File size: 13,218 Bytes
a2eb7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae3127
a2eb7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d46b951
a2eb7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import torch
from diffusers import AudioLDMPipeline
from share_btn import community_icon_html, loading_icon_html, share_js

from transformers import AutoProcessor, ClapModel


# make Space compatible with CPU duplicates
if torch.cuda.is_available():
    device = "cuda"
    torch_dtype = torch.float16
else:
    device = "cpu"
    torch_dtype = torch.float32

# load the diffusers pipeline
repo_id = "cvssp/audioldm-m-full"
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
pipe.unet = torch.compile(pipe.unet)

# CLAP model (only required for automatic scoring)
clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device)
processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full")

generator = torch.Generator(device)


def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates):
    if text is None:
        raise gr.Error("Please provide a text input.")

    waveforms = pipe(
        text,
        audio_length_in_s=duration,
        guidance_scale=guidance_scale,
        negative_prompt=negative_prompt,
        num_waveforms_per_prompt=n_candidates if n_candidates else 1,
        generator=generator.manual_seed(int(random_seed)),
    )["audios"]

    if waveforms.shape[0] > 1:
        waveform = score_waveforms(text, waveforms)
    else:
        waveform = waveforms[0]

    return gr.make_waveform((16000, waveform), bg_image="bg.png")


def score_waveforms(text, waveforms):
    inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}
    with torch.no_grad():
        logits_per_text = clap_model(**inputs).logits_per_text  # this is the audio-text similarity score
        probs = logits_per_text.softmax(dim=-1)  # we can take the softmax to get the label probabilities
        most_probable = torch.argmax(probs)  # and now select the most likely audio waveform
    waveform = waveforms[most_probable]
    return waveform


css = """
        a {
            color: inherit; text-decoration: underline;
        } .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        } .gr-button {
            color: white; border-color: #000000; background: #000000;
        } input[type='range'] {
            accent-color: #000000;
        } .dark input[type='range'] {
            accent-color: #dfdfdf;
        } .container {
            max-width: 730px; margin: auto; padding-top: 1.5rem;
        } #gallery {
            min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius:
            .5rem !important; border-bottom-left-radius: .5rem !important;
        } #gallery>div>.h-full {
            min-height: 20rem;
        } .details:hover {
            text-decoration: underline;
        } .gr-button {
            white-space: nowrap;
        } .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow:
            var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width)
            var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px
            var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 /
            var(--tw-ring-opacity)); --tw-ring-opacity: .5;
        } #advanced-btn {
            font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px;
            border-radius: 14px !important;
        } #advanced-options {
            margin-bottom: 20px;
        } .footer {
            margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5;
        } .footer>p {
            font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white;
        } .dark .footer {
            border-color: #303030;
        } .dark .footer>p {
            background: #0b0f19;
        } .acknowledgments h4{
            margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%;
        } #container-advanced-btns{
            display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center;
        } .animate-spin {
            animation: spin 1s linear infinite;
        } @keyframes spin {
            from {
                transform: rotate(0deg);
            } to {
                transform: rotate(360deg);
            }
        } #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color:
            #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px; margin-left: auto;
        } #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif;
            margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem
            !important;right:0;
        } #share-btn * {
            all: unset;
        } #share-btn-container div:nth-child(-n+2){
            width: auto !important; min-height: 0px !important;
        } #share-btn-container .wrap {
            display: none !important;
        } .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        } #prompt-container{
            gap: 0;
        } #generated_id{
            min-height: 700px
        } #setting_id{
          margin-bottom: 12px; text-align: center; font-weight: 900;
        }
"""
iface = gr.Blocks(css=css)

