Spaces:
Runtime error
Runtime error
File size: 3,705 Bytes
6348944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import express from "express"
import { HfInference } from '@huggingface/inference'
import { daisy } from "./daisy.mts"
import { alpine } from "./alpine.mts"
const hf = new HfInference(process.env.HF_API_TOKEN)
// TODO put here the Inference Endpoint url for WizardCoder
const model = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');
// define the CSS and JS dependencies
const css = [
"/css/[email protected]",
].map(item => `<link href="${item}" rel="stylesheet" type="text/css"/>`)
.join("")
const script = [
"/js/[email protected]",
"/js/[email protected]"
].map(item => `<script src="${item}"></script>`)
.join("")
const app = express()
const port = 7860
const minPromptSize = 16 // if you change this, you will need to also change in public/index.html
const timeoutInSec = 3 * 60
console.log("timeout set to 3 minutes")
app.use(express.static("public"))
const pending: {
total: number;
queue: string[];
} = {
total: 0,
queue: [],
}
const endRequest = (id: string, reason: string) => {
if (!id || !pending.queue.includes(id)) {
return
}
pending.queue = pending.queue.filter(i => i !== id)
console.log(`request ${id} ended (${reason})`)
}
app.get("/debug", (req, res) => {
res.write(JSON.stringify({
nbTotal: pending.total,
nbPending: pending.queue.length,
queue: pending.queue,
}))
res.end()
})
app.get("/app", async (req, res) => {
if (`${req.query.prompt}`.length < minPromptSize) {
res.write(`prompt too short, please enter at least ${minPromptSize} characters`)
res.end()
return
}
const id = `${pending.total++}`
console.log(`new request ${id}`)
pending.queue.push(id)
const prefix = `<html><head>${css}${script}`
res.write(prefix)
req.on("close", function() {
// console.log("browser asked to close the stream for some reason.. let's ignore!")
endRequest(id, "browser asked to end the connection")
})
// for testing we kill after some delay
setTimeout(() => {
endRequest(id, `timed out after ${timeoutInSec}s`)
}, timeoutInSec * 1000)
const finalPrompt = `# Task
Generate the following: ${req.query.prompt}
# Documentation
${daisy}
# Guidelines
- Never repeat the instruction, instead directly write the final code within a script tag
- Use a color scheme consistent with the brief and theme
- You need to use Tailwind CSS and DaisyUI for the UI, pure vanilla JS and AlpineJS for the JS.
- All the JS code will be written directly inside the page, using <script type="text/javascript">...</script>
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!)
- No need to write code comments, and try to make the code compact (short function names etc)
- Use a central layout by wrapping everything in a \`<div class="flex flex-col justify-center">\`
# HTML output
${prefix}`
try {
let result = ''
for await (const output of hf.textGenerationStream({
inputs: finalPrompt,
parameters: { max_new_tokens: 1024 }
})) {
if (!pending.queue.includes(id)) {
break
}
result += output.token.text
process.stdout.write(output.token.text)
res.write(output.token.text)
if (result.includes('</html>')) {
break
}
}
endRequest(id, `normal end of the LLM stream for request ${id}`)
} catch (e) {
endRequest(id, `premature end of the LLM stream for request ${id} (${e})`)
}
try {
res.end()
} catch (err) {
console.log(`couldn't end the HTTP stream for request ${id} (${err})`)
}
})
app.listen(port, () => { console.log(`Open http://localhost:${port}/?prompt=a%20pong%20game%20clone%20in%20HTML,%20made%20using%20the%20canvas`) })
|