Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -80,8 +80,161 @@ class GPUSatelliteModelGenerator:
|
|
80 |
self.residential_height_factor = 0.6
|
81 |
self.isolation_threshold = 0.6
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
|
86 |
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
|
87 |
try:
|
|
|
80 |
self.residential_height_factor = 0.6
|
81 |
self.isolation_threshold = 0.6
|
82 |
|
83 |
+
@staticmethod
|
84 |
+
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
|
85 |
+
"""GPU-accelerated HSV color distance calculation"""
|
86 |
+
pixel_h = pixel_hsv[0] * 2
|
87 |
+
pixel_s = pixel_hsv[1] / 255
|
88 |
+
pixel_v = pixel_hsv[2] / 255
|
89 |
+
|
90 |
+
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
|
91 |
+
360 - cp.abs(pixel_h - reference_hsv[0]))
|
92 |
+
sat_diff = cp.abs(pixel_s - reference_hsv[1])
|
93 |
+
val_diff = cp.abs(pixel_v - reference_hsv[2])
|
94 |
+
|
95 |
+
return cp.logical_and(
|
96 |
+
cp.logical_and(hue_diff <= tolerance['hue'],
|
97 |
+
sat_diff <= tolerance['sat']),
|
98 |
+
val_diff <= tolerance['val']
|
99 |
+
)
|
100 |
|
101 |
+
def segment_image_gpu(self, img):
|
102 |
+
"""GPU-accelerated image segmentation"""
|
103 |
+
# Transfer image to GPU
|
104 |
+
gpu_img = cp.asarray(img)
|
105 |
+
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
106 |
+
|
107 |
+
height, width = img.shape[:2]
|
108 |
+
output = cp.zeros_like(gpu_img)
|
109 |
+
|
110 |
+
# Vectorized color matching on GPU
|
111 |
+
hsv_pixels = gpu_hsv.reshape(-1, 3)
|
112 |
+
|
113 |
+
# Create masks for each category
|
114 |
+
shadow_mask = cp.zeros((height * width,), dtype=bool)
|
115 |
+
road_mask = cp.zeros((height * width,), dtype=bool)
|
116 |
+
water_mask = cp.zeros((height * width,), dtype=bool)
|
117 |
+
|
118 |
+
# Vectorized color matching
|
119 |
+
for ref_hsv in self.shadow_colors_hsv:
|
120 |
+
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.shadow_tolerance)
|
121 |
+
|
122 |
+
for ref_hsv in self.road_colors_hsv:
|
123 |
+
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.road_tolerance)
|
124 |
+
|
125 |
+
for ref_hsv in self.water_colors_hsv:
|
126 |
+
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
|
127 |
+
|
128 |
+
# Apply masks
|
129 |
+
output_flat = output.reshape(-1, 3)
|
130 |
+
output_flat[shadow_mask] = self.colors['black']
|
131 |
+
output_flat[water_mask] = self.colors['blue']
|
132 |
+
output_flat[road_mask] = self.colors['gray']
|
133 |
+
|
134 |
+
# Vegetation and building detection
|
135 |
+
h, s, v = hsv_pixels.T
|
136 |
+
h = h * 2 # Convert to 0-360 range
|
137 |
+
s = s / 255
|
138 |
+
v = v / 255
|
139 |
+
|
140 |
+
vegetation_mask = (h >= 40) & (h <= 150) & (s >= 0.15)
|
141 |
+
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask)
|
142 |
+
|
143 |
+
output_flat[vegetation_mask] = self.colors['green']
|
144 |
+
output_flat[building_mask] = self.colors['white']
|
145 |
+
|
146 |
+
return output.reshape(height, width, 3)
|
147 |
+
|
148 |
+
def estimate_heights_gpu(self, img, segmented):
|
149 |
+
"""GPU-accelerated height estimation"""
|
150 |
+
gpu_segmented = cp.asarray(segmented)
|
151 |
+
buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
|
152 |
+
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
|
153 |
+
|
154 |
+
# Connected components labeling on GPU
|
155 |
+
labeled_array, num_features = cp_label(buildings_mask)
|
156 |
+
|
157 |
+
# Calculate areas using GPU
|
158 |
+
areas = cp.bincount(labeled_array.ravel())[1:] # Skip background
|
159 |
+
max_area = cp.max(areas) if len(areas) > 0 else 1
|
160 |
+
|
161 |
+
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
|
162 |
+
|
163 |
+
# Process each building
|
164 |
+
for label in range(1, num_features + 1):
|
165 |
+
building_mask = (labeled_array == label)
|
166 |
+
if not cp.any(building_mask):
|
167 |
+
continue
|
168 |
+
|
169 |
+
area = areas[label-1]
|
170 |
+
size_factor = 0.3 + 0.7 * (area / max_area)
|
171 |
+
|
172 |
+
# Calculate shadow influence
|
173 |
+
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
|
174 |
+
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
|
175 |
+
shadow_factor = 0.2 + 0.8 * shadow_ratio
|
176 |
+
|
177 |
+
# Height calculation based on size and shadows
|
178 |
+
final_height = size_factor * shadow_factor
|
179 |
+
height_map[building_mask] = final_height
|
180 |
+
|
181 |
+
return height_map.get() * 0.25
|
182 |
+
|
183 |
+
def generate_mesh_gpu(self, height_map, texture_img):
|
184 |
+
"""Generate 3D mesh using GPU-accelerated calculations"""
|
185 |
+
height_map_gpu = cp.asarray(height_map)
|
186 |
+
height, width = height_map.shape
|
187 |
+
|
188 |
+
# Generate vertex positions on GPU
|
189 |
+
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
|
190 |
+
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
|
191 |
+
vertices = vertices.reshape(-1, 3)
|
192 |
+
|
193 |
+
# Normalize coordinates
|
194 |
+
scale = max(width, height)
|
195 |
+
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
|
196 |
+
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
|
197 |
+
vertices[:, 1] = vertices[:, 1] * 2 - 1
|
198 |
+
|
199 |
+
# Generate faces
|
200 |
+
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
|
201 |
+
v0 = (i * width + j).flatten()
|
202 |
+
v1 = v0 + 1
|
203 |
+
v2 = ((i + 1) * width + j).flatten()
|
204 |
+
v3 = v2 + 1
|
205 |
+
|
206 |
+
faces = cp.vstack((
|
207 |
+
cp.column_stack((v0, v2, v1)),
|
208 |
+
cp.column_stack((v1, v2, v3))
|
209 |
+
))
|
210 |
+
|
211 |
+
# Generate UV coordinates
|
212 |
+
uvs = cp.zeros((vertices.shape[0], 2))
|
213 |
+
uvs[:, 0] = x.flatten() / (width - 1)
|
214 |
+
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
|
215 |
+
|
216 |
+
# Convert to CPU for mesh creation
|
217 |
+
vertices_cpu = vertices.get()
|
218 |
+
faces_cpu = faces.get()
|
219 |
+
uvs_cpu = uvs.get()
|
220 |
+
|
221 |
+
# Create mesh
|
222 |
+
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
|
223 |
+
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
|
224 |
+
elif len(texture_img.shape) == 3:
|
225 |
+
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
|
226 |
+
|
227 |
+
mesh = trimesh.Trimesh(
|
228 |
+
vertices=vertices_cpu,
|
229 |
+
faces=faces_cpu,
|
230 |
+
visual=trimesh.visual.TextureVisuals(
|
231 |
+
uv=uvs_cpu,
|
232 |
+
image=Image.fromarray(texture_img)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
|
236 |
+
return mesh
|
237 |
+
|
238 |
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
|
239 |
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
|
240 |
try:
|