id,
|
244 |
-
component_name="_class_name",
|
245 |
-
filename="config.json",
|
246 |
-
revision=self.revision,
|
247 |
-
cache_dir=self.cache_dir,
|
248 |
-
)
|
249 |
-
self.transformer_config = transformer_cls.load_config(
|
250 |
-
self.transformer_id, revision=self.revision, cache_dir=self.cache_dir
|
251 |
-
)
|
252 |
-
else:
|
253 |
-
transformer_cls = resolve_component_cls(
|
254 |
-
self.pretrained_model_name_or_path,
|
255 |
-
component_name="transformer",
|
256 |
-
filename="model_index.json",
|
257 |
-
revision=self.revision,
|
258 |
-
cache_dir=self.cache_dir,
|
259 |
-
)
|
260 |
-
self.transformer_config = transformer_cls.load_config(
|
261 |
-
self.pretrained_model_name_or_path,
|
262 |
-
subfolder="transformer",
|
263 |
-
revision=self.revision,
|
264 |
-
cache_dir=self.cache_dir,
|
265 |
-
)
|
266 |
-
self.transformer_config = FrozenDict(**self.transformer_config)
|
267 |
-
|
268 |
-
def _load_vae_config(self) -> None:
|
269 |
-
if self.vae_id is not None:
|
270 |
-
vae_cls = resolve_component_cls(
|
271 |
-
self.vae_id,
|
272 |
-
component_name="_class_name",
|
273 |
-
filename="config.json",
|
274 |
-
revision=self.revision,
|
275 |
-
cache_dir=self.cache_dir,
|
276 |
-
)
|
277 |
-
self.vae_config = vae_cls.load_config(self.vae_id, revision=self.revision, cache_dir=self.cache_dir)
|
278 |
-
else:
|
279 |
-
vae_cls = resolve_component_cls(
|
280 |
-
self.pretrained_model_name_or_path,
|
281 |
-
component_name="vae",
|
282 |
-
filename="model_index.json",
|
283 |
-
revision=self.revision,
|
284 |
-
cache_dir=self.cache_dir,
|
285 |
-
)
|
286 |
-
self.vae_config = vae_cls.load_config(
|
287 |
-
self.pretrained_model_name_or_path, subfolder="vae", revision=self.revision, cache_dir=self.cache_dir
|
288 |
-
)
|
289 |
-
self.vae_config = FrozenDict(**self.vae_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/utils.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
from typing import Optional, Tuple
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from diffusers.utils.torch_utils import randn_tensor
|
6 |
-
|
7 |
-
|
8 |
-
class DiagonalGaussianDistribution(object):
|
9 |
-
def __init__(self, parameters: torch.Tensor, deterministic: bool = False, _dim: int = 1):
|
10 |
-
# Note: _dim is the new argument added here after copying from diffusers
|
11 |
-
self.parameters = parameters
|
12 |
-
self.mean, self.logvar = torch.chunk(parameters, 2, dim=_dim)
|
13 |
-
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
14 |
-
self.deterministic = deterministic
|
15 |
-
self.std = torch.exp(0.5 * self.logvar)
|
16 |
-
self.var = torch.exp(self.logvar)
|
17 |
-
if self.deterministic:
|
18 |
-
self.var = self.std = torch.zeros_like(
|
19 |
-
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
20 |
-
)
|
21 |
-
|
22 |
-
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
23 |
-
# make sure sample is on the same device as the parameters and has same dtype
|
24 |
-
sample = randn_tensor(
|
25 |
-
self.mean.shape,
|
26 |
-
generator=generator,
|
27 |
-
device=self.parameters.device,
|
28 |
-
dtype=self.parameters.dtype,
|
29 |
-
)
|
30 |
-
x = self.mean + self.std * sample
|
31 |
-
return x
|
32 |
-
|
33 |
-
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
34 |
-
if self.deterministic:
|
35 |
-
return torch.Tensor([0.0])
|
36 |
-
else:
|
37 |
-
if other is None:
|
38 |
-
return 0.5 * torch.sum(
|
39 |
-
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
40 |
-
dim=[1, 2, 3],
|
41 |
-
)
|
42 |
-
else:
|
43 |
-
return 0.5 * torch.sum(
|
44 |
-
torch.pow(self.mean - other.mean, 2) / other.var
|
45 |
-
+ self.var / other.var
|
46 |
-
- 1.0
|
47 |
-
- self.logvar
|
48 |
-
+ other.logvar,
|
49 |
-
dim=[1, 2, 3],
|
50 |
-
)
|
51 |
-
|
52 |
-
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
53 |
-
if self.deterministic:
|
54 |
-
return torch.Tensor([0.0])
|
55 |
-
logtwopi = np.log(2.0 * np.pi)
|
56 |
-
return 0.5 * torch.sum(
|
57 |
-
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
58 |
-
dim=dims,
|
59 |
-
)
|
60 |
-
|
61 |
-
def mode(self) -> torch.Tensor:
|
62 |
-
return self.mean
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/models/wan/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .base_specification import WanModelSpecification
|
|
|
|
finetrainers/models/wan/base_specification.py
DELETED
@@ -1,393 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Any, Dict, List, Optional, Tuple
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from accelerate import init_empty_weights
|
6 |
-
from diffusers import (
|
7 |
-
AutoencoderKLWan,
|
8 |
-
FlowMatchEulerDiscreteScheduler,
|
9 |
-
WanImageToVideoPipeline,
|
10 |
-
WanPipeline,
|
11 |
-
WanTransformer3DModel,
|
12 |
-
)
|
13 |
-
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
14 |
-
from PIL.Image import Image
|
15 |
-
from transformers import AutoModel, AutoTokenizer, UMT5EncoderModel
|
16 |
-
|
17 |
-
from ... import data
|
18 |
-
from ... import functional as FF
|
19 |
-
from ...logging import get_logger
|
20 |
-
from ...processors import ProcessorMixin, T5Processor
|
21 |
-
from ...typing import ArtifactType, SchedulerType
|
22 |
-
from ...utils import get_non_null_items
|
23 |
-
from ..modeling_utils import ModelSpecification
|
24 |
-
|
25 |
-
|
26 |
-
logger = get_logger()
|
27 |
-
|
28 |
-
|
29 |
-
class WanLatentEncodeProcessor(ProcessorMixin):
|
30 |
-
r"""
|
31 |
-
Processor to encode image/video into latents using the Wan VAE.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
output_names (`List[str]`):
|
35 |
-
The names of the outputs that the processor returns. The outputs are in the following order:
|
36 |
-
- latents: The latents of the input image/video.
|
37 |
-
"""
|
38 |
-
|
39 |
-
def __init__(self, output_names: List[str]):
|
40 |
-
super().__init__()
|
41 |
-
self.output_names = output_names
|
42 |
-
assert len(self.output_names) == 3
|
43 |
-
|
44 |
-
def forward(
|
45 |
-
self,
|
46 |
-
vae: AutoencoderKLWan,
|
47 |
-
image: Optional[torch.Tensor] = None,
|
48 |
-
video: Optional[torch.Tensor] = None,
|
49 |
-
generator: Optional[torch.Generator] = None,
|
50 |
-
compute_posterior: bool = True,
|
51 |
-
) -> Dict[str, torch.Tensor]:
|
52 |
-
device = vae.device
|
53 |
-
dtype = vae.dtype
|
54 |
-
|
55 |
-
if image is not None:
|
56 |
-
video = image.unsqueeze(1)
|
57 |
-
|
58 |
-
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
|
59 |
-
video = video.to(device=device, dtype=vae.dtype)
|
60 |
-
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
|
61 |
-
|
62 |
-
if compute_posterior:
|
63 |
-
latents = vae.encode(video).latent_dist.sample(generator=generator)
|
64 |
-
latents = latents.to(dtype=dtype)
|
65 |
-
else:
|
66 |
-
# TODO(aryan): refactor in diffusers to have use_slicing attribute
|
67 |
-
# if vae.use_slicing and video.shape[0] > 1:
|
68 |
-
# encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
|
69 |
-
# moments = torch.cat(encoded_slices)
|
70 |
-
# else:
|
71 |
-
# moments = vae._encode(video)
|
72 |
-
moments = vae._encode(video)
|
73 |
-
latents = moments.to(dtype=dtype)
|
74 |
-
|
75 |
-
latents_mean = torch.tensor(vae.config.latents_mean)
|
76 |
-
latents_std = 1.0 / torch.tensor(vae.config.latents_std)
|
77 |
-
|
78 |
-
return {self.output_names[0]: latents, self.output_names[1]: latents_mean, self.output_names[2]: latents_std}
|
79 |
-
|
80 |
-
|
81 |
-
class WanModelSpecification(ModelSpecification):
|
82 |
-
def __init__(
|
83 |
-
self,
|
84 |
-
pretrained_model_name_or_path: str = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
|
85 |
-
tokenizer_id: Optional[str] = None,
|
86 |
-
text_encoder_id: Optional[str] = None,
|
87 |
-
transformer_id: Optional[str] = None,
|
88 |
-
vae_id: Optional[str] = None,
|
89 |
-
text_encoder_dtype: torch.dtype = torch.bfloat16,
|
90 |
-
transformer_dtype: torch.dtype = torch.bfloat16,
|
91 |
-
vae_dtype: torch.dtype = torch.bfloat16,
|
92 |
-
revision: Optional[str] = None,
|
93 |
-
cache_dir: Optional[str] = None,
|
94 |
-
condition_model_processors: List[ProcessorMixin] = None,
|
95 |
-
latent_model_processors: List[ProcessorMixin] = None,
|
96 |
-
**kwargs,
|
97 |
-
) -> None:
|
98 |
-
super().__init__(
|
99 |
-
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
100 |
-
tokenizer_id=tokenizer_id,
|
101 |
-
text_encoder_id=text_encoder_id,
|
102 |
-
transformer_id=transformer_id,
|
103 |
-
vae_id=vae_id,
|
104 |
-
text_encoder_dtype=text_encoder_dtype,
|
105 |
-
transformer_dtype=transformer_dtype,
|
106 |
-
vae_dtype=vae_dtype,
|
107 |
-
revision=revision,
|
108 |
-
cache_dir=cache_dir,
|
109 |
-
)
|
110 |
-
|
111 |
-
if condition_model_processors is None:
|
112 |
-
condition_model_processors = [T5Processor(["encoder_hidden_states", "prompt_attention_mask"])]
|
113 |
-
if latent_model_processors is None:
|
114 |
-
latent_model_processors = [WanLatentEncodeProcessor(["latents", "latents_mean", "latents_std"])]
|
115 |
-
|
116 |
-
self.condition_model_processors = condition_model_processors
|
117 |
-
self.latent_model_processors = latent_model_processors
|
118 |
-
|
119 |
-
@property
|
120 |
-
def _resolution_dim_keys(self):
|
121 |
-
return {"latents": (2, 3, 4)}
|
122 |
-
|
123 |
-
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
|
124 |
-
if self.tokenizer_id is not None:
|
125 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
126 |
-
self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
|
127 |
-
)
|
128 |
-
else:
|
129 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
130 |
-
self.pretrained_model_name_or_path,
|
131 |
-
subfolder="tokenizer",
|
132 |
-
revision=self.revision,
|
133 |
-
cache_dir=self.cache_dir,
|
134 |
-
)
|
135 |
-
|
136 |
-
if self.text_encoder_id is not None:
|
137 |
-
text_encoder = AutoModel.from_pretrained(
|
138 |
-
self.text_encoder_id,
|
139 |
-
torch_dtype=self.text_encoder_dtype,
|
140 |
-
revision=self.revision,
|
141 |
-
cache_dir=self.cache_dir,
|
142 |
-
)
|
143 |
-
else:
|
144 |
-
text_encoder = UMT5EncoderModel.from_pretrained(
|
145 |
-
self.pretrained_model_name_or_path,
|
146 |
-
subfolder="text_encoder",
|
147 |
-
torch_dtype=self.text_encoder_dtype,
|
148 |
-
revision=self.revision,
|
149 |
-
cache_dir=self.cache_dir,
|
150 |
-
)
|
151 |
-
|
152 |
-
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
|
153 |
-
|
154 |
-
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
|
155 |
-
if self.vae_id is not None:
|
156 |
-
vae = AutoencoderKLWan.from_pretrained(
|
157 |
-
self.vae_id,
|
158 |
-
torch_dtype=self.vae_dtype,
|
159 |
-
revision=self.revision,
|
160 |
-
cache_dir=self.cache_dir,
|
161 |
-
)
|
162 |
-
else:
|
163 |
-
vae = AutoencoderKLWan.from_pretrained(
|
164 |
-
self.pretrained_model_name_or_path,
|
165 |
-
subfolder="vae",
|
166 |
-
torch_dtype=self.vae_dtype,
|
167 |
-
revision=self.revision,
|
168 |
-
cache_dir=self.cache_dir,
|
169 |
-
)
|
170 |
-
|
171 |
-
return {"vae": vae}
|
172 |
-
|
173 |
-
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
|
174 |
-
if self.transformer_id is not None:
|
175 |
-
transformer = WanTransformer3DModel.from_pretrained(
|
176 |
-
self.transformer_id,
|
177 |
-
torch_dtype=self.transformer_dtype,
|
178 |
-
revision=self.revision,
|
179 |
-
cache_dir=self.cache_dir,
|
180 |
-
)
|
181 |
-
else:
|
182 |
-
transformer = WanTransformer3DModel.from_pretrained(
|
183 |
-
self.pretrained_model_name_or_path,
|
184 |
-
subfolder="transformer",
|
185 |
-
torch_dtype=self.transformer_dtype,
|
186 |
-
revision=self.revision,
|
187 |
-
cache_dir=self.cache_dir,
|
188 |
-
)
|
189 |
-
|
190 |
-
scheduler = FlowMatchEulerDiscreteScheduler()
|
191 |
-
|
192 |
-
return {"transformer": transformer, "scheduler": scheduler}
|
193 |
-
|
194 |
-
def load_pipeline(
|
195 |
-
self,
|
196 |
-
tokenizer: Optional[AutoTokenizer] = None,
|
197 |
-
text_encoder: Optional[UMT5EncoderModel] = None,
|
198 |
-
transformer: Optional[WanTransformer3DModel] = None,
|
199 |
-
vae: Optional[AutoencoderKLWan] = None,
|
200 |
-
scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
|
201 |
-
enable_slicing: bool = False,
|
202 |
-
enable_tiling: bool = False,
|
203 |
-
enable_model_cpu_offload: bool = False,
|
204 |
-
training: bool = False,
|
205 |
-
**kwargs,
|
206 |
-
) -> WanPipeline:
|
207 |
-
components = {
|
208 |
-
"tokenizer": tokenizer,
|
209 |
-
"text_encoder": text_encoder,
|
210 |
-
"transformer": transformer,
|
211 |
-
"vae": vae,
|
212 |
-
"scheduler": scheduler,
|
213 |
-
}
|
214 |
-
components = get_non_null_items(components)
|
215 |
-
|
216 |
-
pipe = WanPipeline.from_pretrained(
|
217 |
-
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
|
218 |
-
)
|
219 |
-
pipe.text_encoder.to(self.text_encoder_dtype)
|
220 |
-
pipe.vae.to(self.vae_dtype)
|
221 |
-
|
222 |
-
if not training:
|
223 |
-
pipe.transformer.to(self.transformer_dtype)
|
224 |
-
|
225 |
-
# TODO(aryan): add support in diffusers
|
226 |
-
# if enable_slicing:
|
227 |
-
# pipe.vae.enable_slicing()
|
228 |
-
# if enable_tiling:
|
229 |
-
# pipe.vae.enable_tiling()
|
230 |
-
if enable_model_cpu_offload:
|
231 |
-
pipe.enable_model_cpu_offload()
|
232 |
-
|
233 |
-
return pipe
|
234 |
-
|
235 |
-
@torch.no_grad()
|
236 |
-
def prepare_conditions(
|
237 |
-
self,
|
238 |
-
tokenizer: AutoTokenizer,
|
239 |
-
text_encoder: UMT5EncoderModel,
|
240 |
-
caption: str,
|
241 |
-
max_sequence_length: int = 512,
|
242 |
-
**kwargs,
|
243 |
-
) -> Dict[str, Any]:
|
244 |
-
conditions = {
|
245 |
-
"tokenizer": tokenizer,
|
246 |
-
"text_encoder": text_encoder,
|
247 |
-
"caption": caption,
|
248 |
-
"max_sequence_length": max_sequence_length,
|
249 |
-
**kwargs,
|
250 |
-
}
|
251 |
-
input_keys = set(conditions.keys())
|
252 |
-
conditions = super().prepare_conditions(**conditions)
|
253 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
254 |
-
conditions.pop("prompt_attention_mask", None)
|
255 |
-
return conditions
|
256 |
-
|
257 |
-
@torch.no_grad()
|
258 |
-
def prepare_latents(
|
259 |
-
self,
|
260 |
-
vae: AutoencoderKLWan,
|
261 |
-
image: Optional[torch.Tensor] = None,
|
262 |
-
video: Optional[torch.Tensor] = None,
|
263 |
-
generator: Optional[torch.Generator] = None,
|
264 |
-
compute_posterior: bool = True,
|
265 |
-
**kwargs,
|
266 |
-
) -> Dict[str, torch.Tensor]:
|
267 |
-
conditions = {
|
268 |
-
"vae": vae,
|
269 |
-
"image": image,
|
270 |
-
"video": video,
|
271 |
-
"generator": generator,
|
272 |
-
# We must force this to False because the latent normalization should be done before
|
273 |
-
# the posterior is computed. The VAE does not handle this any more:
|
274 |
-
# https://github.com/huggingface/diffusers/pull/10998
|
275 |
-
"compute_posterior": False,
|
276 |
-
**kwargs,
|
277 |
-
}
|
278 |
-
input_keys = set(conditions.keys())
|
279 |
-
conditions = super().prepare_latents(**conditions)
|
280 |
-
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
|
281 |
-
return conditions
|
282 |
-
|
283 |
-
def forward(
|
284 |
-
self,
|
285 |
-
transformer: WanTransformer3DModel,
|
286 |
-
condition_model_conditions: Dict[str, torch.Tensor],
|
287 |
-
latent_model_conditions: Dict[str, torch.Tensor],
|
288 |
-
sigmas: torch.Tensor,
|
289 |
-
generator: Optional[torch.Generator] = None,
|
290 |
-
compute_posterior: bool = True,
|
291 |
-
**kwargs,
|
292 |
-
) -> Tuple[torch.Tensor, ...]:
|
293 |
-
compute_posterior = False # See explanation in prepare_latents
|
294 |
-
if compute_posterior:
|
295 |
-
latents = latent_model_conditions.pop("latents")
|
296 |
-
else:
|
297 |
-
latents = latent_model_conditions.pop("latents")
|
298 |
-
latents_mean = latent_model_conditions.pop("latents_mean")
|
299 |
-
latents_std = latent_model_conditions.pop("latents_std")
|
300 |
-
|
301 |
-
mu, logvar = torch.chunk(latents, 2, dim=1)
|
302 |
-
mu = self._normalize_latents(mu, latents_mean, latents_std)
|
303 |
-
logvar = self._normalize_latents(logvar, latents_mean, latents_std)
|
304 |
-
latents = torch.cat([mu, logvar], dim=1)
|
305 |
-
|
306 |
-
posterior = DiagonalGaussianDistribution(latents)
|
307 |
-
latents = posterior.sample(generator=generator)
|
308 |
-
del posterior
|
309 |
-
|
310 |
-
noise = torch.zeros_like(latents).normal_(generator=generator)
|
311 |
-
noisy_latents = FF.flow_match_xt(latents, noise, sigmas)
|
312 |
-
timesteps = (sigmas.flatten() * 1000.0).long()
|
313 |
-
|
314 |
-
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
|
315 |
-
|
316 |
-
pred = transformer(
|
317 |
-
**latent_model_conditions,
|
318 |
-
**condition_model_conditions,
|
319 |
-
timestep=timesteps,
|
320 |
-
return_dict=False,
|
321 |
-
)[0]
|
322 |
-
target = FF.flow_match_target(noise, latents)
|
323 |
-
|
324 |
-
return pred, target, sigmas
|
325 |
-
|
326 |
-
def validation(
|
327 |
-
self,
|
328 |
-
pipeline: WanPipeline,
|
329 |
-
prompt: str,
|
330 |
-
image: Optional[Image] = None,
|
331 |
-
height: Optional[int] = None,
|
332 |
-
width: Optional[int] = None,
|
333 |
-
num_frames: Optional[int] = None,
|
334 |
-
num_inference_steps: int = 50,
|
335 |
-
generator: Optional[torch.Generator] = None,
|
336 |
-
**kwargs,
|
337 |
-
) -> List[ArtifactType]:
|
338 |
-
if image is not None:
|
339 |
-
pipeline = WanImageToVideoPipeline.from_pipe(pipeline)
|
340 |
-
|
341 |
-
generation_kwargs = {
|
342 |
-
"prompt": prompt,
|
343 |
-
"image": image,
|
344 |
-
"height": height,
|
345 |
-
"width": width,
|
346 |
-
"num_frames": num_frames,
|
347 |
-
"num_inference_steps": num_inference_steps,
|
348 |
-
"generator": generator,
|
349 |
-
"return_dict": True,
|
350 |
-
"output_type": "pil",
|
351 |
-
}
|
352 |
-
generation_kwargs = get_non_null_items(generation_kwargs)
|
353 |
-
video = pipeline(**generation_kwargs).frames[0]
|
354 |
-
return [data.VideoArtifact(value=video)]
|
355 |
-
|
356 |
-
def _save_lora_weights(
|
357 |
-
self,
|
358 |
-
directory: str,
|
359 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
360 |
-
scheduler: Optional[SchedulerType] = None,
|
361 |
-
*args,
|
362 |
-
**kwargs,
|
363 |
-
) -> None:
|
364 |
-
# TODO(aryan): this needs refactoring
|
365 |
-
if transformer_state_dict is not None:
|
366 |
-
WanPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
|
367 |
-
if scheduler is not None:
|
368 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
369 |
-
|
370 |
-
def _save_model(
|
371 |
-
self,
|
372 |
-
directory: str,
|
373 |
-
transformer: WanTransformer3DModel,
|
374 |
-
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
375 |
-
scheduler: Optional[SchedulerType] = None,
|
376 |
-
) -> None:
|
377 |
-
# TODO(aryan): this needs refactoring
|
378 |
-
if transformer_state_dict is not None:
|
379 |
-
with init_empty_weights():
|
380 |
-
transformer_copy = WanTransformer3DModel.from_config(transformer.config)
|
381 |
-
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
|
382 |
-
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
|
383 |
-
if scheduler is not None:
|
384 |
-
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
|
385 |
-
|
386 |
-
@staticmethod
|
387 |
-
def _normalize_latents(
|
388 |
-
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor
|
389 |
-
) -> torch.Tensor:
|
390 |
-
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(device=latents.device)
|
391 |
-
latents_std = latents_std.view(1, -1, 1, 1, 1).to(device=latents.device)
|
392 |
-
latents = ((latents.float() - latents_mean) * latents_std).to(latents)
|
393 |
-
return latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/optimizer.py
DELETED
@@ -1,449 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
import math
|
3 |
-
from typing import Any, Callable, Dict, List, Optional, Type, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from torch.distributed.checkpoint.state_dict import (
|
7 |
-
StateDictOptions,
|
8 |
-
get_optimizer_state_dict,
|
9 |
-
set_optimizer_state_dict,
|
10 |
-
)
|
11 |
-
from torch.distributed.checkpoint.stateful import Stateful
|
12 |
-
|
13 |
-
from .parallel import ParallelBackendEnum
|
14 |
-
from .utils.import_utils import is_bitsandbytes_available
|
15 |
-
|
16 |
-
|
17 |
-
class OptimizerWrapper(Stateful):
|
18 |
-
r"""
|
19 |
-
Optimizer wrapper that:
|
20 |
-
- allows step/zero_grad on multiple optimizers needed for virtual pipeline stages
|
21 |
-
- saves/loading optimizer state_dict at checkpoint
|
22 |
-
"""
|
23 |
-
|
24 |
-
def __init__(
|
25 |
-
self,
|
26 |
-
model_parts: List[torch.nn.Module],
|
27 |
-
optimizer_cls: Type[torch.optim.Optimizer],
|
28 |
-
optimizer_kwargs: Dict[str, Any],
|
29 |
-
) -> None:
|
30 |
-
self.optimizer_cls = optimizer_cls
|
31 |
-
self.optimizer_kwargs = optimizer_kwargs
|
32 |
-
|
33 |
-
self.optimizers = []
|
34 |
-
self.model_parts = model_parts
|
35 |
-
|
36 |
-
for model in self.model_parts:
|
37 |
-
optimizer = optimizer_cls(model.parameters(), **optimizer_kwargs)
|
38 |
-
self.optimizers.append(optimizer)
|
39 |
-
|
40 |
-
def step(self) -> None:
|
41 |
-
for optimizer in self.optimizers:
|
42 |
-
optimizer.step()
|
43 |
-
|
44 |
-
def zero_grad(self) -> None:
|
45 |
-
for optimizer in self.optimizers:
|
46 |
-
optimizer.zero_grad()
|
47 |
-
|
48 |
-
def state_dict(self) -> Dict[str, Any]:
|
49 |
-
func = functools.partial(
|
50 |
-
get_optimizer_state_dict,
|
51 |
-
options=StateDictOptions(flatten_optimizer_state_dict=True),
|
52 |
-
)
|
53 |
-
return {k: v for sd in map(func, self.model_parts, self.optimizers) for k, v in sd.items()}
|
54 |
-
|
55 |
-
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
56 |
-
func = functools.partial(
|
57 |
-
set_optimizer_state_dict,
|
58 |
-
optim_state_dict=state_dict,
|
59 |
-
options=StateDictOptions(flatten_optimizer_state_dict=True),
|
60 |
-
)
|
61 |
-
list(map(func, self.model_parts, self.optimizers))
|
62 |
-
|
63 |
-
|
64 |
-
class SchedulerWrapper:
|
65 |
-
def __init__(
|
66 |
-
self, optimizers, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int
|
67 |
-
) -> None:
|
68 |
-
self.schedulers = []
|
69 |
-
for optimizer in optimizers:
|
70 |
-
self.schedulers.append(torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch))
|
71 |
-
|
72 |
-
def step(self) -> None:
|
73 |
-
for scheduler in self.schedulers:
|
74 |
-
scheduler.step()
|
75 |
-
|
76 |
-
def get_last_lr(self) -> List[float]:
|
77 |
-
# TODO(aryan): look into this later. Currently calling it leads to NCCL hang?????
|
78 |
-
return {f"lr_{idx}": scheduler.get_last_lr() for idx, scheduler in enumerate(self.schedulers)}
|
79 |
-
|
80 |
-
def get_lr_scheduler_state(self) -> Dict[str, Any]:
|
81 |
-
state_dict = {}
|
82 |
-
if len(self.schedulers) == 1:
|
83 |
-
state_dict["lr_scheduler"] = self.schedulers[0]
|
84 |
-
else:
|
85 |
-
# For now, pipeline-parallel with looped schedules does not support resharding for lr_scheduler.
|
86 |
-
# It should only support saving and loading a distributed checkpoint with the same number of pp ranks
|
87 |
-
for idx, lr_scheduler in enumerate(self.schedulers):
|
88 |
-
state_dict[f"lr_scheduler_{idx}"] = lr_scheduler
|
89 |
-
return state_dict
|
90 |
-
|
91 |
-
|
92 |
-
def get_optimizer(
|
93 |
-
parallel_backend: ParallelBackendEnum,
|
94 |
-
name: str,
|
95 |
-
model_parts: List[torch.nn.Module],
|
96 |
-
learning_rate: float = 1e-3,
|
97 |
-
beta1: float = 0.9,
|
98 |
-
beta2: float = 0.95,
|
99 |
-
beta3: float = 0.999,
|
100 |
-
epsilon: float = 1e-8,
|
101 |
-
weight_decay: float = 1e-4,
|
102 |
-
fused: bool = False,
|
103 |
-
) -> Union[torch.optim.Optimizer, OptimizerWrapper]:
|
104 |
-
name = name.lower()
|
105 |
-
|
106 |
-
_raise_errors_if_packages_not_available(name)
|
107 |
-
|
108 |
-
if name == "adam":
|
109 |
-
optimizer_cls = torch.optim.Adam
|
110 |
-
optimizer_kwargs = {
|
111 |
-
"lr": learning_rate,
|
112 |
-
"betas": (beta1, beta2),
|
113 |
-
"eps": epsilon,
|
114 |
-
"weight_decay": weight_decay,
|
115 |
-
"fused": fused,
|
116 |
-
}
|
117 |
-
elif name == "adamw":
|
118 |
-
optimizer_cls = torch.optim.AdamW
|
119 |
-
optimizer_kwargs = {
|
120 |
-
"lr": learning_rate,
|
121 |
-
"betas": (beta1, beta2),
|
122 |
-
"eps": epsilon,
|
123 |
-
"weight_decay": weight_decay,
|
124 |
-
"fused": fused,
|
125 |
-
}
|
126 |
-
elif name == "adam-bnb":
|
127 |
-
from bitsandbytes.optim import Adam
|
128 |
-
|
129 |
-
optimizer_cls = Adam
|
130 |
-
optimizer_kwargs = {
|
131 |
-
"lr": learning_rate,
|
132 |
-
"betas": (beta1, beta2),
|
133 |
-
"eps": epsilon,
|
134 |
-
"weight_decay": weight_decay,
|
135 |
-
}
|
136 |
-
elif name == "adamw-bnb":
|
137 |
-
from bitsandbytes.optim import AdamW
|
138 |
-
|
139 |
-
optimizer_cls = AdamW
|
140 |
-
optimizer_kwargs = {
|
141 |
-
"lr": learning_rate,
|
142 |
-
"betas": (beta1, beta2),
|
143 |
-
"eps": epsilon,
|
144 |
-
"weight_decay": weight_decay,
|
145 |
-
}
|
146 |
-
elif name == "adam-bnb-8bit":
|
147 |
-
from bitsandbytes.optim import Adam8bit
|
148 |
-
|
149 |
-
optimizer_cls = Adam8bit
|
150 |
-
optimizer_kwargs = {
|
151 |
-
"lr": learning_rate,
|
152 |
-
"betas": (beta1, beta2),
|
153 |
-
"eps": epsilon,
|
154 |
-
"weight_decay": weight_decay,
|
155 |
-
}
|
156 |
-
elif name == "adamw-bnb-8bit":
|
157 |
-
from bitsandbytes.optim import AdamW8bit
|
158 |
-
|
159 |
-
optimizer_cls = AdamW8bit
|
160 |
-
optimizer_kwargs = {
|
161 |
-
"lr": learning_rate,
|
162 |
-
"betas": (beta1, beta2),
|
163 |
-
"eps": epsilon,
|
164 |
-
"weight_decay": weight_decay,
|
165 |
-
}
|
166 |
-
|
167 |
-
# TODO(aryan): handle bitsandbytes and torchao
|
168 |
-
else:
|
169 |
-
raise ValueError(f"Unsupported optimizer: {name}")
|
170 |
-
|
171 |
-
if parallel_backend == ParallelBackendEnum.ACCELERATE:
|
172 |
-
return get_optimizer_accelerate(model_parts, optimizer_cls, optimizer_kwargs)
|
173 |
-
elif parallel_backend == ParallelBackendEnum.PTD:
|
174 |
-
return get_optimizer_ptd(model_parts, optimizer_cls, optimizer_kwargs)
|
175 |
-
|
176 |
-
|
177 |
-
def get_optimizer_accelerate(
|
178 |
-
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
|
179 |
-
) -> torch.optim.Optimizer:
|
180 |
-
params = [param for model in model_parts for param in model.parameters() if param.requires_grad]
|
181 |
-
optimizer = optimizer_cls(params, **optimizer_kwargs)
|
182 |
-
return optimizer
|
183 |
-
|
184 |
-
|
185 |
-
def get_optimizer_ptd(
|
186 |
-
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
|
187 |
-
) -> OptimizerWrapper:
|
188 |
-
return OptimizerWrapper(model_parts, optimizer_cls, optimizer_kwargs)
|
189 |
-
|
190 |
-
|
191 |
-
def get_lr_scheduler(
|
192 |
-
parallel_backend: ParallelBackendEnum,
|
193 |
-
name: str,
|
194 |
-
optimizer: Union[torch.optim.Optimizer, OptimizerWrapper],
|
195 |
-
step_rules: Optional[str] = None,
|
196 |
-
num_warmup_steps: Optional[int] = None,
|
197 |
-
num_training_steps: Optional[int] = None,
|
198 |
-
num_cycles: int = 1,
|
199 |
-
power: float = 1.0,
|
200 |
-
lr_init: float = 1e-3,
|
201 |
-
lr_end: float = 1e-7,
|
202 |
-
last_epoch: int = -1,
|
203 |
-
) -> Union[torch.optim.lr_scheduler.LambdaLR, SchedulerWrapper]:
|
204 |
-
name = name.lower()
|
205 |
-
if name == "constant":
|
206 |
-
scheduler_lambda_fn = get_constant_schedule()
|
207 |
-
elif name == "constant_with_warmup":
|
208 |
-
scheduler_lambda_fn = get_constant_schedule_with_warmup(num_warmup_steps)
|
209 |
-
elif name == "piecewise_constant":
|
210 |
-
scheduler_lambda_fn = get_piecewise_constant_schedule(step_rules)
|
211 |
-
elif name == "linear":
|
212 |
-
scheduler_lambda_fn = get_linear_schedule_with_warmup(num_warmup_steps, num_training_steps)
|
213 |
-
elif name == "cosine":
|
214 |
-
scheduler_lambda_fn = get_cosine_schedule_with_warmup(num_warmup_steps, num_training_steps, num_cycles)
|
215 |
-
elif name == "cosine_with_restarts":
|
216 |
-
scheduler_lambda_fn = get_cosine_with_hard_restarts_schedule_with_warmup(
|
217 |
-
num_warmup_steps, num_training_steps, num_cycles
|
218 |
-
)
|
219 |
-
elif name == "polynomial":
|
220 |
-
scheduler_lambda_fn = get_polynomial_decay_schedule_with_warmup(
|
221 |
-
num_warmup_steps, num_training_steps, lr_init, lr_end, power
|
222 |
-
)
|
223 |
-
else:
|
224 |
-
raise ValueError(f"Unsupported scheduler: {name}")
|
225 |
-
|
226 |
-
if parallel_backend == ParallelBackendEnum.ACCELERATE:
|
227 |
-
return get_lr_scheduler_accelerate(optimizer, scheduler_lambda_fn, last_epoch)
|
228 |
-
elif parallel_backend == ParallelBackendEnum.PTD:
|
229 |
-
return get_lr_scheduler_ptd(optimizer, scheduler_lambda_fn, last_epoch)
|
230 |
-
|
231 |
-
|
232 |
-
def get_lr_scheduler_accelerate(
|
233 |
-
optimizer: torch.optim.Optimizer,
|
234 |
-
scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler],
|
235 |
-
last_epoch: int = -1,
|
236 |
-
) -> torch.optim.lr_scheduler.LambdaLR:
|
237 |
-
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch)
|
238 |
-
return scheduler
|
239 |
-
|
240 |
-
|
241 |
-
def get_lr_scheduler_ptd(
|
242 |
-
optimizer: OptimizerWrapper, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int = -1
|
243 |
-
) -> SchedulerWrapper:
|
244 |
-
return SchedulerWrapper(optimizer.optimizers, scheduler_lambda_fn, last_epoch)
|
245 |
-
|
246 |
-
|
247 |
-
# ==============================
|
248 |
-
# Adapted from https://github.com/huggingface/diffusers/blob/196aef5a6f76e1ad6ba889184860c3633d166910/src/diffusers/optimization.py
|
249 |
-
# ==============================
|
250 |
-
|
251 |
-
|
252 |
-
def get_constant_schedule() -> Callable[[int], float]:
|
253 |
-
r"""
|
254 |
-
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
255 |
-
"""
|
256 |
-
|
257 |
-
def lr_lambda(current_step: int):
|
258 |
-
return 1.0
|
259 |
-
|
260 |
-
return lr_lambda
|
261 |
-
|
262 |
-
|
263 |
-
def get_constant_schedule_with_warmup(num_warmup_steps: int) -> Callable[[int], float]:
|
264 |
-
r"""
|
265 |
-
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
|
266 |
-
increases linearly between 0 and the initial lr set in the optimizer.
|
267 |
-
|
268 |
-
Args:
|
269 |
-
num_warmup_steps (`int`):
|
270 |
-
The number of steps for the warmup phase.
|
271 |
-
"""
|
272 |
-
|
273 |
-
def lr_lambda(current_step: int):
|
274 |
-
if current_step < num_warmup_steps:
|
275 |
-
return float(current_step) / float(max(1.0, num_warmup_steps))
|
276 |
-
return 1.0
|
277 |
-
|
278 |
-
return lr_lambda
|
279 |
-
|
280 |
-
|
281 |
-
def get_piecewise_constant_schedule(step_rules: str) -> Callable[[int], float]:
|
282 |
-
r"""
|
283 |
-
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
|
284 |
-
|
285 |
-
Args:
|
286 |
-
step_rules (`string`):
|
287 |
-
The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
|
288 |
-
if multiple 1 for the first 10 steps, multiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
|
289 |
-
steps and multiple 0.005 for the other steps.
