Spaces:
Paused
Paused
import os | |
import tempfile | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import cv2 | |
from diffusers import DiffusionPipeline | |
from script import SatelliteModelGenerator | |
# Initialize models and device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
# Initialize FLUX model for satellite imagery | |
flux_pipe = DiffusionPipeline.from_pretrained( | |
"jbilcke-hf/flux-satellite", | |
torch_dtype=dtype | |
).to(device) | |
def generate_and_process_map(prompt: str) -> str | None: | |
"""Generate satellite image from prompt and convert to 3D model.""" | |
try: | |
# Set dimensions | |
width = height = 1024 | |
# Generate random seed | |
seed = np.random.randint(0, np.iinfo(np.int32).max) | |
# Set random seeds | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
# Generate satellite image using FLUX | |
generator = torch.Generator(device=device).manual_seed(seed) | |
generated_image = flux_pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=30, | |
generator=generator, | |
guidance_scale=7.5 | |
).images[0] | |
# Convert PIL Image to OpenCV format | |
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR) | |
# Initialize SatelliteModelGenerator | |
generator = SatelliteModelGenerator(building_height=0.09) | |
# Process image | |
print("Segmenting image...") | |
segmented_img = generator.segment_image(cv_image, window_size=5) | |
print("Estimating heights...") | |
height_map = generator.estimate_heights(cv_image, segmented_img) | |
# Generate mesh | |
print("Generating mesh...") | |
mesh = generator.generate_mesh(height_map, cv_image, add_walls=True) | |
# Export to GLB | |
temp_dir = tempfile.mkdtemp() | |
output_path = os.path.join(temp_dir, 'output.glb') | |
mesh.export(output_path) | |
return output_path | |
except Exception as e: | |
print(f"Error during generation: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return None | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text to Map") | |
gr.Markdown("Generate 3D maps from text descriptions using FLUX and mesh generation.") | |
with gr.Row(): | |
prompt_input = gr.Text( | |
label="Enter your prompt", | |
placeholder="eg. satellite view of downtown Manhattan" | |
) | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", variant="primary") | |
with gr.Row(): | |
model_output = gr.Model3D( | |
label="Generated 3D Map", | |
clear_color=[0.0, 0.0, 0.0, 0.0], | |
) | |
# Event handler | |
generate_btn.click( | |
fn=generate_and_process_map, | |
inputs=[prompt_input], | |
outputs=[model_output], | |
api_name="generate" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |