File size: 15,266 Bytes
b888bcf
6a4b741
d3774b8
 
3d5a08b
6a4b741
ad569d5
6db905d
f5d25ef
6a4b741
 
b888bcf
f424501
2f833d2
b6a8c7c
f5d25ef
 
 
 
 
 
 
 
 
 
 
52afd4e
 
 
f5d25ef
 
 
 
 
f5f53dc
bb0df2d
d3774b8
1f087be
f5f53dc
52afd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b888bcf
c4cd17d
2f833d2
c4cd17d
 
 
 
 
 
 
6db905d
09de898
2f833d2
 
b6a8c7c
 
c4cd17d
 
b888bcf
6a4b741
d06267b
 
52afd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
0c47721
 
52afd4e
0c47721
 
 
52afd4e
d06267b
ad569d5
 
2f833d2
 
 
ad569d5
 
 
 
 
 
2f833d2
 
 
 
 
b888bcf
b6a8c7c
 
f5d25ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6130cf9
560d75d
 
f5d25ef
3bef9b2
f5d25ef
 
 
 
 
 
 
71c1a49
f5d25ef
 
71c1a49
 
 
 
f5d25ef
71c1a49
 
 
 
f5d25ef
 
 
 
 
 
 
71c1a49
 
 
 
 
 
 
 
 
 
f5d25ef
71c1a49
 
 
bade8d8
f424501
6a4b741
 
6b7c1b1
b5a40cb
5715833
6ba990e
d06267b
74395e4
 
 
 
 
 
 
6ba990e
8fe2fce
be2828d
c4cd17d
be2828d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f329ae
 
bb0df2d
52afd4e
10151ae
 
 
645b9bf
 
52afd4e
645b9bf
 
 
 
 
 
 
 
 
4c36274
52afd4e
8ca8d03
3d5a08b
8ca8d03
 
3d5a08b
 
3f3a00c
3d5a08b
52afd4e
8ca8d03
3d5a08b
 
3f3a00c
8ca8d03
52afd4e
8ca8d03
52afd4e
 
8ca8d03
7c58fd1
 
8ca8d03
7c58fd1
 
 
8ca8d03
dc9311b
8ca8d03
 
 
 
 
dc9311b
 
 
8ca8d03
10151ae
8ca8d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10151ae
 
 
52afd4e
 
8ca8d03
 
9065743
13fc876
52afd4e
 
 
9065743
 
 
3f3a00c
52afd4e
 
 
dc9311b
13fc876
 
4687ae6
13fc876
 
c24886c
 
 
 
 
 
 
3f3a00c
 
dc9311b
645b9bf
dc9311b
52afd4e
 
 
 
 
d06267b
 
c24886c
 
8ca8d03
52afd4e
c4cd17d
 
 
52afd4e
2f833d2
52afd4e
 
be2828d
dc9311b
 
 
10151ae
 
b888bcf
9065743
6de6264
52afd4e
 
 
 
b888bcf
b5a40cb
52afd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9065743
52afd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fdd92
5715833
52afd4e
 
 
 
9065743
52afd4e
 
 
 
 
 
 
 
b888bcf
b5a40cb
52afd4e
8fe2fce
b5a40cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import gradio as gr
import torch
torch.jit.script = lambda f: f
import timm
import time
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler

import lora
import copy
import json
import gc
import random
from urllib.parse import quote
import gdown
import os

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
import cv2
import torch
import numpy as np
from PIL import Image
from io import BytesIO
import base64
import re

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
from controlnet_aux import ZoeDetector

from compel import Compel, ReturnedEmbeddingsType
#import spaces

#from gradio_imageslider import ImageSlider


# Regex pattern to match data URI scheme
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')

def readb64(b64):
    # Remove any data URI scheme prefix with regex
    b64 = data_uri_pattern.sub("", b64)
    # Decode and open the image with PIL
    img = Image.open(BytesIO(base64.b64decode(b64)))
    return img
    
# convert from PIL to base64
def writeb64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    b64image = base64.b64encode(buffered.getvalue())
    b64image_str = b64image.decode("utf-8")
    return b64image_str


with open("sdxl_loras.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
            "downloads": item.get("downloads", 0),
            "is_nc": item.get("is_nc", False),
            "new": item.get("new", False),
        }
        for item in data
    ]

with open("defaults_data.json", "r") as file:
    lora_defaults = json.load(file)


def getLoraByRepoName(repo_name):
    # Loop through each lora in sdxl_loras_raw
    for lora in sdxl_loras_raw:
        if lora["repo"] == repo_name:
            # Return the lora if the repo name matches
            return lora
    # If no match is found, return the first lora in the array
    return sdxl_loras_raw[0] if sdxl_loras_raw else None