|
290 |
-
"""
|
291 |
-
|
292 |
-
rules_dict = {}
|
293 |
-
rule_list = step_rules.split(",")
|
294 |
-
for rule_str in rule_list[:-1]:
|
295 |
-
value_str, steps_str = rule_str.split(":")
|
296 |
-
steps = int(steps_str)
|
297 |
-
value = float(value_str)
|
298 |
-
rules_dict[steps] = value
|
299 |
-
last_lr_multiple = float(rule_list[-1])
|
300 |
-
|
301 |
-
def create_rules_function(rules_dict, last_lr_multiple):
|
302 |
-
def rule_func(steps: int) -> float:
|
303 |
-
sorted_steps = sorted(rules_dict.keys())
|
304 |
-
for i, sorted_step in enumerate(sorted_steps):
|
305 |
-
if steps < sorted_step:
|
306 |
-
return rules_dict[sorted_steps[i]]
|
307 |
-
return last_lr_multiple
|
308 |
-
|
309 |
-
return rule_func
|
310 |
-
|
311 |
-
rules_func = create_rules_function(rules_dict, last_lr_multiple)
|
312 |
-
return rules_func
|
313 |
-
|
314 |
-
|
315 |
-
def get_linear_schedule_with_warmup(num_warmup_steps: int, num_training_steps: int) -> Callable[[int], float]:
|
316 |
-
r"""
|
317 |
-
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
|
318 |
-
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
|
319 |
-
|
320 |
-
Args:
|
321 |
-
num_warmup_steps (`int`):
|
322 |
-
The number of steps for the warmup phase.
|
323 |
-
num_training_steps (`int`):
|
324 |
-
The total number of training steps.
|
325 |
-
"""
|
326 |
-
|
327 |
-
def lr_lambda(current_step: int):
|
328 |
-
if current_step < num_warmup_steps:
|
329 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
330 |
-
return max(
|
331 |
-
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
|
332 |
-
)
|
333 |
-
|
334 |
-
return lr_lambda
|
335 |
-
|
336 |
-
|
337 |
-
def get_cosine_schedule_with_warmup(
|
338 |
-
num_warmup_steps: int,
|
339 |
-
num_training_steps: int,
|
340 |
-
num_cycles: float = 0.5,
|
341 |
-
) -> Callable[[int], float]:
|
342 |
-
r"""
|
343 |
-
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
344 |
-
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
345 |
-
initial lr set in the optimizer.
|
346 |
-
|
347 |
-
Args:
|
348 |
-
num_warmup_steps (`int`):
|
349 |
-
The number of steps for the warmup phase.
|
350 |
-
num_training_steps (`int`):
|
351 |
-
The total number of training steps.
|
352 |
-
num_periods (`float`, *optional*, defaults to 0.5):
|
353 |
-
The number of periods of the cosine function in a schedule (the default is to just decrease from the max
|
354 |
-
value to 0 following a half-cosine).
|
355 |
-
"""
|
356 |
-
|
357 |
-
def lr_lambda(current_step):
|
358 |
-
if current_step < num_warmup_steps:
|
359 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
360 |
-
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
361 |
-
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
362 |
-
|
363 |
-
return lr_lambda
|
364 |
-
|
365 |
-
|
366 |
-
def get_cosine_with_hard_restarts_schedule_with_warmup(
|
367 |
-
num_warmup_steps: int,
|
368 |
-
num_training_steps: int,
|
369 |
-
num_cycles: int = 1,
|
370 |
-
) -> Callable[[int], float]:
|
371 |
-
r"""
|
372 |
-
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
373 |
-
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
|
374 |
-
linearly between 0 and the initial lr set in the optimizer.
|
375 |
-
|
376 |
-
Args:
|
377 |
-
num_warmup_steps (`int`):
|
378 |
-
The number of steps for the warmup phase.
|
379 |
-
num_training_steps (`int`):
|
380 |
-
The total number of training steps.
|
381 |
-
num_cycles (`int`, *optional*, defaults to 1):
|
382 |
-
The number of hard restarts to use.
|
383 |
-
"""
|
384 |
-
|
385 |
-
def lr_lambda(current_step):
|
386 |
-
if current_step < num_warmup_steps:
|
387 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
388 |
-
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
389 |
-
if progress >= 1.0:
|
390 |
-
return 0.0
|
391 |
-
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
|
392 |
-
|
393 |
-
return lr_lambda
|
394 |
-
|
395 |
-
|
396 |
-
def get_polynomial_decay_schedule_with_warmup(
|
397 |
-
num_warmup_steps: int,
|
398 |
-
num_training_steps: int,
|
399 |
-
lr_init: float,
|
400 |
-
lr_end: float = 1e-7,
|
401 |
-
power: float = 1.0,
|
402 |
-
) -> Callable[[int], float]:
|
403 |
-
r"""
|
404 |
-
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
|
405 |
-
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
|
406 |
-
initial lr set in the optimizer.
|
407 |
-
|
408 |
-
Args:
|
409 |
-
num_warmup_steps (`int`):
|
410 |
-
The number of steps for the warmup phase.
|
411 |
-
num_training_steps (`int`):
|
412 |
-
The total number of training steps.
|
413 |
-
lr_end (`float`, *optional*, defaults to 1e-7):
|
414 |
-
The end LR.
|
415 |
-
power (`float`, *optional*, defaults to 1.0):
|
416 |
-
Power factor.
|
417 |
-
|
418 |
-
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at
|
419 |
-
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
|
420 |
-
"""
|
421 |
-
|
422 |
-
if not (lr_init > lr_end):
|
423 |
-
raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})")
|
424 |
-
|
425 |
-
def lr_lambda(current_step: int):
|
426 |
-
if current_step < num_warmup_steps:
|
427 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
428 |
-
elif current_step > num_training_steps:
|
429 |
-
return lr_end / lr_init # as LambdaLR multiplies by lr_init
|
430 |
-
else:
|
431 |
-
lr_range = lr_init - lr_end
|
432 |
-
decay_steps = num_training_steps - num_warmup_steps
|
433 |
-
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
|
434 |
-
decay = lr_range * pct_remaining**power + lr_end
|
435 |
-
return decay / lr_init # as LambdaLR multiplies by lr_init
|
436 |
-
|
437 |
-
return lr_lambda
|
438 |
-
|
439 |
-
|
440 |
-
def _raise_errors_if_packages_not_available(name: str) -> None:
|
441 |
-
name_split = name.split("-")
|
442 |
-
if len(name_split) < 2:
|
443 |
-
return
|
444 |
-
package_name = name_split[1]
|
445 |
-
if package_name == "bnb":
|
446 |
-
if not is_bitsandbytes_available():
|
447 |
-
raise ImportError(
|
448 |
-
f"Please install bitsandbytes by running `pip install bitsandbytes` to use the {name} optimizer."
|
449 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/__init__.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
from enum import Enum
|
2 |
-
from typing import Union
|
3 |
-
|
4 |
-
from .accelerate import AccelerateParallelBackend
|
5 |
-
from .ptd import PytorchDTensorParallelBackend
|
6 |
-
from .utils import apply_ddp_ptd, apply_fsdp2_ptd, dist_max, dist_mean
|
7 |
-
|
8 |
-
|
9 |
-
ParallelBackendType = Union[AccelerateParallelBackend, PytorchDTensorParallelBackend]
|
10 |
-
|
11 |
-
|
12 |
-
class ParallelBackendEnum(str, Enum):
|
13 |
-
ACCELERATE = "accelerate"
|
14 |
-
PTD = "ptd"
|
15 |
-
|
16 |
-
|
17 |
-
def get_parallel_backend_cls(backend: ParallelBackendEnum) -> ParallelBackendType:
|
18 |
-
if backend == ParallelBackendEnum.ACCELERATE:
|
19 |
-
return AccelerateParallelBackend
|
20 |
-
if backend == ParallelBackendEnum.PTD:
|
21 |
-
return PytorchDTensorParallelBackend
|
22 |
-
raise ValueError(f"Unknown parallel backend: {backend}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/accelerate.py
DELETED
@@ -1,218 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import pathlib
|
3 |
-
from typing import Optional
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from diffusers.utils import is_accelerate_available
|
7 |
-
|
8 |
-
from ..logging import get_logger
|
9 |
-
from ..utils import get_device_info
|
10 |
-
from .base import BaseParallelBackend
|
11 |
-
from .utils import apply_ddp_accelerate
|
12 |
-
|
13 |
-
|
14 |
-
if not is_accelerate_available():
|
15 |
-
raise ImportError(
|
16 |
-
"Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
|
17 |
-
)
|
18 |
-
|
19 |
-
from accelerate import Accelerator
|
20 |
-
from accelerate.data_loader import DataLoader
|
21 |
-
from accelerate.utils import (
|
22 |
-
DataLoaderConfiguration,
|
23 |
-
DistributedDataParallelKwargs,
|
24 |
-
InitProcessGroupKwargs,
|
25 |
-
ProjectConfiguration,
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
logger = get_logger()
|
30 |
-
_device_type, _device_module = get_device_info()
|
31 |
-
|
32 |
-
|
33 |
-
class AccelerateParallelBackend(BaseParallelBackend):
|
34 |
-
def __init__(
|
35 |
-
self,
|
36 |
-
world_size: int,
|
37 |
-
pp_degree: int = 1,
|
38 |
-
dp_degree: int = 1,
|
39 |
-
dp_shards: int = -1,
|
40 |
-
cp_degree: int = 1,
|
41 |
-
tp_degree: int = 1,
|
42 |
-
backend: str = "nccl",
|
43 |
-
timeout: int = 180,
|
44 |
-
logging_dir: Optional[str] = None,
|
45 |
-
output_dir: Optional[str] = None,
|
46 |
-
gradient_accumulation_steps: Optional[int] = None,
|
47 |
-
) -> None:
|
48 |
-
super().__init__()
|
49 |
-
|
50 |
-
self._world_size = world_size
|
51 |
-
self._pp_degree = pp_degree
|
52 |
-
self._dp_degree = dp_degree
|
53 |
-
self._dp_shards = dp_shards
|
54 |
-
self._cp_degree = cp_degree
|
55 |
-
self._tp_degree = tp_degree
|
56 |
-
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
|
57 |
-
self._logging_dir = (
|
58 |
-
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
|
59 |
-
)
|
60 |
-
self._backend = backend
|
61 |
-
self._timeout = timeout
|
62 |
-
self._gradient_accumulation_steps = gradient_accumulation_steps
|
63 |
-
|
64 |
-
if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
|
65 |
-
raise ValueError(
|
66 |
-
"AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
|
67 |
-
)
|
68 |
-
if dp_degree != world_size:
|
69 |
-
raise ValueError("Data parallel degree must be equal to world size.")
|
70 |
-
|
71 |
-
self._accelerator: Accelerator = None
|
72 |
-
self._mesh: torch.distributed.DeviceMesh = None
|
73 |
-
|
74 |
-
def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
|
75 |
-
project_config = None
|
76 |
-
ddp_kwargs = None
|
77 |
-
init_process_group_kwargs = None
|
78 |
-
if self._accelerator is None:
|
79 |
-
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
|
80 |
-
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
|
81 |
-
dataloader_config = DataLoaderConfiguration(
|
82 |
-
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
|
83 |
-
)
|
84 |
-
init_process_group_kwargs = InitProcessGroupKwargs(
|
85 |
-
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
|
86 |
-
)
|
87 |
-
self._accelerator, model = apply_ddp_accelerate(
|
88 |
-
model,
|
89 |
-
project_config,
|
90 |
-
ddp_kwargs,
|
91 |
-
init_process_group_kwargs,
|
92 |
-
dataloader_config,
|
93 |
-
self._gradient_accumulation_steps,
|
94 |
-
accelerator=self._accelerator,
|
95 |
-
)
|
96 |
-
logger.debug("Applied AccelerateParallel::apply_ddp to model.")
|
97 |
-
return model
|
98 |
-
|
99 |
-
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
|
100 |
-
logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
|
101 |
-
return dataset
|
102 |
-
|
103 |
-
def prepare_dataloader(
|
104 |
-
self,
|
105 |
-
dataset: torch.utils.data.IterableDataset,
|
106 |
-
batch_size: int = 1,
|
107 |
-
num_workers: int = 0,
|
108 |
-
pin_memory: bool = False,
|
109 |
-
) -> DataLoader:
|
110 |
-
dataloader = torch.utils.data.DataLoader(
|
111 |
-
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
|
112 |
-
)
|
113 |
-
dataloader = self._accelerator.prepare_data_loader(dataloader)
|
114 |
-
logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
|
115 |
-
return dataloader
|
116 |
-
|
117 |
-
def prepare_optimizer(self, optimizer, lr_scheduler):
|
118 |
-
optimizer = self._accelerator.prepare_optimizer(optimizer)
|
119 |
-
lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
|
120 |
-
return optimizer, lr_scheduler
|
121 |
-
|
122 |
-
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
123 |
-
def _get_mesh():
|
124 |
-
if name is None:
|
125 |
-
return self._mesh
|
126 |
-
try:
|
127 |
-
return self._mesh[name]
|
128 |
-
except (KeyError, RuntimeError):
|
129 |
-
return self._mesh
|
130 |
-
|
131 |
-
if self._mesh is not None:
|
132 |
-
return _get_mesh()
|
133 |
-
|
134 |
-
mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
|
135 |
-
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
|
136 |
-
names = [x[0] for x in mesh_list]
|
137 |
-
degrees = [x[1] for x in mesh_list]
|
138 |
-
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
|
139 |
-
|
140 |
-
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
|
141 |
-
|
142 |
-
if self.data_replication_enabled:
|
143 |
-
dp_mesh_names.append("dp_replicate")
|
144 |
-
dp_cp_mesh_names.append("dp_replicate")
|
145 |
-
if self.data_sharding_enabled:
|
146 |
-
dp_mesh_names.append("dp_shard")
|
147 |
-
dp_cp_mesh_names.append("dp_shard")
|
148 |
-
dp_shard_cp_mesh_names.append("dp_shard")
|
149 |
-
if self.context_parallel_enabled:
|
150 |
-
dp_cp_mesh_names.append("cp")
|
151 |
-
dp_shard_cp_mesh_names.append("cp")
|
152 |
-
|
153 |
-
if len(dp_mesh_names) > 0:
|
154 |
-
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
|
155 |
-
if len(dp_cp_mesh_names) > 0:
|
156 |
-
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
|
157 |
-
if len(dp_shard_cp_mesh_names) > 0:
|
158 |
-
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
|
159 |
-
|
160 |
-
logger.debug(f"Device mesh: {mesh}")
|
161 |
-
self._mesh = mesh
|
162 |
-
return _get_mesh()
|
163 |
-
|
164 |
-
@property
|
165 |
-
def world_size(self):
|
166 |
-
return self._accelerator.num_processes
|
167 |
-
|
168 |
-
@property
|
169 |
-
def rank(self):
|
170 |
-
return self._accelerator.process_index
|
171 |
-
|
172 |
-
@property
|
173 |
-
def local_rank(self):
|
174 |
-
return self._accelerator.local_process_index
|
175 |
-
|
176 |
-
@property
|
177 |
-
def is_main_process(self):
|
178 |
-
r"""Returns `True` if the current process is the main process on the master node."""
|
179 |
-
return self._accelerator.is_main_process
|
180 |
-
|
181 |
-
@property
|
182 |
-
def is_local_main_process(self):
|
183 |
-
r"""Returns `True` if the current process is the main process on local node."""
|
184 |
-
return self._accelerator.is_local_main_process
|
185 |
-
|
186 |
-
@property
|
187 |
-
def device(self):
|
188 |
-
return self._accelerator.device
|
189 |
-
|
190 |
-
def wait_for_everyone(self):
|
191 |
-
self._accelerator.wait_for_everyone()
|
192 |
-
|
193 |
-
def destroy(self):
|
194 |
-
self._accelerator.end_training()
|
195 |
-
|
196 |
-
@property
|
197 |
-
def pipeline_parallel_enabled(self):
|
198 |
-
return self._pp_degree > 1
|
199 |
-
|
200 |
-
@property
|
201 |
-
def data_parallel_enabled(self):
|
202 |
-
return self._dp_degree > 1 or self._dp_shards > 1
|
203 |
-
|
204 |
-
@property
|
205 |
-
def data_replication_enabled(self):
|
206 |
-
return self._dp_degree > 1
|
207 |
-
|
208 |
-
@property
|
209 |
-
def data_sharding_enabled(self):
|
210 |
-
return self._dp_shards > 1
|
211 |
-
|
212 |
-
@property
|
213 |
-
def context_parallel_enabled(self):
|
214 |
-
return self._cp_degree > 1
|
215 |
-
|
216 |
-
@property
|
217 |
-
def tensor_parallel_enabled(self):
|
218 |
-
return self._tp_degree > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/base.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
from contextlib import contextmanager
|
2 |
-
from typing import Any, Dict, List, Optional
|
3 |
-
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from ..trackers import TrackerType, initialize_trackers
|
7 |
-
|
8 |
-
|
9 |
-
class BaseParallelBackend:
|
10 |
-
r"""
|
11 |
-
Base class that contains properties and methods that should be implemented by different parallel backends.
|
12 |
-
"""
|
13 |
-
|
14 |
-
def apply_ddp(self, *args, **kwargs) -> torch.nn.Module:
|
15 |
-
raise NotImplementedError("Method `apply_ddp` must be implemented by subclass.")
|
16 |
-
|
17 |
-
def prepare_dataset(self, *args, **kwargs) -> Any:
|
18 |
-
raise NotImplementedError("Method `prepare_dataset` must be implemented by subclass.")
|
19 |
-
|
20 |
-
def prepare_dataloader(self, *args, **kwargs) -> Any:
|
21 |
-
raise NotImplementedError("Method `prepare_dataloader` must be implemented by subclass.")
|
22 |
-
|
23 |
-
def prepare_optimizer(self, *args, **kwargs) -> Any:
|
24 |
-
raise NotImplementedError("Method `prepare_optimizer` must be implemented by subclass.")
|
25 |
-
|
26 |
-
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
27 |
-
raise NotImplementedError("Method `get_mesh` must be implemented by subclass.")
|
28 |
-
|
29 |
-
def initialize_trackers(
|
30 |
-
self, trackers: List[str], experiment_name: str, config: Dict[str, Any], log_dir: str
|
31 |
-
) -> TrackerType:
|
32 |
-
self.tracker = None
|
33 |
-
if self.is_main_process:
|
34 |
-
self.tracker = initialize_trackers(trackers, experiment_name, config, log_dir)
|
35 |
-
|
36 |
-
def log(self, metrics: Dict[str, Any], step: int) -> None:
|
37 |
-
if self.is_main_process:
|
38 |
-
self.tracker.log(metrics, step)
|
39 |
-
|
40 |
-
def wait_for_everyone(self):
|
41 |
-
raise NotImplementedError("Method `wait_for_everyone` must be implemented by subclass.")
|
42 |
-
|
43 |
-
@contextmanager
|
44 |
-
def main_process_first(self):
|
45 |
-
raise NotImplementedError("Method `main_process_first` must be implemented by subclass.")
|
46 |
-
|
47 |
-
def destroy(self):
|
48 |
-
raise NotImplementedError("Method `destroy` must be implemented by subclass.")
|
49 |
-
|
50 |
-
@property
|
51 |
-
def world_size(self):
|
52 |
-
raise NotImplementedError("Method `world_size` must be implemented by subclass.")
|
53 |
-
|
54 |
-
@property
|
55 |
-
def rank(self):
|
56 |
-
raise NotImplementedError("Method `rank` must be implemented by subclass.")
|
57 |
-
|
58 |
-
@property
|
59 |
-
def local_rank(self):
|
60 |
-
raise NotImplementedError("Method `local_rank` must be implemented by subclass.")
|
61 |
-
|
62 |
-
@property
|
63 |
-
def is_main_process(self):
|
64 |
-
raise NotImplementedError("Method `is_main_process` must be implemented by subclass.")
|
65 |
-
|
66 |
-
@property
|
67 |
-
def is_local_main_process(self):
|
68 |
-
raise NotImplementedError("Method `is_local_main_process` must be implemented by subclass.")
|
69 |
-
|
70 |
-
@property
|
71 |
-
def device(self):
|
72 |
-
raise NotImplementedError("Method `device` must be implemented by subclass.")
|
73 |
-
|
74 |
-
@property
|
75 |
-
def pipeline_parallel_enabled(self):
|
76 |
-
raise NotImplementedError("Property `pipeline_parallel_enabled` must be implemented by subclass.")
|
77 |
-
|
78 |
-
@property
|
79 |
-
def data_parallel_enabled(self):
|
80 |
-
raise NotImplementedError("Property `data_parallel_enabled` must be implemented by subclass.")
|
81 |
-
|
82 |
-
@property
|
83 |
-
def data_replication_enabled(self):
|
84 |
-
raise NotImplementedError("Property `data_replication_enabled` must be implemented by subclass.")
|
85 |
-
|
86 |
-
@property
|
87 |
-
def data_sharding_enabled(self):
|
88 |
-
raise NotImplementedError("Property `data_sharding_enabled` must be implemented by subclass.")
|
89 |
-
|
90 |
-
@property
|
91 |
-
def context_parallel_enabled(self):
|
92 |
-
raise NotImplementedError("Property `context_parallel_enabled` must be implemented by subclass.")
|
93 |
-
|
94 |
-
@property
|
95 |
-
def tensor_parallel_enabled(self):
|
96 |
-
raise NotImplementedError("Property `tensor_parallel_enabled` must be implemented by subclass.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/deepspeed.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from .base import BaseParallelBackend
|
2 |
-
|
3 |
-
|
4 |
-
class DeepspeedParallelBackend(BaseParallelBackend):
|
5 |
-
def __init__(self):
|
6 |
-
# TODO(aryan)
|
7 |
-
raise NotImplementedError("DeepspeedParallelBackend is not implemented yet.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/ptd.py
DELETED
@@ -1,228 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import os
|
3 |
-
import pathlib
|
4 |
-
from typing import Optional
|
5 |
-
|
6 |
-
import datasets.distributed
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from ..data import DPDataLoader
|
10 |
-
from ..logging import get_logger
|
11 |
-
from ..utils import get_device_info
|
12 |
-
from .base import BaseParallelBackend
|
13 |
-
from .utils import apply_ddp_ptd
|
14 |
-
|
15 |
-
|
16 |
-
_device_type, _device_module = get_device_info()
|
17 |
-
logger = get_logger()
|
18 |
-
|
19 |
-
|
20 |
-
class PytorchDTensorParallelBackend(BaseParallelBackend):
|
21 |
-
def __init__(
|
22 |
-
self,
|
23 |
-
world_size: int,
|
24 |
-
pp_degree: int = 1,
|
25 |
-
dp_degree: int = 1,
|
26 |
-
dp_shards: int = -1,
|
27 |
-
cp_degree: int = 1,
|
28 |
-
tp_degree: int = 1,
|
29 |
-
backend: str = "nccl",
|
30 |
-
timeout: int = 180,
|
31 |
-
logging_dir: Optional[str] = None,
|
32 |
-
output_dir: Optional[str] = None,
|
33 |
-
gradient_accumulation_steps: Optional[int] = None,
|
34 |
-
) -> None:
|
35 |
-
super().__init__()
|
36 |
-
|
37 |
-
self._world_size = world_size
|
38 |
-
self._pp_degree = pp_degree
|
39 |
-
self._dp_degree = dp_degree
|
40 |
-
self._dp_shards = dp_shards
|
41 |
-
self._cp_degree = cp_degree
|
42 |
-
self._tp_degree = tp_degree
|
43 |
-
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
|
44 |
-
self._logging_dir = (
|
45 |
-
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
|
46 |
-
)
|
47 |
-
self._backend = backend
|
48 |
-
self._timeout = timeout
|
49 |
-
|
50 |
-
for degree in [pp_degree, dp_degree, dp_shards, cp_degree, tp_degree]:
|
51 |
-
if degree < 1:
|
52 |
-
raise ValueError(f"Parallel degree must be at least 1, got {degree}.")
|
53 |
-
|
54 |
-
if dp_shards * pp_degree * dp_degree * cp_degree * tp_degree != world_size:
|
55 |
-
raise ValueError(
|
56 |
-
f"World size {world_size} must be divisible by the product of all parallel degrees and data parallel shards."
|
57 |
-
)
|
58 |
-
|
59 |
-
torch.distributed.init_process_group(backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout))
|
60 |
-
_device_module.set_device(self.local_rank)
|
61 |
-
|
62 |
-
logger.info(
|
63 |
-
f"Initialized parallel state with:\n"
|
64 |
-
f" - World size: {world_size}\n"
|
65 |
-
f" - Pipeline parallel degree: {pp_degree}\n"
|
66 |
-
f" - Data parallel degree: {dp_degree}\n"
|
67 |
-
f" - Context parallel degree: {cp_degree}\n"
|
68 |
-
f" - Tensor parallel degree: {tp_degree}\n"
|
69 |
-
f" - Data parallel shards: {dp_shards}\n"
|
70 |
-
)
|
71 |
-
|
72 |
-
self._mesh: torch.distributed.DeviceMesh = None
|
73 |
-
|
74 |
-
def apply_ddp(
|
75 |
-
self, model: torch.nn.Module, device_mesh: Optional[torch.distributed.DeviceMesh] = None
|
76 |
-
) -> torch.nn.Module:
|
77 |
-
if device_mesh is None:
|
78 |
-
device_mesh = self.get_mesh()
|
79 |
-
apply_ddp_ptd(model, device_mesh)
|
80 |
-
logger.debug("Applied PytorchDTensorParallel::apply_ddp to model.")
