File size: 28,370 Bytes
e08f02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import gc
import os
from pathlib import Path
import traceback
from typing import List, Literal, Optional, Union, Dict

import numpy as np
import torch
from diffusers import AutoencoderTiny, StableDiffusionPipeline
from diffusers.models.attention_processor import XFormersAttnProcessor, AttnProcessor2_0
from PIL import Image

from streamv2v import StreamV2V
from streamv2v.image_utils import postprocess_image
from streamv2v.models.attention_processor import CachedSTXFormersAttnProcessor, CachedSTAttnProcessor2_0


torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True


class StreamV2VWrapper:
    def __init__(
        self,
        model_id_or_path: str,
        t_index_list: List[int],
        lora_dict: Optional[Dict[str, float]] = None,
        output_type: Literal["pil", "pt", "np", "latent"] = "pil",
        lcm_lora_id: Optional[str] = None,
        vae_id: Optional[str] = None,
        device: Literal["cpu", "cuda"] = "cuda",
        dtype: torch.dtype = torch.float16,
        frame_buffer_size: int = 1,
        width: int = 512,
        height: int = 512,
        warmup: int = 10,
        acceleration: Literal["none", "xformers", "tensorrt"] = "xformers",
        do_add_noise: bool = True,
        device_ids: Optional[List[int]] = None,
        use_lcm_lora: bool = True,
        use_tiny_vae: bool = True,
        enable_similar_image_filter: bool = False,
        similar_image_filter_threshold: float = 0.98,
        similar_image_filter_max_skip_frame: int = 10,
        use_denoising_batch: bool = True,
        cfg_type: Literal["none", "full", "self", "initialize"] = "self",
        use_cached_attn: bool = True,
        use_feature_injection: bool = True,
        feature_injection_strength: float = 0.8,
        feature_similarity_threshold: float = 0.98,
        cache_interval: int = 4,
        cache_maxframes: int = 1, 
        use_tome_cache: bool = True,
        tome_metric: str = "keys",
        tome_ratio: float = 0.5,
        use_grid: bool = False,
        seed: int = 2,
        use_safety_checker: bool = False,
        engine_dir: Optional[Union[str, Path]] = "engines",
    ):
        """
        Initializes the StreamV2VWrapper.

        Parameters
        ----------
        model_id_or_path : str
            The model identifier or path to load.
        t_index_list : List[int]
            The list of indices to use for inference.
        lora_dict : Optional[Dict[str, float]], optional
            Dictionary of LoRA names and their corresponding scales, 
            by default None. Example: {'LoRA_1': 0.5, 'LoRA_2': 0.7, ...}
        output_type : Literal["pil", "pt", "np", "latent"], optional
            The type of output image, by default "pil".
        lcm_lora_id : Optional[str], optional
            The identifier for the LCM-LoRA to load, by default None.
            If None, the default LCM-LoRA ("latent-consistency/lcm-lora-sdv1-5") is used.
        vae_id : Optional[str], optional
            The identifier for the VAE to load, by default None.
            If None, the default TinyVAE ("madebyollin/taesd") is used.
        device : Literal["cpu", "cuda"], optional
            The device to use for inference, by default "cuda".
        dtype : torch.dtype, optional
            The data type for inference, by default torch.float16.
        frame_buffer_size : int, optional
            The size of the frame buffer for denoising batch, by default 1.
        width : int, optional
            The width of the image, by default 512.
        height : int, optional
            The height of the image, by default 512.
        warmup : int, optional
            The number of warmup steps to perform, by default 10.
        acceleration : Literal["none", "xformers", "tensorrt"], optional
            The acceleration method, by default "xformers".
        do_add_noise : bool, optional
            Whether to add noise during denoising steps, by default True.
        device_ids : Optional[List[int]], optional
            List of device IDs to use for DataParallel, by default None.
        use_lcm_lora : bool, optional
            Whether to use LCM-LoRA, by default True.
        use_tiny_vae : bool, optional
            Whether to use TinyVAE, by default True.
        enable_similar_image_filter : bool, optional
            Whether to enable similar image filtering, by default False.
        similar_image_filter_threshold : float, optional
            The threshold for the similar image filter, by default 0.98.
        similar_image_filter_max_skip_frame : int, optional
            The maximum number of frames to skip for similar image filter, by default 10.
        use_denoising_batch : bool, optional
            Whether to use denoising batch, by default True.
        cfg_type : Literal["none", "full", "self", "initialize"], optional
            The CFG type for img2img mode, by default "self". 
        use_cached_attn : bool, optional
            Whether to cache self-attention maps from previous frames to improve temporal consistency, by default True.
        use_feature_injection : bool, optional
            Whether to use feature maps from previous frames to improve temporal consistency, by default True.
        feature_injection_strength : float, optional
            The strength of feature injection, by default 0.8.
        feature_similarity_threshold : float, optional
            The similarity threshold for feature injection, by default 0.98.
        cache_interval : int, optional
            The interval at which to cache attention maps, by default 4.
        cache_maxframes : int, optional
            The maximum number of frames to cache attention maps, by default 1.
        use_tome_cache : bool, optional
            Whether to use Tome caching, by default True.
        tome_metric : str, optional
            The metric to use for Tome, by default "keys".
        tome_ratio : float, optional
            The ratio for Tome, by default 0.5.
        use_grid : bool, optional
            Whether to use grid, by default False.
        seed : int, optional
            The seed for random number generation, by default 2.
        use_safety_checker : bool, optional
            Whether to use a safety checker, by default False.
        engine_dir : Optional[Union[str, Path]], optional
            The directory for the engine, by default "engines".
        """
        # TODO: Test SD turbo
        self.sd_turbo = "turbo" in model_id_or_path

