Signed-off-by: Jonathan Bnayahu <[email protected]>
- app.py +22 -23
- src/display/utils.py +48 -48
- src/leaderboard/read_evals.py +66 -64
- src/populate.py +36 -36
app.py
CHANGED
@@ -7,7 +7,7 @@ from huggingface_hub import snapshot_download
|
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
@@ -18,15 +18,15 @@ from src.display.utils import (
|
|
18 |
BENCHMARK_COLS,
|
19 |
COLS,
|
20 |
EVAL_COLS,
|
21 |
-
EVAL_TYPES,
|
22 |
AutoEvalColumn,
|
23 |
-
ModelType,
|
24 |
fields,
|
25 |
-
WeightType,
|
26 |
-
Precision
|
27 |
)
|
28 |
-
from src.envs import API,
|
29 |
-
from src.populate import
|
30 |
from src.submission.submit import add_new_eval
|
31 |
|
32 |
|
@@ -34,13 +34,13 @@ def restart_space():
|
|
34 |
API.restart_space(repo_id=REPO_ID)
|
35 |
|
36 |
### Space initialisation
|
37 |
-
try:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
except Exception:
|
43 |
-
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
@@ -49,14 +49,13 @@ try:
|
|
49 |
except Exception:
|
50 |
restart_space()
|
51 |
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
pending_eval_queue_df,
|
59 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
60 |
|
61 |
def init_leaderboard(dataframe):
|
62 |
if dataframe is None or dataframe.empty:
|
@@ -69,7 +68,7 @@ def init_leaderboard(dataframe):
|
|
69 |
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
70 |
# label="Select Columns to Display:",
|
71 |
# ),
|
72 |
-
|
73 |
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
74 |
# filter_columns=[
|
75 |
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
@@ -85,7 +84,7 @@ def init_leaderboard(dataframe):
|
|
85 |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
86 |
# ),
|
87 |
# ],
|
88 |
-
bool_checkboxgroup_label="Hide models",
|
89 |
interactive=False,
|
90 |
)
|
91 |
|
|
|
7 |
from src.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
+
# EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
|
|
18 |
BENCHMARK_COLS,
|
19 |
COLS,
|
20 |
EVAL_COLS,
|
21 |
+
# EVAL_TYPES,
|
22 |
AutoEvalColumn,
|
23 |
+
# ModelType,
|
24 |
fields,
|
25 |
+
# WeightType,
|
26 |
+
# Precision
|
27 |
)
|
28 |
+
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
|
29 |
+
from src.populate import get_leaderboard_df
|
30 |
from src.submission.submit import add_new_eval
|
31 |
|
32 |
|
|
|
34 |
API.restart_space(repo_id=REPO_ID)
|
35 |
|
36 |
### Space initialisation
|
37 |
+
# try:
|
38 |
+
# print(EVAL_REQUESTS_PATH)
|
39 |
+
# snapshot_download(
|
40 |
+
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
+
# )
|
42 |
+
# except Exception:
|
43 |
+
# restart_space()
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
|
|
49 |
except Exception:
|
50 |
restart_space()
|
51 |
|
52 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
|
54 |
+
# (
|
55 |
+
# finished_eval_queue_df,
|
56 |
+
# running_eval_queue_df,
|
57 |
+
# pending_eval_queue_df,
|
58 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
|
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
|
|
68 |
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
# label="Select Columns to Display:",
|
70 |
# ),
|
71 |
+
search_columns=[AutoEvalColumn.model.name],
|
72 |
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
# filter_columns=[
|
74 |
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
|
|
84 |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
# ),
|
86 |
# ],
|
87 |
+
# bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
90 |
|
src/display/utils.py
CHANGED
@@ -23,22 +23,22 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
@@ -61,44 +61,44 @@ class ModelDetails:
|
|
61 |
symbol: str = "" # emoji
|
62 |
|
63 |
|
64 |
-
class ModelType(Enum):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
class WeightType(Enum):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
# Column selection
|
104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
61 |
symbol: str = "" # emoji
|
62 |
|
63 |
|
64 |
+
# class ModelType(Enum):
|
65 |
+
# PT = ModelDetails(name="pretrained", symbol="🟢")
|
66 |
+
# FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
+
# IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
+
# RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
+
# Unknown = ModelDetails(name="", symbol="?")
|
70 |
+
|
71 |
+
# def to_str(self, separator=" "):
|
72 |
+
# return f"{self.value.symbol}{separator}{self.value.name}"
|
73 |
+
|
74 |
+
# @staticmethod
|
75 |
+
# def from_str(type):
|
76 |
+
# if "fine-tuned" in type or "🔶" in type:
|
77 |
+
# return ModelType.FT
|
78 |
+
# if "pretrained" in type or "🟢" in type:
|
79 |
+
# return ModelType.PT
|
80 |
+
# if "RL-tuned" in type or "🟦" in type:
|
81 |
+
# return ModelType.RL
|
82 |
+
# if "instruction-tuned" in type or "⭕" in type:
|
83 |
+
# return ModelType.IFT
|
84 |
+
# return ModelType.Unknown
|
85 |
+
|
86 |
+
# class WeightType(Enum):
|
87 |
+
# Adapter = ModelDetails("Adapter")
|
88 |
+
# Original = ModelDetails("Original")
|
89 |
+
# Delta = ModelDetails("Delta")
|
90 |
+
|
91 |
+
# class Precision(Enum):
|
92 |
+
# float16 = ModelDetails("float16")
|
93 |
+
# bfloat16 = ModelDetails("bfloat16")
|
94 |
+
# Unknown = ModelDetails("?")
|
95 |
+
|
96 |
+
# def from_str(precision):
|
97 |
+
# if precision in ["torch.float16", "float16"]:
|
98 |
+
# return Precision.float16
|
99 |
+
# if precision in ["torch.bfloat16", "bfloat16"]:
|
100 |
+
# return Precision.bfloat16
|
101 |
+
# return Precision.Unknown
|
102 |
|
103 |
# Column selection
|
104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,8 +8,8 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn,
|
12 |
-
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
15 |
@dataclass
|
@@ -18,19 +18,19 @@ class EvalResult:
|
|
18 |
"""
|
19 |
eval_name: str # org_model_precision (uid)
|
20 |
full_model: str # org/model (path on hub)
|
21 |
-
org: str
|
22 |
-
model: str
|
23 |
-
revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
-
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
-
architecture: str = "Unknown"
|
29 |
-
license: str = "?"
|
30 |
-
likes: int = 0
|
31 |
-
num_params: int = 0
|
32 |
date: str = "" # submission date of request file
|
33 |
-
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
36 |
def init_from_json_file(self, json_filepath):
|
@@ -38,33 +38,35 @@ class EvalResult:
|
|
38 |
with open(json_filepath) as fp:
|
39 |
data = json.load(fp)
|
40 |
|
|
|
|
|
41 |
config = data.get("config")
|
42 |
|
43 |
# Precision
|
44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
|
46 |
# Get model and org
|
47 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
org_and_model = org_and_model.split("/", 1)
|
49 |
|
50 |
-
if len(org_and_model) == 1:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
else:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
-
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
# Extract results available in this file (some results are split in several files)
|
70 |
results = {}
|
@@ -80,50 +82,50 @@ class EvalResult:
|
|
80 |
results[task.benchmark] = mean_acc
|
81 |
|
82 |
return self(
|
83 |
-
eval_name=
|
84 |
full_model=full_model,
|
85 |
-
org=org,
|
86 |
-
model=model,
|
87 |
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision= config.get("model_sha", ""),
|
90 |
-
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
)
|
93 |
|
94 |
-
def update_with_request_file(self, requests_path):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
-
AutoEvalColumn.revision.name: self.revision,
|
122 |
AutoEvalColumn.average.name: average,
|
123 |
-
AutoEvalColumn.license.name: self.license,
|
124 |
-
AutoEvalColumn.likes.name: self.likes,
|
125 |
-
AutoEvalColumn.params.name: self.num_params,
|
126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
}
|
128 |
|
129 |
for task in Tasks:
|
@@ -154,7 +156,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
154 |
return request_file
|
155 |
|
156 |
|
157 |
-
def get_raw_eval_results(results_path: str
|
158 |
"""From the path of the results folder root, extract all needed info for results"""
|
159 |
model_result_filepaths = []
|
160 |
|
@@ -176,7 +178,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
176 |
for model_result_filepath in model_result_filepaths:
|
177 |
# Creation of result
|
178 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
-
eval_result.update_with_request_file(requests_path)
|
180 |
|
181 |
# Store results of same eval together
|
182 |
eval_name = eval_result.eval_name
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, Tasks
|
12 |
+
# from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
15 |
@dataclass
|
|
|
18 |
"""
|
19 |
eval_name: str # org_model_precision (uid)
|
20 |
full_model: str # org/model (path on hub)
