Spaces:
Running
Running
Commit
·
f577b1e
1
Parent(s):
df0584b
investigating captionning issues
Browse files- app.py +3 -3
- captioning_service.py +67 -52
app.py
CHANGED
@@ -263,15 +263,15 @@ class VideoTrainerUI:
|
|
263 |
is_completed = training_state["status"] in ["completed", "error", "stopped"]
|
264 |
|
265 |
return {
|
266 |
-
start_btn: gr.Button(
|
267 |
interactive=not is_training and not is_paused,
|
268 |
variant="primary" if not is_training else "secondary",
|
269 |
),
|
270 |
-
stop_btn: gr.Button(
|
271 |
interactive=is_training or is_paused,
|
272 |
variant="stop",
|
273 |
),
|
274 |
-
pause_resume_btn: gr.Button(
|
275 |
value="Resume Training" if is_paused else "Pause Training",
|
276 |
interactive=(is_training or is_paused) and not is_completed,
|
277 |
variant="secondary",
|
|
|
263 |
is_completed = training_state["status"] in ["completed", "error", "stopped"]
|
264 |
|
265 |
return {
|
266 |
+
"start_btn": gr.Button(
|
267 |
interactive=not is_training and not is_paused,
|
268 |
variant="primary" if not is_training else "secondary",
|
269 |
),
|
270 |
+
"stop_btn": gr.Button(
|
271 |
interactive=is_training or is_paused,
|
272 |
variant="stop",
|
273 |
),
|
274 |
+
"pause_resume_btn": gr.Button(
|
275 |
value="Resume Training" if is_paused else "Pause Training",
|
276 |
interactive=(is_training or is_paused) and not is_completed,
|
277 |
variant="secondary",
|
captioning_service.py
CHANGED
@@ -2,8 +2,6 @@ import logging
|
|
2 |
import torch
|
3 |
import shutil
|
4 |
import gradio as gr
|
5 |
-
from llava.model.builder import load_pretrained_model
|
6 |
-
from llava.mm_utils import tokenizer_image_token
|
7 |
import numpy as np
|
8 |
from decord import VideoReader, cpu
|
9 |
from pathlib import Path
|
@@ -12,6 +10,10 @@ import asyncio
|
|
12 |
from dataclasses import dataclass
|
13 |
from datetime import datetime
|
14 |
import cv2
|
|
|
|
|
|
|
|
|
15 |
from config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
|
16 |
from utils import extract_scene_info, is_image_file, is_video_file
|
17 |
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
@@ -142,12 +144,21 @@ class CaptioningService:
|
|
142 |
self.model.eval()
|
143 |
|
144 |
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> tuple[np.ndarray, str, float]:
|
145 |
-
"""Load and preprocess video frames
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
logger.debug(f"Loading video: {video_path_str}")
|
150 |
|
|
|
151 |
if max_frames_num == 0:
|
152 |
return np.zeros((1, 336, 336, 3)), "", 0
|
153 |
|
@@ -155,17 +166,18 @@ class CaptioningService:
|
|
155 |
total_frame_num = len(vr)
|
156 |
video_time = total_frame_num / vr.get_avg_fps()
|
157 |
|
158 |
-
# Calculate frame indices
|
159 |
fps = round(vr.get_avg_fps()/fps)
|
160 |
frame_idx = [i for i in range(0, len(vr), fps)]
|
161 |
frame_time = [i/fps for i in frame_idx]
|
162 |
|
|
|
163 |
