File size: 6,432 Bytes
023c8c3
 
 
bceaa96
023c8c3
 
 
bceaa96
bcf8146
 
 
 
 
bceaa96
bcf8146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66cfa3
 
 
 
 
 
bcf8146
 
 
 
 
023c8c3
a66cfa3
bcf8146
a66cfa3
bcf8146
023c8c3
bcf8146
023c8c3
 
 
 
 
 
 
 
 
 
 
 
74dee69
023c8c3
 
426ec64
023c8c3
 
 
 
 
 
 
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
bcf8146
 
023c8c3
bcf8146
 
 
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
 
 
bcf8146
a66cfa3
023c8c3
 
 
 
74dee69
023c8c3
 
 
 
 
 
a66cfa3
 
 
 
 
 
 
 
 
 
023c8c3
 
 
 
 
a66cfa3
023c8c3
bceaa96
 
 
bcf8146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023c8c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh

class GPUSatelliteModelGenerator:
    def __init__(self, building_height=0.05):
        self.building_height = building_height
        
        # Move color arrays to GPU using cupy
        self.shadow_colors = cp.array([
            [31, 42, 76],
            [58, 64, 92],
            [15, 27, 56],
            [21, 22, 50],
            [76, 81, 99]
        ])
        
        self.road_colors = cp.array([
            [187, 182, 175],
            [138, 138, 138], 
            [142, 142, 129],
            [202, 199, 189]
        ])
        
        self.water_colors = cp.array([
            [167, 225, 217],
            [67, 101, 97],
            [53, 83, 84],
            [47, 94, 100],
            [73, 131, 135]
        ])
        
        # Convert reference colors to HSV on GPU
        self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
            self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        self.road_colors_hsv = cp.asarray(cv2.cvtColor(
            self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        self.water_colors_hsv = cp.asarray(cv2.cvtColor(
            self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
            cv2.COLOR_RGB2HSV
        ).reshape(-1, 3))
        
        # Normalize HSV values on GPU
        for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
            colors_hsv[:, 0] = colors_hsv[:, 0] * 2
            colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
        
        # Color tolerances
        self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
        self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
        self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
        
        # Output colors (BGR for OpenCV)
        self.colors = {
            'black': cp.array([0, 0, 0]),     # Shadows
            'blue': cp.array([255, 0, 0]),    # Water
            'green': cp.array([0, 255, 0]),   # Vegetation
            'gray': cp.array([128, 128, 128]), # Roads
            'brown': cp.array([0, 140, 255]),  # Terrain
            'white': cp.array([255, 255, 255]) # Buildings
        }
        
        self.min_area_for_clustering = 1000
        self.residential_height_factor = 0.6
        self.isolation_threshold = 0.6

    # ... [Previous methods remain unchanged] ...

def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
    """Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
    try:
        # Set dimensions and device
        width = height = 1024
        
        # Generate random seed
        seed = np.random.randint(0, np.iinfo(np.int32).max)
        
        # Set random seeds
        torch.manual_seed(seed)
        np.random.seed(seed)
        
        # Generate satellite image using FLUX
        generator = torch.Generator(device=device).manual_seed(seed)
        generated_image = flux_pipe(
            prompt=f"satellite view in the style of TOK, {prompt}",
            width=width,
            height=height,
            num_inference_steps=25,
            generator=generator,
            guidance_scale=7.5
        ).images[0]
        
        # Convert PIL Image to OpenCV format
        cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
        
        # Initialize GPU-accelerated generator
        generator = GPUSatelliteModelGenerator(building_height=0.09)
        
        # Process image using GPU
        print("Segmenting image using GPU...")
        segmented_img = generator.segment_image_gpu(cv_image)
        
        print("Estimating heights using GPU...")
        height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
        
        # Generate mesh using GPU-accelerated calculations
        print("Generating mesh using GPU...")
        mesh = generator.generate_mesh_gpu(height_map, cv_image)
        
        # Export to GLB
        temp_dir = tempfile.mkdtemp()
        output_path = os.path.join(temp_dir, 'output.glb')
        mesh.export(output_path)
        
        # Save segmented image to a temporary file
        segmented_path = os.path.join(temp_dir, 'segmented.png')
        cv2.imwrite(segmented_path, segmented_img.get())
        
        return output_path, segmented_path
        
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        import traceback
        traceback.print_exc()
        return None, None

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# GPU-Accelerated Text to Map")
    gr.Markdown("Generate 3D maps and segmentation maps from text descriptions using FLUX and GPU-accelerated processing.")
    
    with gr.Row():
        prompt_input = gr.Text(
            label="Enter your prompt",
            placeholder="classic american town"
        )
    
    with gr.Row():
        generate_btn = gr.Button("Generate", variant="primary")
    
    with gr.Row():
        with gr.Column():
            model_output = gr.Model3D(
                label="Generated 3D Map",
                clear_color=[0.0, 0.0, 0.0, 0.0],
            )
        with gr.Column():
            segmented_output = gr.Image(
                label="Segmented Map",
                type="filepath"
            )
    
    # Event handler
    generate_btn.click(
        fn=generate_and_process_map,
        inputs=[prompt_input],
        outputs=[model_output, segmented_output],
        api_name="generate"
    )

if __name__ == "__main__":
    # Initialize FLUX pipeline
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.bfloat16
    
    repo_id = "black-forest-labs/FLUX.1-dev"
    adapter_id = "jbilcke-hf/flux-satellite"
    
    flux_pipe = DiffusionPipeline.from_pretrained(
        repo_id,
        torch_dtype=torch.bfloat16
    )
    flux_pipe.load_lora_weights(adapter_id)
    flux_pipe = flux_pipe.to(device)
    
    # Launch Gradio app
    demo.queue().launch()