Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -82,24 +82,30 @@ class GPUSatelliteModelGenerator:
|
|
82 |
|
83 |
@staticmethod
|
84 |
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
|
85 |
-
"""
|
86 |
pixel_h = pixel_hsv[0] * 2
|
87 |
pixel_s = pixel_hsv[1] / 255
|
88 |
pixel_v = pixel_hsv[2] / 255
|
89 |
|
|
|
90 |
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
|
91 |
-
|
|
|
|
|
92 |
sat_diff = cp.abs(pixel_s - reference_hsv[1])
|
93 |
val_diff = cp.abs(pixel_v - reference_hsv[2])
|
94 |
|
|
|
95 |
return cp.logical_and(
|
96 |
-
cp.logical_and(
|
97 |
-
|
|
|
|
|
98 |
val_diff <= tolerance['val']
|
99 |
)
|
100 |
|
101 |
def segment_image_gpu(self, img):
|
102 |
-
"""GPU-accelerated image segmentation"""
|
103 |
# Transfer image to GPU
|
104 |
gpu_img = cp.asarray(img)
|
105 |
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
@@ -107,38 +113,65 @@ class GPUSatelliteModelGenerator:
|
|
107 |
height, width = img.shape[:2]
|
108 |
output = cp.zeros_like(gpu_img)
|
109 |
|
110 |
-
#
|
|
|
|
|
|
|
|
|
111 |
hsv_pixels = gpu_hsv.reshape(-1, 3)
|
112 |
|
113 |
-
#
|
114 |
shadow_mask = cp.zeros((height * width,), dtype=bool)
|
115 |
road_mask = cp.zeros((height * width,), dtype=bool)
|
116 |
water_mask = cp.zeros((height * width,), dtype=bool)
|
117 |
|
118 |
-
#
|
119 |
for ref_hsv in self.shadow_colors_hsv:
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
for ref_hsv in self.road_colors_hsv:
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
for ref_hsv in self.water_colors_hsv:
|
126 |
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
|
127 |
|
128 |
-
#
|
129 |
h, s, v = hsv_pixels.T
|
130 |
h = h * 2 # Convert to 0-360 range
|
131 |
s = s / 255
|
132 |
v = v / 255
|
133 |
|
134 |
-
#
|
135 |
-
vegetation_mask = (h >= 40) & (h <= 150) & (s >= 0.15)
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Building mask (everything that's not another category)
|
139 |
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask)
|
140 |
|
141 |
-
# Apply
|
142 |
output_flat = output.reshape(-1, 3)
|
143 |
output_flat[shadow_mask] = self.colors['black']
|
144 |
output_flat[water_mask] = self.colors['blue']
|
@@ -147,30 +180,31 @@ class GPUSatelliteModelGenerator:
|
|
147 |
output_flat[terrain_mask] = self.colors['brown']
|
148 |
output_flat[building_mask] = self.colors['white']
|
149 |
|
150 |
-
# Reshape back to image dimensions
|
151 |
segmented = output.reshape(height, width, 3)
|
152 |
|
153 |
-
#
|
154 |
kernel = cp.ones((3, 3), dtype=bool)
|
155 |
kernel[1, 1] = False
|
156 |
|
157 |
-
#
|
158 |
-
for
|
159 |
-
|
160 |
-
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
return segmented
|
176 |
|
@@ -324,8 +358,8 @@ def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None
|
|
324 |
|
325 |
# Create Gradio interface
|
326 |
with gr.Blocks() as demo:
|
327 |
-
gr.Markdown("#
|
328 |
-
gr.Markdown("Generate 3D
|
329 |
|
330 |
with gr.Row():
|
331 |
prompt_input = gr.Text(
|
|
|
82 |
|
83 |
@staticmethod
|
84 |
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
|
85 |
+
"""HSV color distance calculation"""
|
86 |
pixel_h = pixel_hsv[0] * 2
|
87 |
pixel_s = pixel_hsv[1] / 255
|
88 |
pixel_v = pixel_hsv[2] / 255
|
89 |
|
90 |
+
# Calculate circular hue difference
|
91 |
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
|
92 |
+
360 - cp.abs(pixel_h - reference_hsv[0]))
|
93 |
+
|
94 |
+
# Calculate saturation and value differences with weighted importance
|
95 |
sat_diff = cp.abs(pixel_s - reference_hsv[1])
|
96 |
val_diff = cp.abs(pixel_v - reference_hsv[2])
|
97 |
|
98 |
+
# Combined distance check with adjusted weights
|
99 |
return cp.logical_and(
|
100 |
+
cp.logical_and(
|
101 |
+
hue_diff <= tolerance['hue'],
|
102 |
+
sat_diff <= tolerance['sat']
|
103 |
+
),
|
104 |
val_diff <= tolerance['val']
|
105 |
)
|
106 |
|
107 |
def segment_image_gpu(self, img):
|
108 |
+
"""GPU-accelerated image segmentation with improved road and shadow detection"""
|
109 |
# Transfer image to GPU
|
110 |
gpu_img = cp.asarray(img)
|
111 |
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
|
113 |
height, width = img.shape[:2]
|
114 |
output = cp.zeros_like(gpu_img)
|
115 |
|
116 |
+
# Create a sliding window view for neighborhood analysis
|
117 |
+
pad = 2 # Equivalent to window_size=5 in segment.py
|
118 |
+
gpu_hsv_pad = cp.pad(gpu_hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
|
119 |
+
|
120 |
+
# Prepare flattened HSV data
|
121 |
hsv_pixels = gpu_hsv.reshape(-1, 3)
|
122 |
|
123 |
+
# Initialize masks
|
124 |
shadow_mask = cp.zeros((height * width,), dtype=bool)
|
125 |
road_mask = cp.zeros((height * width,), dtype=bool)
|
126 |
water_mask = cp.zeros((height * width,), dtype=bool)
|
127 |
|
128 |
+
# Improved color matching with adjusted tolerances
|
129 |
for ref_hsv in self.shadow_colors_hsv:
|
130 |
+
# Lower the threshold for shadows to catch more subtle variations
|
131 |
+
temp_tolerance = {
|
132 |
+
'hue': self.shadow_tolerance['hue'] * 1.2, # Slightly increased tolerance
|
133 |
+
'sat': self.shadow_tolerance['sat'] * 1.1,
|
134 |
+
'val': self.shadow_tolerance['val'] * 1.2
|
135 |
+
}
|
136 |
+
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
|
137 |
+
|
138 |
for ref_hsv in self.road_colors_hsv:
|
139 |
+
# Adjusted road detection with focus on value component
|
140 |
+
temp_tolerance = {
|
141 |
+
'hue': self.road_tolerance['hue'] * 1.3, # Increased hue tolerance
|
142 |
+
'sat': self.road_tolerance['sat'] * 1.2, # Increased saturation tolerance
|
143 |
+
'val': self.road_tolerance['val'] # Keep original value tolerance
|
144 |
+
}
|
145 |
+
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
|
146 |
+
|
147 |
for ref_hsv in self.water_colors_hsv:
|
148 |
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
|
149 |
|
150 |
+
# Normalize HSV values for vegetation and terrain detection
|
151 |
h, s, v = hsv_pixels.T
|
152 |
h = h * 2 # Convert to 0-360 range
|
153 |
s = s / 255
|
154 |
v = v / 255
|
155 |
|
156 |
+
# Enhanced vegetation detection
|
157 |
+
vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
|
158 |
+
|
159 |
+
# Enhanced terrain detection
|
160 |
+
terrain_mask = ((h >= 10) & (h <= 30) & (s >= 0.15)) | \
|
161 |
+
((h >= 25) & (h <= 40) & (s >= 0.1) & (v <= 0.8)) # Added brown-gray detection
|
162 |
+
|
163 |
+
# Apply brightness-based corrections for roads
|
164 |
+
gray_mask = (s <= 0.2) & (v >= 0.4) & (v <= 0.85) # Detect grayish areas
|
165 |
+
road_mask |= gray_mask & ~(shadow_mask | water_mask | vegetation_mask | terrain_mask)
|
166 |
+
|
167 |
+
# Enhanced shadow detection using value component
|
168 |
+
dark_mask = (v <= 0.3) # Detect very dark areas
|
169 |
+
shadow_mask |= dark_mask & ~(water_mask | road_mask)
|
170 |
|
171 |
# Building mask (everything that's not another category)
|
172 |
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask)
|
173 |
|
174 |
+
# Apply masks to create output
|
175 |
output_flat = output.reshape(-1, 3)
|
176 |
output_flat[shadow_mask] = self.colors['black']
|
177 |
output_flat[water_mask] = self.colors['blue']
|
|
|
180 |
output_flat[terrain_mask] = self.colors['brown']
|
181 |
output_flat[building_mask] = self.colors['white']
|
182 |
|
|
|
183 |
segmented = output.reshape(height, width, 3)
|
184 |
|
185 |
+
# Enhanced isolated pixel cleanup using morphological operations
|
186 |
kernel = cp.ones((3, 3), dtype=bool)
|
187 |
kernel[1, 1] = False
|
188 |
|
189 |
+
# Two-pass cleanup for better results
|
190 |
+
for _ in range(2):
|
191 |
+
for color_name, color_value in self.colors.items():
|
192 |
+
if cp.array_equal(color_value, self.colors['white']):
|
193 |
+
continue
|
194 |
|
195 |
+
# Create and dilate mask for current color
|
196 |
+
color_mask = cp.all(segmented == color_value, axis=2)
|
197 |
+
dilated = binary_dilation(color_mask, structure=kernel)
|
198 |
+
|
199 |
+
# Find isolated building pixels
|
200 |
+
building_pixels = cp.all(segmented == self.colors['white'], axis=2)
|
201 |
+
neighbor_count = binary_dilation(color_mask, structure=kernel).astype(int)
|
202 |
+
|
203 |
+
# More aggressive cleanup for truly isolated pixels
|
204 |
+
surrounded = (neighbor_count >= 5) & building_pixels # At least 5 neighbors of same color
|
205 |
+
|
206 |
+
# Update isolated pixels
|
207 |
+
segmented[surrounded] = color_value
|
208 |
|
209 |
return segmented
|
210 |
|
|
|
358 |
|
359 |
# Create Gradio interface
|
360 |
with gr.Blocks() as demo:
|
361 |
+
gr.Markdown("# Text to Map")
|
362 |
+
gr.Markdown("Generate a 3D map from text!")
|
363 |
|
364 |
with gr.Row():
|
365 |
prompt_input = gr.Text(
|