if len(frame_idx) > max_frames_num or force_sample:
|
164 |
sample_fps = max_frames_num
|
165 |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
166 |
frame_idx = uniform_sampled_frames.tolist()
|
167 |
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
168 |
-
|
169 |
frame_time_str = ",".join([f"{i:.2f}s" for i in frame_time])
|
170 |
|
171 |
try:
|
@@ -181,7 +193,7 @@ class CaptioningService:
|
|
181 |
video_name = video_path.name
|
182 |
logger.info(f"Starting processing of video: {video_name}")
|
183 |
|
184 |
-
# Load video metadata
|
185 |
logger.debug(f"Loading video metadata for {video_name}")
|
186 |
loop = asyncio.get_event_loop()
|
187 |
vr = await loop.run_in_executor(None, lambda: VideoReader(str(video_path), ctx=cpu(0)))
|
@@ -201,28 +213,21 @@ class CaptioningService:
|
|
201 |
parent_caption = ""
|
202 |
if "___" in video_path.stem:
|
203 |
parent_name, _ = extract_scene_info(video_path.stem)
|
204 |
-
#print(f"parent_name is {parent_name}")
|
205 |
parent_txt_path = VIDEOS_TO_SPLIT_PATH / f"{parent_name}.txt"
|
206 |
if parent_txt_path.exists():
|
207 |
-
logger.debug(f"Found parent caption file: {parent_txt_path}")
|
208 |
parent_caption = parent_txt_path.read_text().strip()
|
209 |
|
210 |
# Ensure model is loaded before processing
|
211 |
await self.ensure_model_loaded()
|
212 |
|
213 |
if USE_MOCK_CAPTIONING_MODEL:
|
214 |
-
|
215 |
# Even in mock mode, we'll generate a caption that shows we processed parent info
|
216 |
clip_caption = f"This is a test caption for {video_name}"
|
217 |
|
218 |
# Combine clip caption with parent caption
|
219 |
-
if parent_caption
|
220 |
-
#print(f"we have parent_caption, so we define the full_caption as {clip_caption}\n{parent_caption}")
|
221 |
-
|
222 |
full_caption = f"{clip_caption}\n{parent_caption}"
|
223 |
else:
|
224 |
-
#print(f"we don't have a parent_caption, so we define the full_caption as {clip_caption}")
|
225 |
-
|
226 |
full_caption = clip_caption
|
227 |
|
228 |
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
@@ -238,13 +243,12 @@ class CaptioningService:
|
|
238 |
progress.processed_frames = total_frames
|
239 |
progress.completed_at = datetime.now()
|
240 |
yield progress, full_caption
|
241 |
-
|
242 |
else:
|
243 |
-
# Process frames
|
244 |
-
max_frames_num = 64
|
245 |
frames, frame_times_str, video_time = await loop.run_in_executor(
|
246 |
None,
|
247 |
-
lambda: self._load_video(video_path, max_frames_num)
|
248 |
)
|
249 |
|
250 |
# Process all frames at once using the image processor
|
@@ -264,16 +268,27 @@ class CaptioningService:
|
|
264 |
# Move processed frames to GPU
|
265 |
video_tensor = processed_frames.to('cuda').bfloat16()
|
266 |
|
|
|
|
|
267 |
time_instruction = (f"The video lasts for {video_time:.2f} seconds, and {len(frames)} "
|
268 |
f"frames are uniformly sampled from it. These frames are located at {frame_times_str}.")
