Spaces:
Paused
Paused
File size: 3,008 Bytes
5b3c62d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import express from "express"
import fileUpload from "express-fileupload"
import path from "path"
import os from "os"
import fs from "fs"
import archiver from "archiver"
import ffmpeg from "fluent-ffmpeg"
// import { initFolders } from "./initFolders.mts"
import { runColmap, ColmapOptions } from "./colmap.mts"
// initFolders()
declare module 'express-serve-static-core' {
interface Request {
files: any;
}
}
const app = express()
const port = 7860
const maxActiveRequests = 4
let activeRequests = 0
app.use(express.json({limit: '50mb'}))
app.use(express.urlencoded({limit: '50mb', extended: true}))
app.use(fileUpload())
app.post("/", async (req, res) => {
if (activeRequests >= maxActiveRequests) {
res.status(503).json({message: "Service Unavailable: Max concurrent requests reached. Please try again later"}).end();
return
}
activeRequests++
if (!req.files || !req.files.data || req.files.data.mimetype !== 'video/mp4') {
res.status(400).json({error: "Missing or invalid data file in request"}).end()
return
}
let options: ColmapOptions = req.body
let dataFile: fileUpload.UploadedFile = req.files.data
let projectTempDir = path.join(os.tmpdir(), Math.random().toString().slice(2))
let outputTempDir = path.join(os.tmpdir(), Math.random().toString().slice(2))
try {
fs.mkdirSync(projectTempDir)
fs.mkdirSync(outputTempDir)
await dataFile.mv(path.join(projectTempDir, dataFile.name))
let imageFolder = path.join(projectTempDir, 'images');
fs.mkdirSync(imageFolder)
await new Promise((resolve, reject) => {
ffmpeg(path.join(projectTempDir, dataFile.name))
.outputOptions('-vf', 'fps=1') // Change this value depending on the number of frames you want from video.
.output(path.join(imageFolder, 'image-%03d.png'))
.on('end', resolve)
.on('error', reject)
.run()
})
options.projectPath = projectTempDir
options.workspacePath = projectTempDir
options.imagePath = imageFolder
const result = await runColmap(options)
let outputFilePath = path.join(outputTempDir, 'output.zip')
let output = fs.createWriteStream(outputFilePath)
let archive = archiver('zip')
archive.directory(outputTempDir, false)
archive.pipe(output)
await archive.finalize()
res.status(200)
res.download(outputFilePath, 'output.zip', (error) => {
if (!error) fs.rmSync(projectTempDir, {recursive: true, force: true})
fs.rmSync(outputTempDir, {recursive: true, force: true})
})
} catch (error) {
res.status(500).json({
error: "Couldn't generate pose data",
message: error
}).end()
} finally {
activeRequests--
}
});
app.get("/", async (req, res) => {
res.status(200)
res.write(`<html><head></head><body>
Campose API is a micro-service used to generate came pose data from a set of images.
</body></html>`)
res.end()
})
app.listen(port, () => { console.log(`Open http://localhost:${port}`) }) |