        assert use_denoising_batch, "vid2vid mode must use denoising batch for now."

        self.device = device
        self.dtype = dtype
        self.width = width
        self.height = height
        self.output_type = output_type
        self.frame_buffer_size = frame_buffer_size
        self.batch_size = (
            len(t_index_list) * frame_buffer_size
            if use_denoising_batch
            else frame_buffer_size
        )

        self.use_denoising_batch = use_denoising_batch
        self.use_cached_attn = use_cached_attn
        self.use_feature_injection = use_feature_injection
        self.feature_injection_strength = feature_injection_strength
        self.feature_similarity_threshold = feature_similarity_threshold
        self.cache_interval = cache_interval
        self.cache_maxframes = cache_maxframes
        self.use_tome_cache = use_tome_cache
        self.tome_metric = tome_metric
        self.tome_ratio = tome_ratio
        self.use_grid = use_grid
        self.use_safety_checker = use_safety_checker

        self.stream: StreamV2V = self._load_model(
            model_id_or_path=model_id_or_path,
            lora_dict=lora_dict,
            lcm_lora_id=lcm_lora_id,
            vae_id=vae_id,
            t_index_list=t_index_list,
            acceleration=acceleration,
            warmup=warmup,
            do_add_noise=do_add_noise,
            use_lcm_lora=use_lcm_lora,
            use_tiny_vae=use_tiny_vae,
            cfg_type=cfg_type,
            seed=seed,
            engine_dir=engine_dir,
        )

        if device_ids is not None:
            self.stream.unet = torch.nn.DataParallel(
                self.stream.unet, device_ids=device_ids
            )

        if enable_similar_image_filter:
            self.stream.enable_similar_image_filter(similar_image_filter_threshold, similar_image_filter_max_skip_frame)

    def prepare(
        self,
        prompt: str,
        negative_prompt: str = "",
        num_inference_steps: int = 50,
        guidance_scale: float = 1.2,
        delta: float = 1.0,
    ) -> None:
        """
        Prepares the model for inference.

        Parameters
        ----------
        prompt : str
            The prompt to generate images from.
        num_inference_steps : int, optional
            The number of inference steps to perform, by default 50.
        guidance_scale : float, optional
            The guidance scale to use, by default 1.2.
        delta : float, optional
            The delta multiplier of virtual residual noise,
            by default 1.0.
        """
        self.stream.prepare(
            prompt,
            negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            delta=delta,
        )

    def __call__(
        self,
        image: Union[str, Image.Image, torch.Tensor],
        prompt: Optional[str] = None,
    ) -> Union[Image.Image, List[Image.Image]]:
        """
        Performs img2img

        Parameters
        ----------
        image : Optional[Union[str, Image.Image, torch.Tensor]]
            The image to generate from.
        prompt : Optional[str]
            The prompt to generate images from.

        Returns
        -------
        Union[Image.Image, List[Image.Image]]
            The generated image.
        """
        return self.img2img(image, prompt)

    def img2img(
        self, image: Union[str, Image.Image, torch.Tensor], prompt: Optional[str] = None
    ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
        """
        Performs img2img.

        Parameters
        ----------
        image : Union[str, Image.Image, torch.Tensor]
            The image to generate from.