# Return the default values specific to this particular 
def getLoraDefaultsByRepoName(repo_name):
    # Loop through each lora in sdxl_loras_raw
    for lora_defs in lora_defaults:
        if lora_defs["model"] == repo_name:
            # Return the lora if the repo name matches
            return lora_defs
    # If no match is found, return None
    return None


device = "cuda" 

state_dicts = {}

for item in sdxl_loras_raw:
    saved_name = hf_hub_download(item["repo"], item["weights"])
    
    if not saved_name.endswith('.safetensors'):
        state_dict = torch.load(saved_name)
    else:
        state_dict = load_file(saved_name)
    
    state_dicts[item["repo"]] = {
        "saved_name": saved_name,
        "state_dict": state_dict
    }

sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
    
# download models
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/config.json",
    local_dir="/data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/diffusion_pytorch_model.safetensors",
    local_dir="/data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
)
hf_hub_download(
    repo_id="latent-consistency/lcm-lora-sdxl",
    filename="pytorch_lora_weights.safetensors",
    local_dir="/data/checkpoints",
)
# download antelopev2
if not os.path.exists("/data/antelopev2.zip"):
    gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
    os.system("unzip /data/antelopev2.zip -d /data/models/")

app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
face_adapter = f'/data/checkpoints/ip-adapter.bin'
controlnet_path = f'/data/checkpoints/ControlNetModel'

# load IdentityNet
st = time.time()
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
et = time.time()
elapsed_time = et - st
print('Loading ControlNet took: ', elapsed_time, 'seconds')
st = time.time()
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
et = time.time()
elapsed_time = et - st
print('Loading VAE took: ', elapsed_time, 'seconds')
st = time.time()
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
                                                                 vae=vae,
                                                                 controlnet=[identitynet, zoedepthnet],
                                                                 torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter_instantid(face_adapter)
pipe.set_ip_adapter_scale(0.8)
et = time.time()
elapsed_time = et - st
print('Loading pipeline took: ', elapsed_time, 'seconds')
st = time.time()
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
et = time.time()
elapsed_time = et - st
print('Loading Compel took: ', elapsed_time, 'seconds')

st = time.time()
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
et = time.time()
elapsed_time = et - st
print('Loading Zoe took: ', elapsed_time, 'seconds')
zoe.to(device)
pipe.to(device)

last_lora = ""
last_fused = False


def center_crop_image_as_square(img):
    square_size = min(img.size)
    
    left = (img.width - square_size) / 2
    top = (img.height - square_size) / 2
    right = (img.width + square_size) / 2
    bottom = (img.height + square_size) / 2
    
    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped

def merge_incompatible_lora(full_path_lora, lora_scale):
    for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(multiplier)
                else:
                    multiplier = lora_scale

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.merge_to(
                    pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
                )
                del weights_sd
                del lora_model
#@spaces.GPU
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, lora, full_path_lora, lora_scale, st):
    et = time.time()
    elapsed_time = et - st
    print('Getting into the decorated function took: ', elapsed_time, 'seconds')
    global last_fused, last_lora
    print("Last LoRA: ", last_lora)
    print("Current LoRA: ", lora["repo"])
    print("Last fused: ", last_fused)
    #prepare face zoe
    st = time.time()
    with torch.no_grad():
        image_zoe = zoe(face_image)
    width, height = face_kps.size
    images = [face_kps, image_zoe.resize((height, width))]
    et = time.time()
    elapsed_time = et - st
    print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
    if last_lora != lora["repo"]:
        if(last_fused):
            st = time.time()
            pipe.unfuse_lora()
            pipe.unload_lora_weights()
            et = time.time()
            elapsed_time = et - st
            print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
        st = time.time()
        pipe.load_lora_weights(full_path_lora)
        pipe.fuse_lora(lora_scale)
        et = time.time()
        elapsed_time = et - st
        print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
        last_fused = True
        if(lora["is_pivotal"]):
            #Add the textual inversion embeddings from pivotal tuning models
            text_embedding_name = lora["text_embedding_weights"]
            embedding_path = hf_hub_download(repo_id=lora["repo"], filename=text_embedding_name, repo_type="model")
            state_dict_embedding = load_file(embedding_path)
            pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
            pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)