with iface:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
                </h1>
              </div> <p style="margin-bottom: 10px; font-size: 94%">
                <a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project
                page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm">[🧨
                Diffusers]</a>
              </p>
            </div>
        """
    )
    gr.HTML(
        """
        <p>This is the demo for AudioLDM, powered by 🧨 Diffusers. Demo uses the checkpoint <a
        href="https://huggingface.co/cvssp/audioldm-m-full"> audioldm-m-full </a>. For faster inference without waiting in
        queue, you may duplicate the space and upgrade to a GPU in the settings. <br/> <a
        href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true"> <img
        style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> <p/>
    """
    )

    with gr.Group():
        with gr.Box():
            textbox = gr.Textbox(
                value="",
                max_lines=1,
                label="Input text",
                info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.",
                elem_id="prompt-in",
            )
            negative_textbox = gr.Textbox(
                value="low quality, average quality",
                max_lines=1,
                label="Negative prompt",
                info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.",
                elem_id="prompt-in",
            )

            with gr.Accordion("Click to modify detailed configurations", open=False):
                seed = gr.Number(
                    value=45,
                    label="Seed",
                    info="Change this value (any integer number) will lead to a different generation result.",
                )
                duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
                guidance_scale = gr.Slider(
                    0,
                    4,
                    value=2.5,
                    step=0.5,
                    label="Guidance scale",
                    info="Large => better quality and relevancy to text; Small => better diversity",
                )
                n_candidates = gr.Slider(
                    1,
                    3,
                    value=3,
                    step=1,
                    label="Number waveforms to generate",
                    info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
                )

            outputs = gr.Video(label="Output", elem_id="output-video")
            btn = gr.Button("Submit").style(full_width=True)

        with gr.Group(elem_id="share-btn-container", visible=False):
            community_icon = gr.HTML(community_icon_html)
            loading_icon = gr.HTML(loading_icon_html)
            share_button = gr.Button("Share to community", elem_id="share-btn")

        btn.click(
            text2audio,
            inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
            outputs=[outputs],
            api_name="generate"
        )

        share_button.click(None, [], [], _js=share_js)
        gr.HTML(
            """
        <div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
                    <p>Follow the latest update of AudioLDM on our<a href="https://github.com/haoheliu/AudioLDM"
                    style="text-decoration: underline;" target="_blank"> Github repo</a> </p> <br> <p>Model by <a
                    href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe
                    Liu</a>. Code and demo by 🤗 Hugging Face.</p> <br>
        </div>
        """
        )
        gr.Examples(
            [
                ["A hammer is hitting a wooden surface", "low quality, average quality", 5, 2.5, 45, 3],
                ["Peaceful and calming ambient music with singing bowl and other instruments.", "low quality, average quality", 5, 2.5, 45, 3],
                ["A man is speaking in a small room.", "low quality, average quality", 5, 2.5, 45, 3],
                ["A female is speaking followed by footstep sound", "low quality, average quality", 5, 2.5, 45, 3],
                ["Wooden table tapping sound followed by water pouring sound.", "low quality, average quality", 5, 2.5, 45, 3],
            ],
            fn=text2audio,
            inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates],
            outputs=[outputs],
            cache_examples=True,
        )
        gr.HTML(
            """
                <div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated
                Audio</p> <p>1. Try to use more adjectives to describe your sound. For example: "A man is speaking
                clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM
                understands what you want.</p> <p>2. Try to use different random seeds, which can affect the generation
                quality significantly sometimes.</p> <p>3. It's better to use general terms like 'man' or 'woman'
                instead of specific names for individuals or abstract objects that humans may not be familiar with,
                such as 'mummy'.</p> <p>4. Using a negative prompt to not guide the diffusion process can improve the
                audio quality significantly. Try using negative prompts like 'low quality'.</p> </div>
                """
        )
        with gr.Accordion("Additional information", open=False):
            gr.HTML(
                """
                <div class="acknowledgments">
                    <p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>,
                    <a href="https://freesound.org/">Freesound</a> and <a
                    href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo
                    based on the <a
                    href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK
                    copyright exception</a> of data for academic research. </p>
                            </div>
                        """
            )
# <p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p>

iface.queue(max_size=10).launch(debug=True)