        Returns
        -------
        Image.Image
            The generated image.
        """
        if prompt is not None:
            self.stream.update_prompt(prompt)

        if isinstance(image, str) or isinstance(image, Image.Image):
            image = self.preprocess_image(image)

        image_tensor = self.stream(image)
        image = self.postprocess_image(image_tensor, output_type=self.output_type)

        if self.use_safety_checker:
            safety_checker_input = self.feature_extractor(
                image, return_tensors="pt"
            ).to(self.device)
            _, has_nsfw_concept = self.safety_checker(
                images=image_tensor.to(self.dtype),
                clip_input=safety_checker_input.pixel_values.to(self.dtype),
            )
            image = self.nsfw_fallback_img if has_nsfw_concept[0] else image

        return image

    def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
        """
        Preprocesses the image.

        Parameters
        ----------
        image : Union[str, Image.Image, torch.Tensor]
            The image to preprocess.

        Returns
        -------
        torch.Tensor
            The preprocessed image.
        """
        if isinstance(image, str):
            image = Image.open(image).convert("RGB").resize((self.width, self.height))
        if isinstance(image, Image.Image):
            image = image.convert("RGB").resize((self.width, self.height))

        return self.stream.image_processor.preprocess(
            image, self.height, self.width
        ).to(device=self.device, dtype=self.dtype)

    def postprocess_image(
        self, image_tensor: torch.Tensor, output_type: str = "pil"
    ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
        """
        Postprocesses the image.

        Parameters
        ----------
        image_tensor : torch.Tensor
            The image tensor to postprocess.

        Returns
        -------
        Union[Image.Image, List[Image.Image]]
            The postprocessed image.
        """
        if self.frame_buffer_size > 1:
            return postprocess_image(image_tensor.cpu(), output_type=output_type)
        else:
            return postprocess_image(image_tensor.cpu(), output_type=output_type)[0]

    def _load_model(
        self,
        model_id_or_path: str,
        t_index_list: List[int],
        lora_dict: Optional[Dict[str, float]] = None,
        lcm_lora_id: Optional[str] = None,
        vae_id: Optional[str] = None,
        acceleration: Literal["none", "xformers", "tensorrt"] = "xformers",
        warmup: int = 10,
        do_add_noise: bool = True,
        use_lcm_lora: bool = True,
        use_tiny_vae: bool = True,
        cfg_type: Literal["none", "full", "self", "initialize"] = "self",
        seed: int = 2,
        engine_dir: Optional[Union[str, Path]] = "engines",
    ) -> StreamV2V:
        """
        Loads the model.

        This method does the following:

        1. Loads the model from the model_id_or_path.
        2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed.
        3. Loads the VAE model from the vae_id if needed.
        4. Enables acceleration if needed.
        5. Prepares the model for inference.
        6. Load the safety checker if needed.

        Parameters
        ----------
        model_id_or_path : str
            The model id or path to load.
        t_index_list : List[int]
            The t_index_list to use for inference.
        lora_dict : Optional[Dict[str, float]], optional
            The lora_dict to load, by default None.
            Keys are the LoRA names and values are the LoRA scales.
            Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...}
        lcm_lora_id : Optional[str], optional
            The lcm_lora_id to load, by default None.
        vae_id : Optional[str], optional
            The vae_id to load, by default None.
        acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
            The acceleration method, by default "tensorrt".
        warmup : int, optional
            The number of warmup steps to perform, by default 10.
        do_add_noise : bool, optional
            Whether to add noise for following denoising steps or not,
            by default True.
        use_lcm_lora : bool, optional
            Whether to use LCM-LoRA or not, by default True.
        use_tiny_vae : bool, optional
            Whether to use TinyVAE or not, by default True.
        cfg_type : Literal["none", "full", "self", "initialize"],
        optional
            The cfg_type for img2img mode, by default "        seed : int, optional
".
        seed : int, optional
            The seed, by default 2.

