import torch import logging logger = logging.getLogger(__name__) def get_available_gpu_count(): """Get the number of available GPUs on the system. Returns: int: Number of available GPUs, or 0 if no GPUs are available """ try: if torch.cuda.is_available(): return torch.cuda.device_count() else: return 0 except Exception as e: logger.warning(f"Error detecting GPUs: {e}") return 0 def get_gpu_info(): """Get information about available GPUs. Returns: list: List of dictionaries with GPU information """ gpu_info = [] try: if torch.cuda.is_available(): for i in range(torch.cuda.device_count()): gpu = { 'index': i, 'name': torch.cuda.get_device_name(i), 'memory_total': torch.cuda.get_device_properties(i).total_memory } gpu_info.append(gpu) except Exception as e: logger.warning(f"Error getting GPU details: {e}") return gpu_info def get_recommended_precomputation_items(num_videos, num_gpus): """Calculate recommended precomputation items. Args: num_videos (int): Number of videos in dataset num_gpus (int): Number of GPUs to use Returns: int: Recommended precomputation items value """ if num_gpus <= 0: num_gpus = 1 # Calculate items per GPU, but ensure it's at least 1 items_per_gpu = max(1, num_videos // num_gpus) # Limit to a maximum of 512 return min(512, items_per_gpu)