    print("Processing prompt...")
    st = time.time()
    conditioning, pooled = compel(prompt)
    print("Processing prompt...")
    st = time.time()
    conditioning, pooled = compel(prompt)
    if(negative):
        negative_conditioning, negative_pooled = compel(negative)
    else:
        negative_conditioning, negative_pooled = None, None
    et = time.time()
    elapsed_time = et - st
    print('Prompt processing took: ', elapsed_time, 'seconds')
    print("Processing image...")
    st = time.time()
    image = pipe(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        negative_prompt_embeds=negative_conditioning,
        negative_pooled_prompt_embeds=negative_pooled,
        width=1024,
        height=1024,
        image_embeds=face_emb,
        image=face_image,
        strength=1-image_strength,
        control_image=images,
        num_inference_steps=20,
        guidance_scale = guidance_scale,
        controlnet_conditioning_scale=[face_strength, depth_control_scale],
    ).images[0]
    et = time.time()
    elapsed_time = et - st
    print('Image processing took: ', elapsed_time, 'seconds')
    last_lora = lora["repo"]
        
    return image
    
def run_lora(face_image, prompt, negative, lora_weight, face_strength, image_strength, guidance_scale, depth_control_scale, lora_repo_name):
    # get the lora and its default values
    lora = getLoraByRepoName(lora_repo_name)
    default_values = getLoraDefaultsByRepoName(lora_repo_name)
    
    if not lora_repo_name:
        raise gr.Error("You must input a LoRA repo name")

    st = time.time()

    face_image = readb64(face_image)
    
    face_image = center_crop_image_as_square(face_image)

    # this is temporary, just to debug
    # return writeb64(face_image)
        

    try:
        face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(face_image, face_info['kps'])
    except: 
        raise gr.Error("No face found in your image. Only face images work here. Try again")
    et = time.time()
    elapsed_time = et - st
    print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')

    st = time.time()
  
    if default_values:
        prompt_full = default_values.get("prompt", None)
        if(prompt_full):
            prompt = prompt_full.replace("<subject>", prompt)

    
    print("Prompt:", prompt) 
    if(prompt == ""):
        prompt = "a person"

    if negative == "":
        negative = None

    weight_name = lora["weights"]
    
    full_path_lora = state_dicts[lora["repo"]]["saved_name"]
    #loaded_state_dict = copy.deepcopy(state_dicts[lora_repo_name]["state_dict"])
    cross_attention_kwargs = None
    et = time.time()
    elapsed_time = et - st
    print('Small content processing took: ', elapsed_time, 'seconds')

    st = time.time()

    image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, lora, full_path_lora, lora_weight, st)
        
    image_base64 = writeb64(image)
        
    return image_base64


with gr.Blocks() as demo:
    gr.HTML("""
        <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
        <div style="text-align: center; color: black;">
        <p style="color: black;">This space is a REST API to programmatically generate an image from a face.</p>
        <p style="color: black;">Interested in using it through an UI? Please use the <a href="https://huggingface.co/spaces/multimodalart/face-to-all" target="_blank">original space</a>, thank you!</p>
        </div>
        </div>""")
    
    input_image_base64 = gr.Text()

    lora_repo_name = gr.Text(label="name of the LoRA repo nape on HF")

    prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")

    negative = gr.Textbox(label="Negative Prompt")
    
    # initial value was 0.9
    lora_weight = gr.Slider(0, 10, value=6, step=0.1, label="LoRA weight")
    
    # initial value was 0.85
    face_strength = gr.Slider(0, 1, value=0.75, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
    
    # initial value was 0.15
    image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
    
    # initial value was 7
    guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
    
    # initial value was 1
    depth_control_scale = gr.Slider(0, 4, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")

    button = gr.Button(value="Generate")
    output_image_base64 = gr.Text()
    button.click(
        fn=run_lora,
        inputs=[
            input_image_base64,
            prompt,
            negative,
            lora_weight,
            face_strength,
            image_strength,
            guidance_scale,
            depth_control_scale,
            lora_repo_name
        ],
        outputs=output_image_base64,
        api_name='run',
    )


demo.queue(max_size=20)
demo.launch()