        Returns
        -------
        StreamV2V
            The loaded model.
        """

        try:  # Load from local directory
            pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
                model_id_or_path,
            ).to(device=self.device, dtype=self.dtype)

        except ValueError:  # Load from huggingface
            pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
                model_id_or_path,
            ).to(device=self.device, dtype=self.dtype)
        except Exception:  # No model found
            traceback.print_exc()
            print("Model load has failed. Doesn't exist.")
            exit()

        stream = StreamV2V(
            pipe=pipe,
            t_index_list=t_index_list,
            torch_dtype=self.dtype,
            width=self.width,
            height=self.height,
            do_add_noise=do_add_noise,
            frame_buffer_size=self.frame_buffer_size,
            use_denoising_batch=self.use_denoising_batch,
            cfg_type=cfg_type,
        )
        if not self.sd_turbo:
            if use_lcm_lora:
                if lcm_lora_id is not None:
                    stream.load_lcm_lora(
                        pretrained_model_name_or_path_or_dict=lcm_lora_id,
                        adapter_name="lcm")
                else:
                    stream.load_lcm_lora(
                        pretrained_model_name_or_path_or_dict="latent-consistency/lcm-lora-sdv1-5",
                        adapter_name="lcm"
                        )

            if lora_dict is not None:
                for lora_name, lora_scale in lora_dict.items():
                    stream.load_lora(lora_name)
                    
        if use_tiny_vae:
            if vae_id is not None:
                stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
                    device=pipe.device, dtype=pipe.dtype
                )
            else:
                stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to(
                    device=pipe.device, dtype=pipe.dtype
                )

        try:
            if acceleration == "xformers":
                stream.pipe.enable_xformers_memory_efficient_attention()
                if self.use_cached_attn:
                    attn_processors = stream.pipe.unet.attn_processors
                    new_attn_processors = {}
                    for key, attn_processor in attn_processors.items():
                        assert isinstance(attn_processor, XFormersAttnProcessor), \
                              "We only replace 'XFormersAttnProcessor' to 'CachedSTXFormersAttnProcessor'"
                        new_attn_processors[key] = CachedSTXFormersAttnProcessor(name=key,
                                                                                 use_feature_injection=self.use_feature_injection,
                                                                                 feature_injection_strength=self.feature_injection_strength,
                                                                                 feature_similarity_threshold=self.feature_similarity_threshold,
                                                                                 interval=self.cache_interval, 
                                                                                 max_frames=self.cache_maxframes,
                                                                                 use_tome_cache=self.use_tome_cache,
                                                                                 tome_metric=self.tome_metric,
                                                                                 tome_ratio=self.tome_ratio,
                                                                                 use_grid=self.use_grid)
                    stream.pipe.unet.set_attn_processor(new_attn_processors)

            if acceleration == "tensorrt":
                if self.use_cached_attn:
                    raise NotImplementedError("TensorRT seems not support the costom attention_processor")
                else:
                    stream.pipe.enable_xformers_memory_efficient_attention()
                    if self.use_cached_attn:
                        attn_processors = stream.pipe.unet.attn_processors
                        new_attn_processors = {}
                        for key, attn_processor in attn_processors.items():
                            assert isinstance(attn_processor, XFormersAttnProcessor), \
                                "We only replace 'XFormersAttnProcessor' to 'CachedSTXFormersAttnProcessor'"
                            new_attn_processors[key] = CachedSTXFormersAttnProcessor(name=key,
                                                                                    use_feature_injection=self.use_feature_injection,
                                                                                    feature_injection_strength=self.feature_injection_strength,
                                                                                    feature_similarity_threshold=self.feature_similarity_threshold,
                                                                                    interval=self.cache_interval, 
                                                                                    max_frames=self.cache_maxframes,
                                                                                    use_tome_cache=self.use_tome_cache,
                                                                                    tome_metric=self.tome_metric,
                                                                                    tome_ratio=self.tome_ratio,
                                                                                    use_grid=self.use_grid)
                        stream.pipe.unet.set_attn_processor(new_attn_processors)

                from polygraphy import cuda
                from streamv2v.acceleration.tensorrt import (
                    TorchVAEEncoder,
                    compile_unet,
                    compile_vae_decoder,
                    compile_vae_encoder,
                )
                from streamv2v.acceleration.tensorrt.engine import (
                    AutoencoderKLEngine,
                    UNet2DConditionModelEngine,
                )
                from streamv2v.acceleration.tensorrt.models import (
                    VAE,
                    UNet,
                    VAEEncoder,
                )

                def create_prefix(
                    model_id_or_path: str,
                    max_batch_size: int,
                    min_batch_size: int,
                ):
                    maybe_path = Path(model_id_or_path)
                    if maybe_path.exists():
                        return f"{maybe_path.stem}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--cache--{self.use_cached_attn}"
                    else:
                        return f"{model_id_or_path}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--cache--{self.use_cached_attn}"

