"use server" import { BackgroundRemovalParams } from "@/types" import { addBase64HeaderToPng } from "./addBase64HeaderToPng" const gradioApi = `https://jbilcke-hf-background-removal-api.hf.space` const microserviceApiKey = `${process.env.MICROSERVICE_API_SECRET_TOKEN || ""}` export async function removeBackground({ imageAsBase64, }: BackgroundRemovalParams): Promise { // remember: a space needs to be public for the classic fetch() to work const res = await fetch(gradioApi + (gradioApi.endsWith("/") ? "" : "/") + "api/predict", { method: "POST", headers: { "Content-Type": "application/json", // Authorization: `Bearer ${hfApiToken}`, }, body: JSON.stringify({ fn_index: 0, // <- is it 0 or 1? data: [ microserviceApiKey, imageAsBase64, ], }), cache: "no-store", // we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache) // next: { revalidate: 1 } }) const { data } = await res.json() // console.log("data:", data) // Recommendation: handle errors if (res.status !== 200 || !Array.isArray(data)) { // This will activate the closest `error.js` Error Boundary throw new Error(`Failed to fetch data (status: ${res.status})`) } // console.log("data:", data.slice(0, 50)) const base64Content = (data?.[0] || "") as string if (!base64Content) { throw new Error(`invalid response (no content)`) } return addBase64HeaderToPng(base64Content) }