|
81 |
-
return model
|
82 |
-
|
83 |
-
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
|
84 |
-
dp_mesh = self.get_mesh("dp_replicate")
|
85 |
-
if dp_mesh is None:
|
86 |
-
dp_mesh = self.get_mesh()
|
87 |
-
if self.world_size > 1:
|
88 |
-
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
|
89 |
-
else:
|
90 |
-
dp_local_rank, dp_world_size = 0, 1
|
91 |
-
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size)
|
92 |
-
logger.debug("PytorchDTensorParallelBackend::prepare_dataset completed!")
|
93 |
-
return dataset
|
94 |
-
|
95 |
-
def prepare_dataloader(
|
96 |
-
self, dataset: torch.utils.data.IterableDataset, batch_size: int, num_workers: int, pin_memory: bool
|
97 |
-
) -> DPDataLoader:
|
98 |
-
dp_mesh = self.get_mesh("dp_replicate")
|
99 |
-
if dp_mesh is None:
|
100 |
-
dp_mesh = self.get_mesh()
|
101 |
-
if self.world_size > 1:
|
102 |
-
dp_local_rank = dp_mesh.get_local_rank()
|
103 |
-
else:
|
104 |
-
dp_local_rank = 0
|
105 |
-
dataloader = DPDataLoader(dp_local_rank, dataset, batch_size=batch_size, num_workers=num_workers)
|
106 |
-
logger.debug("PytorchDTensorParallelBackend::prepare_dataloader completed!")
|
107 |
-
return dataloader
|
108 |
-
|
109 |
-
def prepare_optimizer(self, optimizer, lr_scheduler):
|
110 |
-
logger.debug("PytorchDTensorParallelBackend::prepare_optimizer completed!")
|
111 |
-
return optimizer, lr_scheduler
|
112 |
-
|
113 |
-
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
|
114 |
-
def _get_mesh():
|
115 |
-
if name is None:
|
116 |
-
return self._mesh
|
117 |
-
try:
|
118 |
-
return self._mesh[name]
|
119 |
-
except (KeyError, RuntimeError):
|
120 |
-
if self._mesh.ndim == 0:
|
121 |
-
return None
|
122 |
-
return self._mesh
|
123 |
-
|
124 |
-
if self._mesh is not None:
|
125 |
-
return _get_mesh()
|
126 |
-
|
127 |
-
mesh_list = [
|
128 |
-
("pp", self._pp_degree),
|
129 |
-
("dp_replicate", self._dp_degree),
|
130 |
-
("dp_shard", self._dp_shards),
|
131 |
-
("cp", self._cp_degree),
|
132 |
-
("tp", self._tp_degree),
|
133 |
-
]
|
134 |
-
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
|
135 |
-
names = [x[0] for x in mesh_list]
|
136 |
-
degrees = [x[1] for x in mesh_list]
|
137 |
-
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
|
138 |
-
|
139 |
-
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
|
140 |
-
|
141 |
-
if self.data_replication_enabled:
|
142 |
-
dp_mesh_names.append("dp_replicate")
|
143 |
-
dp_cp_mesh_names.append("dp_replicate")
|
144 |
-
if self.data_sharding_enabled:
|
145 |
-
dp_mesh_names.append("dp_shard")
|
146 |
-
dp_cp_mesh_names.append("dp_shard")
|
147 |
-
dp_shard_cp_mesh_names.append("dp_shard")
|
148 |
-
if self.context_parallel_enabled:
|
149 |
-
dp_cp_mesh_names.append("cp")
|
150 |
-
dp_shard_cp_mesh_names.append("cp")
|
151 |
-
|
152 |
-
if len(dp_mesh_names) > 0:
|
153 |
-
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
|
154 |
-
if len(dp_cp_mesh_names) > 0:
|
155 |
-
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
|
156 |
-
if len(dp_shard_cp_mesh_names) > 0:
|
157 |
-
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
|
158 |
-
|
159 |
-
logger.debug(f"Device mesh: {mesh}")
|
160 |
-
self._mesh = mesh
|
161 |
-
return _get_mesh()
|
162 |
-
|
163 |
-
@property
|
164 |
-
def world_size(self):
|
165 |
-
return torch.distributed.get_world_size()
|
166 |
-
|
167 |
-
@property
|
168 |
-
def rank(self):
|
169 |
-
return torch.distributed.get_rank()
|
170 |
-
|
171 |
-
@property
|
172 |
-
def local_rank(self):
|
173 |
-
return int(os.environ.get("LOCAL_RANK", 0))
|
174 |
-
|
175 |
-
@property
|
176 |
-
def is_main_process(self):
|
177 |
-
r"""Returns `True` if the current process is the main process on the master node."""
|
178 |
-
return self.rank == 0
|
179 |
-
|
180 |
-
@property
|
181 |
-
def is_local_main_process(self):
|
182 |
-
r"""Returns `True` if the current process is the main process on local node."""
|
183 |
-
return self.local_rank == 0
|
184 |
-
|
185 |
-
@property
|
186 |
-
def device(self):
|
187 |
-
return torch.device(_device_type, self.local_rank)
|
188 |
-
|
189 |
-
def wait_for_everyone(self):
|
190 |
-
return torch.distributed.barrier()
|
191 |
-
|
192 |
-
# @contextmanager
|
193 |
-
# def main_process_first(self):
|
194 |
-
# if self.is_main_process:
|
195 |
-
# yield
|
196 |
-
# self.wait_for_everyone()
|
197 |
-
# else:
|
198 |
-
# self.wait_for_everyone()
|
199 |
-
# yield
|
200 |
-
|
201 |
-
def destroy(self):
|
202 |
-
if self.is_main_process:
|
203 |
-
self.tracker.finish()
|
204 |
-
return torch.distributed.destroy_process_group()
|
205 |
-
|
206 |
-
@property
|
207 |
-
def pipeline_parallel_enabled(self):
|
208 |
-
return self._pp_degree > 1
|
209 |
-
|
210 |
-
@property
|
211 |
-
def data_parallel_enabled(self):
|
212 |
-
return self._dp_degree > 1 or self._dp_shards > 1
|
213 |
-
|
214 |
-
@property
|
215 |
-
def data_replication_enabled(self):
|
216 |
-
return self._dp_degree > 1
|
217 |
-
|
218 |
-
@property
|
219 |
-
def data_sharding_enabled(self):
|
220 |
-
return self._dp_shards > 1
|
221 |
-
|
222 |
-
@property
|
223 |
-
def context_parallel_enabled(self):
|
224 |
-
return self._cp_degree > 1
|
225 |
-
|
226 |
-
@property
|
227 |
-
def tensor_parallel_enabled(self):
|
228 |
-
return self._tp_degree > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/parallel/utils.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
from typing import Optional
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.distributed._functional_collectives as funcol
|
5 |
-
import torch.distributed.tensor
|
6 |
-
from diffusers.utils import is_accelerate_available
|
7 |
-
from torch.distributed._composable.fsdp import CPUOffloadPolicy, MixedPrecisionPolicy, fully_shard
|
8 |
-
from torch.distributed._composable.replicate import replicate
|
9 |
-
|
10 |
-
from ..utils._common import DIFFUSERS_TRANSFORMER_BLOCK_NAMES
|
11 |
-
|
12 |
-
|
13 |
-
if is_accelerate_available():
|
14 |
-
from accelerate import Accelerator
|
15 |
-
from accelerate.utils import (
|
16 |
-
DataLoaderConfiguration,
|
17 |
-
DistributedDataParallelKwargs,
|
18 |
-
InitProcessGroupKwargs,
|
19 |
-
ProjectConfiguration,
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def apply_fsdp2_ptd(
|
24 |
-
model: torch.nn.Module,
|
25 |
-
dp_mesh: torch.distributed.device_mesh.DeviceMesh,
|
26 |
-
param_dtype: torch.dtype,
|
27 |
-
reduce_dtype: torch.dtype,
|
28 |
-
output_dtype: torch.dtype,
|
29 |
-
pp_enabled: bool = False,
|
30 |
-
cpu_offload: bool = False,
|
31 |
-
) -> None:
|
32 |
-
r"""Apply FSDP2 on a model."""
|
33 |
-
mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype, output_dtype, cast_forward_inputs=True)
|
34 |
-
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
|
35 |
-
|
36 |
-
if cpu_offload:
|
37 |
-
fsdp_config["offload_policy"] = CPUOffloadPolicy(pin_memory=True)
|
38 |
-
|
39 |
-
def apply_fully_shard(blocks):
|
40 |
-
for layer_index, block in enumerate(blocks):
|
41 |
-
if pp_enabled:
|
42 |
-
# For PP, do not reshard after forward to avoid per-microbatch
|
43 |
-
# all-gathers, which can be expensive and non-overlapped
|
44 |
-
reshard_after_forward = False
|
45 |
-
else:
|
46 |
-
# As an optimization, do not reshard after forward for the last
|
47 |
-
# transformer block since FSDP would prefetch it immediately
|
48 |
-
reshard_after_forward = layer_index < len(blocks) - 1
|
49 |
-
fully_shard(block, **fsdp_config, reshard_after_forward=reshard_after_forward)
|
50 |
-
|
51 |
-
for transformer_block_name in DIFFUSERS_TRANSFORMER_BLOCK_NAMES:
|
52 |
-
blocks = getattr(model, transformer_block_name, None)
|
53 |
-
if blocks is not None:
|
54 |
-
apply_fully_shard(blocks)
|
55 |
-
|
56 |
-
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
|
57 |
-
|
58 |
-
|
59 |
-
def apply_ddp_accelerate(
|
60 |
-
model: torch.nn.Module,
|
61 |
-
project_config: Optional[ProjectConfiguration] = None,
|
62 |
-
ddp_kwargs: Optional[DistributedDataParallelKwargs] = None,
|
63 |
-
init_process_group_kwargs: Optional[InitProcessGroupKwargs] = None,
|
64 |
-
dataloader_config: Optional[DataLoaderConfiguration] = None,
|
65 |
-
gradient_accumulation_steps: Optional[int] = None,
|
66 |
-
accelerator: Optional[Accelerator] = None,
|
67 |
-
) -> torch.nn.Module:
|
68 |
-
if accelerator is None:
|
69 |
-
accelerator = Accelerator(
|
70 |
-
project_config=project_config,
|
71 |
-
dataloader_config=dataloader_config,
|
72 |
-
gradient_accumulation_steps=gradient_accumulation_steps,
|
73 |
-
log_with=None,
|
74 |
-
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
|
75 |
-
)
|
76 |
-
if torch.backends.mps.is_available():
|
77 |
-
accelerator.native_amp = False
|
78 |
-
accelerator.prepare_model(model)
|
79 |
-
return accelerator, model
|
80 |
-
|
81 |
-
|
82 |
-
def apply_ddp_ptd(model: torch.nn.Module, dp_mesh: torch.distributed.device_mesh.DeviceMesh) -> None:
|
83 |
-
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
|
84 |
-
|
85 |
-
|
86 |
-
def dist_reduce(x: torch.Tensor, reduceOp: str, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
87 |
-
if isinstance(x, torch.distributed.tensor.DTensor):
|
88 |
-
# functional collectives do not support DTensor inputs
|
89 |
-
x = x.full_tensor()
|
90 |
-
assert x.numel() == 1 # required by `.item()`
|
91 |
-
return funcol.all_reduce(x, reduceOp=reduceOp, group=mesh).item()
|
92 |
-
|
93 |
-
|
94 |
-
def dist_max(x: torch.Tensor, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
95 |
-
return dist_reduce(x, reduceOp=torch.distributed.distributed_c10d.ReduceOp.MAX.name, mesh=mesh)
|
96 |
-
|
97 |
-
|
98 |
-
def dist_mean(x: torch.Tensor, mesh: torch.distributed.device_mesh.DeviceMesh) -> float:
|
99 |
-
return dist_reduce(x, reduceOp=torch.distributed.distributed_c10d.ReduceOp.AVG.name, mesh=mesh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/__init__.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
from typing import TYPE_CHECKING
|
2 |
-
|
3 |
-
|
4 |
-
if TYPE_CHECKING:
|
5 |
-
from ..args import BaseArgs
|
6 |
-
from ..parallel import ParallelBackendType
|
7 |
-
|
8 |
-
|
9 |
-
def perform_patches_for_training(args: "BaseArgs", parallel_backend: "ParallelBackendType") -> None:
|
10 |
-
# To avoid circular imports
|
11 |
-
from ..config import ModelType, TrainingType
|
12 |
-
|
13 |
-
if args.model_name == ModelType.LTX_VIDEO:
|
14 |
-
from .models.ltx_video import patch
|
15 |
-
|
16 |
-
patch.patch_transformer_forward()
|
17 |
-
if parallel_backend.tensor_parallel_enabled:
|
18 |
-
patch.patch_apply_rotary_emb_for_tp_compatibility()
|
19 |
-
|
20 |
-
if args.model_name == ModelType.WAN and "transformer" in args.layerwise_upcasting_modules:
|
21 |
-
from .models.wan import patch
|
22 |
-
|
23 |
-
patch.patch_time_text_image_embedding_forward()
|
24 |
-
|
25 |
-
if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0:
|
26 |
-
from .dependencies.peft import patch
|
27 |
-
|
28 |
-
patch.patch_peft_move_adapter_to_device_of_base_layer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/dependencies/peft/patch.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
|
3 |
-
from peft.tuners.tuners_utils import BaseTunerLayer
|
4 |
-
|
5 |
-
from ...utils import DisableTensorToDtype
|
6 |
-
|
7 |
-
|
8 |
-
def patch_peft_move_adapter_to_device_of_base_layer() -> None:
|
9 |
-
_perform_patch_move_adapter_to_device_of_base_layer()
|
10 |
-
|
11 |
-
|
12 |
-
def _perform_patch_move_adapter_to_device_of_base_layer() -> None:
|
13 |
-
BaseTunerLayer._move_adapter_to_device_of_base_layer = _patched_move_adapter_to_device_of_base_layer(
|
14 |
-
BaseTunerLayer._move_adapter_to_device_of_base_layer
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
def _patched_move_adapter_to_device_of_base_layer(func) -> None:
|
19 |
-
# TODO(aryan): This is really unsafe probably and may break things. It works for now, but revisit and refactor.
|
20 |
-
@functools.wraps(func)
|
21 |
-
def wrapper(self, *args, **kwargs):
|
22 |
-
with DisableTensorToDtype():
|
23 |
-
return func(self, *args, **kwargs)
|
24 |
-
|
25 |
-
return wrapper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/models/ltx_video/patch.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, Optional, Tuple
|
2 |
-
|
3 |
-
import diffusers
|
4 |
-
import torch
|
5 |
-
from diffusers import LTXVideoTransformer3DModel
|
6 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
7 |
-
from diffusers.utils.import_utils import is_torch_version
|
8 |
-
|
9 |
-
|
10 |
-
def patch_transformer_forward() -> None:
|
11 |
-
_perform_ltx_transformer_forward_patch()
|
12 |
-
|
13 |
-
|
14 |
-
def patch_apply_rotary_emb_for_tp_compatibility() -> None:
|
15 |
-
_perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch()
|
16 |
-
|
17 |
-
|
18 |
-
def _perform_ltx_transformer_forward_patch() -> None:
|
19 |
-
LTXVideoTransformer3DModel.forward = _patched_LTXVideoTransformer3D_forward
|
20 |
-
|
21 |
-
|
22 |
-
def _perform_ltx_apply_rotary_emb_tensor_parallel_compatibility_patch() -> None:
|
23 |
-
def apply_rotary_emb(x, freqs):
|
24 |
-
cos, sin = freqs
|
25 |
-
# ======== THIS IS CHANGED FROM THE ORIGINAL IMPLEMENTATION ========
|
26 |
-
# The change is made due to unsupported DTensor operation aten.ops.unbind
|
27 |
-
# FIXME: Once aten.ops.unbind support lands, this will no longer be required
|
28 |
-
# x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2]
|
29 |
-
x_real, x_imag = x.unflatten(2, (-1, 2)).chunk(2, dim=-1) # [B, S, H, D // 2]
|
30 |
-
# ==================================================================
|
31 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2)
|
32 |
-
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
33 |
-
return out
|
34 |
-
|
35 |
-
diffusers.models.transformers.transformer_ltx.apply_rotary_emb = apply_rotary_emb
|
36 |
-
|
37 |
-
|
38 |
-
def _patched_LTXVideoTransformer3D_forward(
|
39 |
-
self,
|
40 |
-
hidden_states: torch.Tensor,
|
41 |
-
encoder_hidden_states: torch.Tensor,
|
42 |
-
timestep: torch.LongTensor,
|
43 |
-
encoder_attention_mask: torch.Tensor,
|
44 |
-
num_frames: int,
|
45 |
-
height: int,
|
46 |
-
width: int,
|
47 |
-
rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
|
48 |
-
return_dict: bool = True,
|
49 |
-
*args,
|
50 |
-
**kwargs,
|
51 |
-
) -> torch.Tensor:
|
52 |
-
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)
|
53 |
-
|
54 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
55 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
56 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
57 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
58 |
-
|
59 |
-
batch_size = hidden_states.size(0)
|
60 |
-
|
61 |
-
# ===== This is modified compared to Diffusers =====
|
62 |
-
# This is done because the Diffusers pipeline will pass in a 1D tensor for timestep
|
63 |
-
if timestep.ndim == 1:
|
64 |
-
timestep = timestep.view(-1, 1, 1).expand(-1, *hidden_states.shape[1:-1], -1)
|
65 |
-
# ==================================================
|
66 |
-
|
67 |
-
temb, embedded_timestep = self.time_embed(
|
68 |
-
timestep.flatten(),
|
69 |
-
batch_size=batch_size,
|
70 |
-
hidden_dtype=hidden_states.dtype,
|
71 |
-
)
|
72 |
-
|
73 |
-
# ===== This is modified compared to Diffusers =====
|
74 |
-
# temb = temb.view(batch_size, -1, temb.size(-1))
|
75 |
-
# embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))
|
76 |
-
# ==================================================
|
77 |
-
# This is done to make it possible to use per-token timestep embedding
|
78 |
-
temb = temb.view(batch_size, *hidden_states.shape[1:-1], temb.size(-1))
|
79 |
-
embedded_timestep = embedded_timestep.view(batch_size, *hidden_states.shape[1:-1], embedded_timestep.size(-1))
|
80 |
-
# ==================================================
|
81 |
-
|
82 |
-
hidden_states = self.proj_in(hidden_states)
|
83 |
-
|
84 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
85 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))
|
86 |
-
|
87 |
-
for block in self.transformer_blocks:
|
88 |
-
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
89 |
-
|
90 |
-
def create_custom_forward(module, return_dict=None):
|
91 |
-
def custom_forward(*inputs):
|
92 |
-
if return_dict is not None:
|
93 |
-
return module(*inputs, return_dict=return_dict)
|
94 |
-
else:
|
95 |
-
return module(*inputs)
|
96 |
-
|
97 |
-
return custom_forward
|
98 |
-
|
99 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
100 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
101 |
-
create_custom_forward(block),
|
102 |
-
hidden_states,
|
103 |
-
encoder_hidden_states,
|
104 |
-
temb,
|
105 |
-
image_rotary_emb,
|
106 |
-
encoder_attention_mask,
|
107 |
-
**ckpt_kwargs,
|
108 |
-
)
|
109 |
-
else:
|
110 |
-
hidden_states = block(
|
111 |
-
hidden_states=hidden_states,
|
112 |
-
encoder_hidden_states=encoder_hidden_states,
|
113 |
-
temb=temb,
|
114 |
-
image_rotary_emb=image_rotary_emb,
|
115 |
-
encoder_attention_mask=encoder_attention_mask,
|
116 |
-
)
|
117 |
-
|
118 |
-
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
119 |
-
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
120 |
-
|
121 |
-
hidden_states = self.norm_out(hidden_states)
|
122 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
123 |
-
output = self.proj_out(hidden_states)
|
124 |
-
|
125 |
-
if not return_dict:
|
126 |
-
return (output,)
|
127 |
-
return Transformer2DModelOutput(sample=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/models/wan/patch.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
from typing import Optional
|
2 |
-
|
3 |
-
import diffusers
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
def patch_time_text_image_embedding_forward() -> None:
|
8 |
-
_patch_time_text_image_embedding_forward()
|
9 |
-
|
10 |
-
|
11 |
-
def _patch_time_text_image_embedding_forward() -> None:
|
12 |
-
diffusers.models.transformers.transformer_wan.WanTimeTextImageEmbedding.forward = (
|
13 |
-
_patched_WanTimeTextImageEmbedding_forward
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
def _patched_WanTimeTextImageEmbedding_forward(
|
18 |
-
self,
|
19 |
-
timestep: torch.Tensor,
|
20 |
-
encoder_hidden_states: torch.Tensor,
|
21 |
-
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
22 |
-
):
|
23 |
-
# Some code has been removed compared to original implementation in Diffusers
|
24 |
-
# Also, timestep is typed as that of encoder_hidden_states
|
25 |
-
timestep = self.timesteps_proj(timestep).type_as(encoder_hidden_states)
|
26 |
-
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
|
27 |
-
timestep_proj = self.time_proj(self.act_fn(temb))
|
28 |
-
|
29 |
-
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
|
30 |
-
if encoder_hidden_states_image is not None:
|
31 |
-
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
|
32 |
-
|
33 |
-
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/patches/utils.py
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
class DisableTensorToDtype:
|
5 |
-
def __enter__(self):
|
6 |
-
self.original_to = torch.Tensor.to
|
7 |
-
|
8 |
-
def modified_to(tensor, *args, **kwargs):
|
9 |
-
# remove dtype from args if present
|
10 |
-
args = [arg if not isinstance(arg, torch.dtype) else None for arg in args]
|
11 |
-
if "dtype" in kwargs:
|
12 |
-
kwargs.pop("dtype")
|
13 |
-
return self.original_to(tensor, *args, **kwargs)
|
14 |
-
|
15 |
-
torch.Tensor.to = modified_to
|
16 |
-
|
17 |
-
def __exit__(self, *args, **kwargs):
|
18 |
-
torch.Tensor.to = self.original_to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from .base import ProcessorMixin
|
2 |
-
from .clip import CLIPPooledProcessor
|
3 |
-
from .glm import CogView4GLMProcessor
|
4 |
-
from .llama import LlamaProcessor
|
5 |
-
from .t5 import T5Processor
|
6 |
-
from .text import CaptionEmbeddingDropoutProcessor, CaptionTextDropoutProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/base.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import inspect
|
2 |
-
from typing import Any, Dict, List
|
3 |
-
|
4 |
-
|
5 |
-
class ProcessorMixin:
|
6 |
-
def __init__(self) -> None:
|
7 |
-
self._forward_parameter_names = inspect.signature(self.forward).parameters.keys()
|
8 |
-
self.output_names: List[str] = None
|
9 |
-
self.input_names: Dict[str, Any] = None
|
10 |
-
|
11 |
-
def __call__(self, *args, **kwargs) -> Any:
|
12 |
-
shallow_copy_kwargs = dict(kwargs.items())
|
13 |
-
if self.input_names is not None:
|
14 |
-
for k, v in self.input_names.items():
|
15 |
-
shallow_copy_kwargs[v] = shallow_copy_kwargs.pop(k)
|
16 |
-
acceptable_kwargs = {k: v for k, v in shallow_copy_kwargs.items() if k in self._forward_parameter_names}
|
17 |
-
return self.forward(*args, **acceptable_kwargs)
|
18 |
-
|
19 |
-
def forward(self, *args, **kwargs) -> Any:
|
20 |
-
raise NotImplementedError("ProcessorMixin::forward method should be implemented by the subclass.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/clip.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTokenizerFast
|
5 |
-
|
6 |
-
from .base import ProcessorMixin
|
7 |
-
|
8 |
-
|
9 |
-
class CLIPPooledProcessor(ProcessorMixin):
|
10 |
-
r"""
|
11 |
-
Processor for the Llama family of models. This processor is used to encode text inputs and return the embeddings
|
12 |
-
and attention masks for the input text.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
output_names (`List[str]`):
|
16 |
-
The names of the outputs that the processor should return. The first output is the embeddings of the input
|
17 |
-
text and the second output is the attention mask for the input text.
|
18 |
-
"""
|
19 |
-
|
20 |
-
def __init__(self, output_names: List[str] = None, input_names: Optional[Dict[str, Any]] = None) -> None:
|
21 |
-
super().__init__()
|
22 |
-
|
23 |
-
self.output_names = output_names
|
24 |
-
self.input_names = input_names
|
25 |
-
|
26 |
-
assert len(output_names) == 1
|
27 |
-
if input_names is not None:
|
28 |
-
assert len(input_names) <= 3
|
29 |
-
|
30 |
-
def forward(
|
31 |
-
self,
|
32 |
-
tokenizer: Union[CLIPTokenizer, CLIPTokenizerFast],
|
33 |
-
text_encoder: CLIPTextModel,
|
34 |
-
caption: Union[str, List[str]],
|
35 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
36 |
-
r"""
|
37 |
-
Encode the input text and return the embeddings and attention mask for the input text.
|
38 |
-
|
39 |
-
Args:
|
40 |
-
tokenizer (`Union[LlamaTokenizer, LlamaTokenizerFast]`):
|
41 |
-
The tokenizer used to tokenize the input text.
|
42 |
-
text_encoder (`LlamaModel`):
|
43 |
-
The text encoder used to encode the input text.
|
44 |
-
caption (`Union[str, List[str]]`):
|
45 |
-
The input text to be encoded.
