Spaces:
Running
Running
import { FilesetResolver, ImageSegmenter, ImageSegmenterResult } from "@mediapipe/tasks-vision" | |
export type VideoSegmenter = (videoFrame: TexImageSource, timestamp: number) => Promise<ImageSegmenterResult> | |
const getSegmenter = async (): Promise<VideoSegmenter> => { | |
const vision = await FilesetResolver.forVisionTasks( | |
"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm" | |
); | |
const imageSegmenter = await ImageSegmenter.createFromOptions(vision, { | |
baseOptions: { | |
modelAssetPath: | |
// this is a very lightweight model (< 2.7 Mb!) so it is not perfect, | |
// it can only detect a few types of objects | |
"https://storage.googleapis.com/mediapipe-assets/deeplabv3.tflite?generation=1661875711618421", | |
}, | |
outputCategoryMask: true, | |
outputConfidenceMasks: false, | |
// since we only generate images for now, | |
// there is little consistency between each of them | |
// so there is no need to use "VIDEO" | |
runningMode: "VIDEO" | |
}); | |
const segmenter: VideoSegmenter = (videoFrame: TexImageSource, timestamp: number): Promise<ImageSegmenterResult> => { | |
return new Promise((resolve, reject) => { | |
imageSegmenter.segmentForVideo(videoFrame, timestamp, (results) => { | |
resolve(results) | |
}) | |
}) | |
} | |
return segmenter | |
} | |
const globalState: { segmenter?: VideoSegmenter } = {}; | |
(async () => { | |
globalState.segmenter = globalState.segmenter || (await getSegmenter()) | |
})(); | |
export async function segmentFrame(frame: TexImageSource, timestamp: number): Promise<ImageSegmenterResult> { | |
console.log("segmentFrame: loading segmenter..") | |
globalState.segmenter = globalState.segmenter || (await getSegmenter()) | |
console.log("segmentFrame: segmenting..") | |
return globalState.segmenter(frame, timestamp) | |
} | |
// to run: | |
// see doc: | |
// https://developers.google.com/mediapipe/solutions/vision/image_segmenter/web_js#video | |
// imageSegmenter.segmentForVideo(video, startTimeMs, callbackForVideo); | |