File size: 3,705 Bytes
6348944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import express from "express"
import { HfInference } from '@huggingface/inference'

import { daisy } from "./daisy.mts"
import { alpine } from "./alpine.mts"

const hf = new HfInference(process.env.HF_API_TOKEN)

// TODO put here the Inference Endpoint url for WizardCoder
const model = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');

// define the CSS and JS dependencies
const css = [
  "/css/[email protected]",
].map(item => `<link href="${item}" rel="stylesheet" type="text/css"/>`)
.join("")

const script = [
  "/js/[email protected]",
  "/js/[email protected]"
].map(item => `<script src="${item}"></script>`)
.join("")

const app = express()
const port = 7860

const minPromptSize = 16 // if you change this, you will need to also change in public/index.html
const timeoutInSec = 3 * 60

console.log("timeout set to 3 minutes")

app.use(express.static("public"))
 
const pending: {
  total: number;
  queue: string[];
} = {
  total: 0,
  queue: [],
}
 
const endRequest = (id: string, reason: string) => {
  if (!id || !pending.queue.includes(id)) {
    return
  }
  
  pending.queue = pending.queue.filter(i => i !== id)
  console.log(`request ${id} ended (${reason})`)
}

app.get("/debug", (req, res) => {
  res.write(JSON.stringify({
    nbTotal: pending.total,
    nbPending: pending.queue.length,
    queue: pending.queue,
  }))
  res.end()
})

app.get("/app", async (req, res) => {

  if (`${req.query.prompt}`.length < minPromptSize) {
    res.write(`prompt too short, please enter at least ${minPromptSize} characters`)
    res.end()
    return
  }

  const id = `${pending.total++}`
  console.log(`new request ${id}`)

  pending.queue.push(id)

  const prefix = `<html><head>${css}${script}`
  res.write(prefix)

  req.on("close", function() {
    // console.log("browser asked to close the stream for some reason.. let's ignore!")
    endRequest(id, "browser asked to end the connection")
  })

  // for testing we kill after some delay
  setTimeout(() => {
    endRequest(id, `timed out after ${timeoutInSec}s`)
  }, timeoutInSec * 1000)


  const finalPrompt = `# Task
Generate the following: ${req.query.prompt}
# Documentation
${daisy}
# Guidelines
- Never repeat the instruction, instead directly write the final code within a script tag
- Use a color scheme consistent with the brief and theme
- You need to use Tailwind CSS and DaisyUI for the UI, pure vanilla JS and AlpineJS for the JS.
- All the JS code will be written directly inside the page, using <script type="text/javascript">...</script>
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!)
- No need to write code comments, and try to make the code compact (short function names etc)
- Use a central layout by wrapping everything in a \`<div class="flex flex-col justify-center">\`
# HTML output
${prefix}`

  try {
    let result = ''
    for await (const output of hf.textGenerationStream({
      inputs: finalPrompt,
      parameters: { max_new_tokens: 1024 }
    })) {
      if (!pending.queue.includes(id)) {
        break
      }
      result += output.token.text
      process.stdout.write(output.token.text)
      res.write(output.token.text)
      if (result.includes('</html>')) {
        break
      }
    }

    endRequest(id, `normal end of the LLM stream for request ${id}`)
  } catch (e) {
    endRequest(id, `premature end of the LLM stream for request ${id} (${e})`)
  } 

  try {
    res.end()
  } catch (err) {
    console.log(`couldn't end the HTTP stream for request ${id} (${err})`)
  }
  
})

app.listen(port, () => { console.log(`Open http://localhost:${port}/?prompt=a%20pong%20game%20clone%20in%20HTML,%20made%20using%20the%20canvas`) })