|
46 |
-
"""
|
47 |
-
if isinstance(caption, str):
|
48 |
-
caption = [caption]
|
49 |
-
|
50 |
-
device = text_encoder.device
|
51 |
-
dtype = text_encoder.dtype
|
52 |
-
|
53 |
-
text_inputs = tokenizer(
|
54 |
-
caption,
|
55 |
-
padding="max_length",
|
56 |
-
max_length=77,
|
57 |
-
truncation=True,
|
58 |
-
return_tensors="pt",
|
59 |
-
)
|
60 |
-
text_input_ids = text_inputs.input_ids.to(device)
|
61 |
-
|
62 |
-
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=False).pooler_output
|
63 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
64 |
-
|
65 |
-
return {self.output_names[0]: prompt_embeds}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/glm.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
from typing import List, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import AutoTokenizer, GlmModel
|
5 |
-
|
6 |
-
from .base import ProcessorMixin
|
7 |
-
|
8 |
-
|
9 |
-
class CogView4GLMProcessor(ProcessorMixin):
|
10 |
-
r"""
|
11 |
-
Processor for the GLM family of models. This processor is used to encode text inputs and return the embeddings
|
12 |
-
and attention masks for the input text.
|
13 |
-
|
14 |
-
This processor is specific to CogView4 but can be used with any other model.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
output_names (`List[str]`):
|
18 |
-
The names of the outputs that the processor should return. The first output is the embeddings of the input
|
19 |
-
text and the second output is the attention mask for the input text.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(self, output_names: List[str]):
|
23 |
-
super().__init__()
|
24 |
-
|
25 |
-
self.output_names = output_names
|
26 |
-
|
27 |
-
assert len(self.output_names) == 1
|
28 |
-
|
29 |
-
def forward(
|
30 |
-
self,
|
31 |
-
tokenizer: AutoTokenizer,
|
32 |
-
text_encoder: GlmModel,
|
33 |
-
caption: Union[str, List[str]],
|
34 |
-
max_sequence_length: int,
|
35 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
36 |
-
r"""
|
37 |
-
Encode the input text and return the embeddings and attention mask for the input text.
|
38 |
-
|
39 |
-
Args:
|
40 |
-
tokenizer (`AutoTokenizer`):
|
41 |
-
The tokenizer used to tokenize the input text.
|
42 |
-
text_encoder (`GlmModel`):
|
43 |
-
The text encoder used to encode the input text.
|
44 |
-
caption (`Union[str, List[str]]`):
|
45 |
-
The input text to be encoded.
|
46 |
-
max_sequence_length (`int`):
|
47 |
-
The maximum sequence length of the input text.
|
48 |
-
"""
|
49 |
-
if isinstance(caption, str):
|
50 |
-
caption = [caption]
|
51 |
-
|
52 |
-
device = text_encoder.device
|
53 |
-
dtype = text_encoder.dtype
|
54 |
-
|
55 |
-
text_inputs = tokenizer(
|
56 |
-
caption,
|
57 |
-
padding="longest",
|
58 |
-
max_length=max_sequence_length,
|
59 |
-
truncation=True,
|
60 |
-
add_special_tokens=True,
|
61 |
-
return_tensors="pt",
|
62 |
-
)
|
63 |
-
text_input_ids = text_inputs.input_ids.to(device)
|
64 |
-
|
65 |
-
current_length = text_input_ids.size(1)
|
66 |
-
pad_length = 16 - current_length % 16
|
67 |
-
if pad_length > 0:
|
68 |
-
pad_ids = text_input_ids.new_full((text_input_ids.shape[0], pad_length), fill_value=tokenizer.pad_token_id)
|
69 |
-
text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1)
|
70 |
-
|
71 |
-
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True).hidden_states[-2]
|
72 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
73 |
-
|
74 |
-
return {self.output_names[0]: prompt_embeds}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/llama.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import LlamaModel, LlamaTokenizer, LlamaTokenizerFast
|
5 |
-
|
6 |
-
from .base import ProcessorMixin
|
7 |
-
|
8 |
-
|
9 |
-
DEFAULT_PROMPT_TEMPLATE = {
|
10 |
-
"template": (
|
11 |
-
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
|
12 |
-
"1. The main content and theme of the video."
|
13 |
-
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
14 |
-
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
15 |
-
"4. background environment, light, style and atmosphere."
|
16 |
-
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
|
17 |
-
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
18 |
-
),
|
19 |
-
"crop_start": 95,
|
20 |
-
}
|
21 |
-
|
22 |
-
|
23 |
-
class LlamaProcessor(ProcessorMixin):
|
24 |
-
r"""
|
25 |
-
Processor for the Llama family of models. This processor is used to encode text inputs and return the embeddings
|
26 |
-
and attention masks for the input text.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
output_names (`List[str]`):
|
30 |
-
The names of the outputs that the processor should return. The first output is the embeddings of the input
|
31 |
-
text and the second output is the attention mask for the input text.
|
32 |
-
"""
|
33 |
-
|
34 |
-
def __init__(self, output_names: List[str] = None):
|
35 |
-
super().__init__()
|
36 |
-
|
37 |
-
self.output_names = output_names
|
38 |
-
|
39 |
-
assert len(output_names) == 2
|
40 |
-
|
41 |
-
def forward(
|
42 |
-
self,
|
43 |
-
tokenizer: Union[LlamaTokenizer, LlamaTokenizerFast],
|
44 |
-
text_encoder: LlamaModel,
|
45 |
-
caption: Union[str, List[str]],
|
46 |
-
max_sequence_length: int,
|
47 |
-
prompt_template: Optional[Dict[str, Any]] = None,
|
48 |
-
num_layers_to_skip: int = 2,
|
49 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
50 |
-
r"""
|
51 |
-
Encode the input text and return the embeddings and attention mask for the input text.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
tokenizer (`Union[LlamaTokenizer, LlamaTokenizerFast]`):
|
55 |
-
The tokenizer used to tokenize the input text.
|
56 |
-
text_encoder (`LlamaModel`):
|
57 |
-
The text encoder used to encode the input text.
|
58 |
-
caption (`Union[str, List[str]]`):
|
59 |
-
The input text to be encoded.
|
60 |
-
max_sequence_length (`int`):
|
61 |
-
The maximum sequence length of the input text.
|
62 |
-
prompt_template (`Optional[Dict[str, Any]]`):
|
63 |
-
The prompt template to be used to encode the input text.
|
64 |
-
"""
|
65 |
-
if prompt_template is None:
|
66 |
-
prompt_template = DEFAULT_PROMPT_TEMPLATE
|
67 |
-
if isinstance(caption, str):
|
68 |
-
caption = [caption]
|
69 |
-
|
70 |
-
device = text_encoder.device
|
71 |
-
dtype = text_encoder.dtype
|
72 |
-
|
73 |
-
batch_size = len(caption)
|
74 |
-
caption = [prompt_template["template"].format(c) for c in caption]
|
75 |
-
|
76 |
-
crop_start = prompt_template.get("crop_start", None)
|
77 |
-
if crop_start is None:
|
78 |
-
prompt_template_input = tokenizer(
|
79 |
-
prompt_template["template"],
|
80 |
-
padding="max_length",
|
81 |
-
return_tensors="pt",
|
82 |
-
return_length=False,
|
83 |
-
return_overflowing_tokens=False,
|
84 |
-
return_attention_mask=False,
|
85 |
-
)
|
86 |
-
crop_start = prompt_template_input["input_ids"].shape[-1]
|
87 |
-
# Remove <|eot_id|> token and placeholder {}
|
88 |
-
crop_start -= 2
|
89 |
-
|
90 |
-
max_sequence_length += crop_start
|
91 |
-
text_inputs = tokenizer(
|
92 |
-
caption,
|
93 |
-
max_length=max_sequence_length,
|
94 |
-
padding="max_length",
|
95 |
-
truncation=True,
|
96 |
-
return_tensors="pt",
|
97 |
-
return_length=False,
|
98 |
-
return_overflowing_tokens=False,
|
99 |
-
return_attention_mask=True,
|
100 |
-
)
|
101 |
-
text_input_ids = text_inputs.input_ids.to(device)
|
102 |
-
prompt_attention_mask = text_inputs.attention_mask.bool().to(device)
|
103 |
-
|
104 |
-
prompt_embeds = text_encoder(
|
105 |
-
text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
|
106 |
-
).hidden_states[-(num_layers_to_skip + 1)]
|
107 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
108 |
-
|
109 |
-
if crop_start is not None and crop_start > 0:
|
110 |
-
prompt_embeds = prompt_embeds[:, crop_start:]
|
111 |
-
prompt_attention_mask = prompt_attention_mask[:, crop_start:]
|
112 |
-
|
113 |
-
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
114 |
-
|
115 |
-
return {
|
116 |
-
self.output_names[0]: prompt_embeds,
|
117 |
-
self.output_names[1]: prompt_attention_mask,
|
118 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/t5.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
from typing import List, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import T5EncoderModel, T5Tokenizer, T5TokenizerFast
|
5 |
-
|
6 |
-
from .base import ProcessorMixin
|
7 |
-
|
8 |
-
|
9 |
-
class T5Processor(ProcessorMixin):
|
10 |
-
r"""
|
11 |
-
Processor for the T5 family of models. This processor is used to encode text inputs and return the embeddings
|
12 |
-
and attention masks for the input text.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
output_names (`List[str]`):
|
16 |
-
The names of the outputs that the processor should return. The first output is the embeddings of the input
|
17 |
-
text and the second output is the attention mask for the input text.
|
18 |
-
"""
|
19 |
-
|
20 |
-
def __init__(self, output_names: List[str]):
|
21 |
-
super().__init__()
|
22 |
-
|
23 |
-
self.output_names = output_names
|
24 |
-
|
25 |
-
assert len(self.output_names) == 2
|
26 |
-
|
27 |
-
def forward(
|
28 |
-
self,
|
29 |
-
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
30 |
-
text_encoder: T5EncoderModel,
|
31 |
-
caption: Union[str, List[str]],
|
32 |
-
max_sequence_length: int,
|
33 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
34 |
-
r"""
|
35 |
-
Encode the input text and return the embeddings and attention mask for the input text.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
tokenizer (`Union[T5Tokenizer, T5TokenizerFast]`):
|
39 |
-
The tokenizer used to tokenize the input text.
|
40 |
-
text_encoder (`T5EncoderModel`):
|
41 |
-
The text encoder used to encode the input text.
|
42 |
-
caption (`Union[str, List[str]]`):
|
43 |
-
The input text to be encoded.
|
44 |
-
max_sequence_length (`int`):
|
45 |
-
The maximum sequence length of the input text.
|
46 |
-
"""
|
47 |
-
if isinstance(caption, str):
|
48 |
-
caption = [caption]
|
49 |
-
|
50 |
-
device = text_encoder.device
|
51 |
-
dtype = text_encoder.dtype
|
52 |
-
|
53 |
-
batch_size = len(caption)
|
54 |
-
text_inputs = tokenizer(
|
55 |
-
caption,
|
56 |
-
padding="max_length",
|
57 |
-
max_length=max_sequence_length,
|
58 |
-
truncation=True,
|
59 |
-
add_special_tokens=True,
|
60 |
-
return_tensors="pt",
|
61 |
-
)
|
62 |
-
text_input_ids = text_inputs.input_ids
|
63 |
-
prompt_attention_mask = text_inputs.attention_mask
|
64 |
-
prompt_attention_mask = prompt_attention_mask.bool().to(device)
|
65 |
-
|
66 |
-
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
67 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
68 |
-
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
69 |
-
|
70 |
-
return {
|
71 |
-
self.output_names[0]: prompt_embeds,
|
72 |
-
self.output_names[1]: prompt_attention_mask,
|
73 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetrainers/processors/text.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
from typing import List, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from .. import functional as FF
|
6 |
-
from .base import ProcessorMixin
|
7 |
-
|
8 |
-
|
9 |
-
class CaptionTextDropoutProcessor(ProcessorMixin):
|
10 |
-
def __init__(self, dropout_p: float = 0.0) -> None:
|
11 |
-
self.dropout_p = dropout_p
|
12 |
-
|
13 |
-
def forward(self, caption: Union[str, List[str]]) -> Union[str, List[str]]:
|
14 |
-
return FF.dropout_caption(caption, self.dropout_p)
|
15 |
-
|
16 |
-
|
17 |
-
class CaptionEmbeddingDropoutProcessor(ProcessorMixin):
|
18 |
-
def __init__(self, dropout_p: float = 0.0) -> None:
|
19 |
-
self.dropout_p = dropout_p
|
20 |
-
|
21 |
-
def forward(self, embedding: torch.Tensor) -> torch.Tensor:
|
22 |
-
return FF.dropout_embeddings_to_zero(embedding, self.dropout_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|