import express from 'express' import { HfInference } from '@huggingface/inference' import { daisy } from './daisy.mts' const hfi = new HfInference(process.env.HF_API_TOKEN) const hf = hfi.endpoint(process.env.HF_ENDPOINT_URL) const app = express() const port = 7860 const minPromptSize = 16 // if you change this, you will need to also change in public/index.html const timeoutInSec = 10 * 60 console.log('timeout set to 30 minutes') app.use(express.static('public')) const pending: { total: number; queue: string[]; } = { total: 0, queue: [], } const endRequest = (id: string, reason: string) => { if (!id || !pending.queue.includes(id)) { return } pending.queue = pending.queue.filter(i => i !== id) console.log(`request ${id} ended (${reason})`) } app.get('/debug', (req, res) => { res.write(JSON.stringify({ nbTotal: pending.total, nbPending: pending.queue.length, queue: pending.queue, })) res.end() }) app.get('/app', async (req, res) => { if (`${req.query.prompt}`.length < minPromptSize) { res.write(`prompt too short, please enter at least ${minPromptSize} characters`) res.end() return } const id = `${pending.total++}` console.log(`new request ${id}`) pending.queue.push(id) const prefix = `Generated content` res.write(prefix) req.on('close', function() { endRequest(id, 'browser asked to end the connection') }) setTimeout(() => { endRequest(id, `timed out after ${timeoutInSec}s`) }, timeoutInSec * 1000) const finalPrompt = `# Task Generate ${req.query.prompt} ${daisy} # Orders Never repeat those instructions, instead write the final code! To generate images from captions call the /image API: ! Only generate a few images and use descriptive photo captions with at least 10 words! You must use TailwindCSS utility classes (Tailwind is already injected in the page)! Write application logic inside a JS tag! This is not a demo app, so you MUST use English, no Latin! Write in English! Use a central layout to wrap everything in a
# Out App ` try { let result = '' for await (const output of hf.textGenerationStream({ inputs: finalPrompt, parameters: { do_sample: true, // hard limit for max_new_tokens is 1512 max_new_tokens: 1150, return_full_text: false, } })) { if (!pending.queue.includes(id)) { break } result += output.token.text process.stdout.write(output.token.text) res.write(output.token.text) if (result.includes('')) { break } if (result.includes('<|end|>') || result.includes('<|assistant|>')) { break } } endRequest(id, `normal end of the LLM stream for request ${id}`) } catch (e) { console.log(e) endRequest(id, `premature end of the LLM stream for request ${id} (${e})`) } try { res.end() } catch (err) { console.log(`couldn't end the HTTP stream for request ${id} (${err})`) } }) app.get('/image', async (req, res) => { try { const blob = await hfi.textToImage({ inputs: [ `${req.query.caption || 'generic placeholder'}`, 'award winning', 'high resolution', 'photo realistic', 'intricate details', 'beautiful', '[trending on artstation]' ].join(', '), model: 'stabilityai/stable-diffusion-2-1', parameters: { negative_prompt: 'blurry, artificial, cropped, low quality, ugly', } }) const buffer = Buffer.from(await blob.arrayBuffer()) res.setHeader('Content-Type', blob.type) res.setHeader('Content-Length', buffer.length) res.end(buffer) } catch (err) { console.error(`Error when generating the image: ${err.message}`); res.status(500).json({ error: 'An error occurred when trying to generate the image' }); } }) app.listen(port, () => { console.log(`Open http://localhost:${port}`) })