import collections from enum import Enum import torch from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import checkpoint_wrapper from ._common import DIFFUSERS_TRANSFORMER_BLOCK_NAMES class CheckpointType(str, Enum): FULL = "full" OPS = "ops" BLOCK_SKIP = "block_skip" _SELECTIVE_ACTIVATION_CHECKPOINTING_OPS = { torch.ops.aten.mm.default, torch.ops.aten._scaled_dot_product_efficient_attention.default, torch.ops.aten._scaled_dot_product_flash_attention.default, torch.ops._c10d_functional.reduce_scatter_tensor.default, } def apply_activation_checkpointing( module: torch.nn.Module, checkpointing_type: str = CheckpointType.FULL, n_layer: int = 1 ) -> torch.nn.Module: if checkpointing_type == CheckpointType.FULL: module = _apply_activation_checkpointing_blocks(module) elif checkpointing_type == CheckpointType.OPS: module = _apply_activation_checkpointing_ops(module, _SELECTIVE_ACTIVATION_CHECKPOINTING_OPS) elif checkpointing_type == CheckpointType.BLOCK_SKIP: module = _apply_activation_checkpointing_blocks(module, n_layer) else: raise ValueError( f"Checkpointing type '{checkpointing_type}' not supported. Supported types are {CheckpointType.__members__.keys()}" ) return module def _apply_activation_checkpointing_blocks(module: torch.nn.Module, n_layer: int = None) -> torch.nn.Module: for transformer_block_name in DIFFUSERS_TRANSFORMER_BLOCK_NAMES: blocks: torch.nn.Module = getattr(module, transformer_block_name, None) if blocks is None: continue for index, (layer_id, block) in enumerate(blocks.named_children()): if n_layer is None or index % n_layer == 0: block = checkpoint_wrapper(block, preserve_rng_state=False) blocks.register_module(layer_id, block) return module def _apply_activation_checkpointing_ops(module: torch.nn.Module, ops) -> torch.nn.Module: from torch.utils.checkpoint import CheckpointPolicy, create_selective_checkpoint_contexts def _get_custom_policy(meta): def _custom_policy(ctx, func, *args, **kwargs): mode = "recompute" if ctx.is_recompute else "forward" mm_count_key = f"{mode}_mm_count" if func == torch.ops.aten.mm.default: meta[mm_count_key] += 1 # Saves output of all compute ops, except every second mm to_save = func in ops and not (func == torch.ops.aten.mm.default and meta[mm_count_key] % 2 == 0) return CheckpointPolicy.MUST_SAVE if to_save else CheckpointPolicy.PREFER_RECOMPUTE return _custom_policy def selective_checkpointing_context_fn(): meta = collections.defaultdict(int) return create_selective_checkpoint_contexts(_get_custom_policy(meta)) return checkpoint_wrapper(module, context_fn=selective_checkpointing_context_fn, preserve_rng_state=False)