import { pipeline } from 'stream'
import { promisify } from 'util'
import express from 'express'
import { HfInference } from '@huggingface/inference'
import { daisy } from './daisy.mts'
const pipe = promisify(pipeline)
const hfi = new HfInference(process.env.HF_API_TOKEN)
const hf = hfi.endpoint(process.env.HF_ENDPOINT_URL)
const app = express()
const port = 7860
const minPromptSize = 16 // if you change this, you will need to also change in public/index.html
const timeoutInSec = 30 * 60
console.log('timeout set to 30 minutes')
app.use(express.static('public'))
const pending: {
total: number;
queue: string[];
} = {
total: 0,
queue: [],
}
const endRequest = (id: string, reason: string) => {
if (!id || !pending.queue.includes(id)) {
return
}
pending.queue = pending.queue.filter(i => i !== id)
console.log(`request ${id} ended (${reason})`)
}
app.get('/debug', (req, res) => {
res.write(JSON.stringify({
nbTotal: pending.total,
nbPending: pending.queue.length,
queue: pending.queue,
}))
res.end()
})
app.get('/app', async (req, res) => {
if (`${req.query.prompt}`.length < minPromptSize) {
res.write(`prompt too short, please enter at least ${minPromptSize} characters`)
res.end()
return
}
const id = `${pending.total++}`
console.log(`new request ${id}`)
pending.queue.push(id)
const prefix = `
Generated content {
endRequest(id, `timed out after ${timeoutInSec}s`)
}, timeoutInSec * 1000)
const finalPrompt = `# Task
Generate the following: ${req.query.prompt}
# API Documentation
${daisy}
# Guidelines
- Never repeat the instruction, instead directly write the final code
- Use a color scheme consistent with the brief and theme
- To generate all your images, import from from this route: "/image?prompt="
- please be descriptive for the prompt, eg describe the scene in a few words (textures, characters, materials, camera type etc)
- You must use Tailwind CSS and Daisy UI for the CSS classes, vanilla JS and Alpine.js for the JS.
- All the JS code will be written directly inside the page, using
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!)
- No need to write code comments, so please make the code compact (short function names etc)
- Use a central layout by wrapping everything in a \`
\`
# HTML output
')) {
break
}
if (result.includes('<|end|>') || result.includes('<|assistant|>')) {
break
}
}
endRequest(id, `normal end of the LLM stream for request ${id}`)
} catch (e) {
console.log(e)
endRequest(id, `premature end of the LLM stream for request ${id} (${e})`)
}
try {
res.end()
} catch (err) {
console.log(`couldn't end the HTTP stream for request ${id} (${err})`)
}
})
app.get('/image', async (req, res) => {
try {
const blob = await hfi.textToImage({
inputs: [
`${req.query.prompt || 'generic placeholder'}`,
'award winning',
'high resolution',
'beautiful',
'[trending on artstation]'
].join(','),
model: 'stabilityai/stable-diffusion-2',
parameters: {
negative_prompt: 'blurry, cropped, low quality, ugly',
}
})
const buffer = Buffer.from(await blob.arrayBuffer())
res.setHeader('Content-Type', blob.type)
res.setHeader('Content-Length', buffer.length)
res.end(buffer)
} catch (err) {
console.error(`Error when generating the image: ${err.message}`);
res.status(500).json({ error: 'An error occurred when trying to generate the image' });
}
})
app.listen(port, () => { console.log(`Open http://localhost:${port}`) })