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
input_ids = await loop.run_in_executor(
|
272 |
None,
|
273 |
-
lambda: tokenizer_image_token(
|
274 |
)
|
275 |
|
276 |
-
# Generate caption
|
277 |
with torch.no_grad():
|
278 |
output = await loop.run_in_executor(
|
279 |
None,
|
@@ -283,45 +298,45 @@ class CaptioningService:
|
|
283 |
modalities=["video"],
|
284 |
do_sample=False,
|
285 |
temperature=0,
|
286 |
-
max_new_tokens=
|
287 |
)
|
288 |
)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
# Combine clip caption with parent caption
|
296 |
-
if parent_caption:
|
297 |
-
print(f"we have parent_caption, so we define the full_caption as {clip_caption}\n{parent_caption}")
|
298 |
-
|
299 |
-
full_caption = f"{clip_caption}\n{parent_caption}"
|
300 |
-
else:
|
301 |
-
print(f"we don't have a parent_caption, so we define the full_caption as {clip_caption}")
|
302 |
-
|
303 |
-
full_caption = clip_caption
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
except Exception as e:
|
319 |
progress.status = "error"
|
320 |
progress.error = str(e)
|
321 |
progress.completed_at = datetime.now()
|
322 |
yield progress, None
|
323 |
-
raise
|
324 |
-
|
325 |
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
|
326 |
"""Process a single image for captioning"""
|
327 |
try:
|
|
|
2 |
import torch
|
3 |
import shutil
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import numpy as np
|
6 |
from decord import VideoReader, cpu
|
7 |
from pathlib import Path
|
|
|
10 |
from dataclasses import dataclass
|
11 |
from datetime import datetime
|
12 |
import cv2
|
13 |
+
import copy
|
14 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
15 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
16 |
+
|
17 |
from config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
|
18 |
from utils import extract_scene_info, is_image_file, is_video_file
|
19 |
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
|
|
144 |
self.model.eval()
|
145 |
|
146 |
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> tuple[np.ndarray, str, float]:
|
147 |
+
"""Load and preprocess video frames with strict limits
|
148 |
+
|
149 |
+
Args:
|
150 |
+
video_path: Path to video file
|
151 |
+
max_frames_num: Maximum number of frames to extract (default: 64)
|
152 |
+
fps: Frames per second to sample (default: 1)
|
153 |
+
force_sample: Whether to force uniform sampling (default: True)
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
Tuple of (frames, frame_times_str, video_time)
|
157 |
+
"""
|
158 |
+
video_path_str = str(video_path)
|
159 |
logger.debug(f"Loading video: {video_path_str}")
|
160 |
|
161 |
+
# Handle empty video case
|
162 |
if max_frames_num == 0:
|
163 |
return np.zeros((1, 336, 336, 3)), "", 0
|
164 |
|
|
|
166 |
total_frame_num = len(vr)
|
167 |
video_time = total_frame_num / vr.get_avg_fps()
|
168 |
|
169 |
+
# Calculate frame indices with uniform sampling
|
170 |
fps = round(vr.get_avg_fps()/fps)
|
171 |
frame_idx = [i for i in range(0, len(vr), fps)]
|
172 |
frame_time = [i/fps for i in frame_idx]
|
173 |
|
174 |
+
# Force uniform sampling if too many frames
|
175 |
if len(frame_idx) > max_frames_num or force_sample:
|
176 |
sample_fps = max_frames_num
|
177 |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
178 |
frame_idx = uniform_sampled_frames.tolist()
|
179 |
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
180 |
+
|
181 |
frame_time_str = ",".join([f"{i:.2f}s" for i in frame_time])
|
182 |
|
183 |
try:
|
|
|
193 |
video_name = video_path.name
|
194 |
logger.info(f"Starting processing of video: {video_name}")
|
195 |
|
196 |
+
# Load video metadata with strict frame limits
|
197 |
logger.debug(f"Loading video metadata for {video_name}")
|
198 |
loop = asyncio.get_event_loop()
|
199 |
vr = await loop.run_in_executor(None, lambda: VideoReader(str(video_path), ctx=cpu(0)))
|
|
|
213 |
parent_caption = ""
|
214 |
if "___" in video_path.stem:
|
215 |
parent_name, _ = extract_scene_info(video_path.stem)
|
|
|
216 |
parent_txt_path = VIDEOS_TO_SPLIT_PATH / f"{parent_name}.txt"
|
217 |
if parent_txt_path.exists():
|
|
|
218 |
parent_caption = parent_txt_path.read_text().strip()
|
219 |
|
220 |
# Ensure model is loaded before processing
|
221 |
await self.ensure_model_loaded()
|
222 |
|
223 |
if USE_MOCK_CAPTIONING_MODEL:
|
|
|
224 |
# Even in mock mode, we'll generate a caption that shows we processed parent info
|
225 |
clip_caption = f"This is a test caption for {video_name}"
|
226 |
|
227 |
# Combine clip caption with parent caption
|
228 |
+
if parent_caption:
|
|
|
|
|
229 |
full_caption = f"{clip_caption}\n{parent_caption}"
|
230 |
else:
|
|
|
|
|
231 |
full_caption = clip_caption
|
232 |
|
233 |
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
|
|
243 |
progress.processed_frames = total_frames
|
244 |
progress.completed_at = datetime.now()
|
245 |
yield progress, full_caption
|
|
|
246 |
else:
|
247 |
+
# Process frames with strict limits
|
248 |
+
max_frames_num = 64 # Maximum frames supported by the model
|
249 |
frames, frame_times_str, video_time = await loop.run_in_executor(
|
250 |
None,
|
251 |
+
lambda: self._load_video(video_path, max_frames_num, fps=1, force_sample=True)
|
252 |
)
|
253 |
|
254 |
# Process all frames at once using the image processor
|
|
|
268 |
# Move processed frames to GPU
|
269 |
video_tensor = processed_frames.to('cuda').bfloat16()
|
270 |
|
271 |
+
# Use proper conversation template and tokens
|
272 |
+
conv_template = "qwen_1_5"
|
273 |
time_instruction = (f"The video lasts for {video_time:.2f} seconds, and {len(frames)} "
|
274 |
f"frames are uniformly sampled from it. These frames are located at {frame_times_str}.")
|
275 |
+
|
276 |
+
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{prompt}"
|
277 |
+
|
278 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
279 |
+
conv.append_message(conv.roles[0], full_question)
|
280 |
+
conv.append_message(conv.roles[1], None)
|
281 |
+
prompt_question = conv.get_prompt()
|
282 |
+
|
283 |
+
# Cap the output length to prevent hallucination
|
284 |
+
max_new_tokens = 512 # Reasonable limit for caption length
|
285 |
|
286 |
input_ids = await loop.run_in_executor(
|
287 |
None,
|
288 |
+
lambda: tokenizer_image_token(prompt_question, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
|
289 |
)
|
290 |
|
291 |
+
# Generate caption with controlled parameters
|
292 |
with torch.no_grad():
|
293 |
output = await loop.run_in_executor(
|
294 |
None,
|
|
|
298 |
modalities=["video"],
|
299 |
do_sample=False,
|
300 |
temperature=0,
|
301 |
+
max_new_tokens=max_new_tokens,
|
302 |
)
|
303 |
)
|
304 |
|
305 |
+
clip_caption = await loop.run_in_executor(
|
306 |
+
None,
|
307 |
+
lambda: self.tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
|
308 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
# Remove the instruction/question part from the response
|
311 |
+
if time_instruction in clip_caption:
|
312 |
+
clip_caption = clip_caption.split(time_instruction)[1].strip()
|
313 |
+
if prompt in clip_caption:
|
314 |
+
clip_caption = clip_caption.split(prompt)[1].strip()
|
315 |
|
316 |
+
# Combine captions with proper formatting
|
317 |
+
if parent_caption:
|
318 |
+
full_caption = f"{clip_caption}\n{parent_caption}"
|
319 |
+
else:
|
320 |
+
full_caption = clip_caption
|
321 |
+
|
322 |
+
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
323 |
+
full_caption = f"{prompt_prefix}{full_caption}"
|
324 |
+
|
325 |
+
# Write caption
|
326 |
+
txt_path = video_path.with_suffix('.txt')
|
327 |
+
txt_path.write_text(full_caption)
|
328 |
+
|
329 |
+
progress.status = "completed"
|
330 |
+
progress.completed_at = datetime.now()
|
331 |
+
yield progress, full_caption
|
332 |
|
333 |
except Exception as e:
|
334 |
progress.status = "error"
|
335 |
progress.error = str(e)
|
336 |
progress.completed_at = datetime.now()
|
337 |
yield progress, None
|
338 |
+
raise
|
339 |
+
|
340 |
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
|
341 |
"""Process a single image for captioning"""
|
342 |
try:
|