                engine_dir = Path(engine_dir)
                unet_path = os.path.join(
                    engine_dir,
                    create_prefix(
                        model_id_or_path=model_id_or_path,
                        max_batch_size=stream.trt_unet_batch_size,
                        min_batch_size=stream.trt_unet_batch_size,
                    ),
                    "unet.engine",
                )
                vae_encoder_path = os.path.join(
                    engine_dir,
                    create_prefix(
                        model_id_or_path=model_id_or_path,
                        max_batch_size=stream.frame_bff_size,
                        min_batch_size=stream.frame_bff_size,
                    ),
                    "vae_encoder.engine",
                )
                vae_decoder_path = os.path.join(
                    engine_dir,
                    create_prefix(
                        model_id_or_path=model_id_or_path,
                        max_batch_size=stream.frame_bff_size,
                        min_batch_size=stream.frame_bff_size,
                    ),
                    "vae_decoder.engine",
                )

                if not os.path.exists(unet_path):
                    os.makedirs(os.path.dirname(unet_path), exist_ok=True)
                    unet_model = UNet(
                        fp16=True,
                        device=stream.device,
                        max_batch_size=stream.trt_unet_batch_size,
                        min_batch_size=stream.trt_unet_batch_size,
                        embedding_dim=stream.text_encoder.config.hidden_size,
                        unet_dim=stream.unet.config.in_channels,
                    )
                    compile_unet(
                        stream.unet,
                        unet_model,
                        unet_path + ".onnx",
                        unet_path + ".opt.onnx",
                        unet_path,
                        opt_batch_size=stream.trt_unet_batch_size,
                    )

                if not os.path.exists(vae_decoder_path):
                    os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
                    stream.vae.forward = stream.vae.decode
                    vae_decoder_model = VAE(
                        device=stream.device,
                        max_batch_size=stream.frame_bff_size,
                        min_batch_size=stream.frame_bff_size,
                    )
                    compile_vae_decoder(
                        stream.vae,
                        vae_decoder_model,
                        vae_decoder_path + ".onnx",
                        vae_decoder_path + ".opt.onnx",
                        vae_decoder_path,
                        opt_batch_size=stream.frame_bff_size,
                    )
                    delattr(stream.vae, "forward")

                if not os.path.exists(vae_encoder_path):
                    os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
                    vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
                    vae_encoder_model = VAEEncoder(
                        device=stream.device,
                        max_batch_size=stream.frame_bff_size,
                        min_batch_size=stream.frame_bff_size,
                    )
                    compile_vae_encoder(
                        vae_encoder,
                        vae_encoder_model,
                        vae_encoder_path + ".onnx",
                        vae_encoder_path + ".opt.onnx",
                        vae_encoder_path,
                        opt_batch_size=stream.frame_bff_size,
                    )

                cuda_steram = cuda.Stream()

                vae_config = stream.vae.config
                vae_dtype = stream.vae.dtype

                stream.unet = UNet2DConditionModelEngine(
                    unet_path, cuda_steram, use_cuda_graph=False
                )
                stream.vae = AutoencoderKLEngine(
                    vae_encoder_path,
                    vae_decoder_path,
                    cuda_steram,
                    stream.pipe.vae_scale_factor,
                    use_cuda_graph=False,
                )
                setattr(stream.vae, "config", vae_config)
                setattr(stream.vae, "dtype", vae_dtype)

                gc.collect()
                torch.cuda.empty_cache()

                print("TensorRT acceleration enabled.")
            if acceleration == "sfast":
                if self.use_cached_attn:
                    raise NotImplementedError
                from streamv2v.acceleration.sfast import (
                    accelerate_with_stable_fast,
                )

                stream = accelerate_with_stable_fast(stream)
                print("StableFast acceleration enabled.")
        except Exception:
            traceback.print_exc()
            print("Acceleration has failed. Falling back to normal mode.")

        if seed < 0: # Random seed
            seed = np.random.randint(0, 1000000)

        stream.prepare(
            "",
            "",
            num_inference_steps=50,
            guidance_scale=1.1
            if stream.cfg_type in ["full", "self", "initialize"]
            else 1.0,
            generator=torch.manual_seed(seed),
            seed=seed,
        )

        if self.use_safety_checker:
            from transformers import CLIPFeatureExtractor
            from diffusers.pipelines.stable_diffusion.safety_checker import (
                StableDiffusionSafetyChecker,
            )

            self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
                "CompVis/stable-diffusion-safety-checker"
            ).to(pipe.device)
            self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
                "openai/clip-vit-base-patch32"
            )
            self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0))

        return stream