|
21 |
+
# org: str
|
22 |
+
# model: str
|
23 |
+
# revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
+
# precision: Precision = Precision.Unknown
|
26 |
+
# model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
# weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
# architecture: str = "Unknown"
|
29 |
+
# license: str = "?"
|
30 |
+
# likes: int = 0
|
31 |
+
# num_params: int = 0
|
32 |
date: str = "" # submission date of request file
|
33 |
+
# still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
36 |
def init_from_json_file(self, json_filepath):
|
|
|
38 |
with open(json_filepath) as fp:
|
39 |
data = json.load(fp)
|
40 |
|
41 |
+
env_info = data.get("environment_info")
|
42 |
+
|
43 |
config = data.get("config")
|
44 |
|
45 |
# Precision
|
46 |
+
# precision = Precision.from_str(config.get("model_dtype"))
|
47 |
|
48 |
# Get model and org
|
49 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
50 |
org_and_model = org_and_model.split("/", 1)
|
51 |
|
52 |
+
# if len(org_and_model) == 1:
|
53 |
+
# org = None
|
54 |
+
# model = org_and_model[0]
|
55 |
+
# result_key = f"{model}_{precision.value.name}"
|
56 |
+
# else:
|
57 |
+
# org = org_and_model[0]
|
58 |
+
# model = org_and_model[1]
|
59 |
+
# result_key = f"{org}_{model}_{precision.value.name}"
|
60 |
full_model = "/".join(org_and_model)
|
61 |
|
62 |
+
# still_on_hub, _, model_config = is_model_on_hub(
|
63 |
+
# full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
64 |
+
# )
|
65 |
+
# architecture = "?"
|
66 |
+
# if model_config is not None:
|
67 |
+
# architectures = getattr(model_config, "architectures", None)
|
68 |
+
# if architectures:
|
69 |
+
# architecture = ";".join(architectures)
|
70 |
|
71 |
# Extract results available in this file (some results are split in several files)
|
72 |
results = {}
|
|
|
82 |
results[task.benchmark] = mean_acc
|
83 |
|
84 |
return self(
|
85 |
+
eval_name=full_model,
|
86 |
full_model=full_model,
|
87 |
+
# org=org,
|
88 |
+
# model=model,
|
89 |
results=results,
|
90 |
+
# precision=precision,
|
91 |
+
# revision= config.get("model_sha", ""),
|
92 |
+
# still_on_hub=still_on_hub,
|
93 |
+
# architecture=architecture
|
94 |
)
|
95 |
|
96 |
+
# def update_with_request_file(self, requests_path):
|
97 |
+
# """Finds the relevant request file for the current model and updates info with it"""
|
98 |
+
# request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
99 |
+
|
100 |
+
# try:
|
101 |
+
# with open(request_file, "r") as f:
|
102 |
+
# request = json.load(f)
|
103 |
+
# self.model_type = ModelType.from_str(request.get("model_type", ""))
|
104 |
+
# self.weight_type = WeightType[request.get("weight_type", "Original")]
|
105 |
+
# self.license = request.get("license", "?")
|
106 |
+
# self.likes = request.get("likes", 0)
|
107 |
+
# self.num_params = request.get("params", 0)
|
108 |
+
# self.date = request.get("submitted_time", "")
|
109 |
+
# except Exception:
|
110 |
+
# print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
111 |
|
112 |
def to_dict(self):
|
113 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
114 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
115 |
data_dict = {
|
116 |
"eval_name": self.eval_name, # not a column, just a save name,
|
117 |
+
# AutoEvalColumn.precision.name: self.precision.value.name,
|
118 |
+
# AutoEvalColumn.model_type.name: self.model_type.value.name,
|
119 |
+
# AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
120 |
+
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
121 |
+
# AutoEvalColumn.architecture.name: self.architecture,
|
122 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
123 |
+
# AutoEvalColumn.revision.name: self.revision,
|
124 |
AutoEvalColumn.average.name: average,
|
125 |
+
# AutoEvalColumn.license.name: self.license,
|
126 |
+
# AutoEvalColumn.likes.name: self.likes,
|
127 |
+
# AutoEvalColumn.params.name: self.num_params,
|
128 |
+
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
129 |
}
|
130 |
|
131 |
for task in Tasks:
|
|
|
156 |
return request_file
|
157 |
|
158 |
|
159 |
+
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
160 |
"""From the path of the results folder root, extract all needed info for results"""
|
161 |
model_result_filepaths = []
|
162 |
|
|
|
178 |
for model_result_filepath in model_result_filepaths:
|
179 |
# Creation of result
|
180 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
181 |
+
# eval_result.update_with_request_file(requests_path)
|
182 |
|
183 |
# Store results of same eval together
|
184 |
eval_name = eval_result.eval_name
|
src/populate.py
CHANGED
@@ -8,9 +8,9 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
-
def get_leaderboard_df(results_path: str,
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data = get_raw_eval_results(results_path
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
@@ -22,37 +22,37 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
22 |
return df
|
23 |
|
24 |
|
25 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
+
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
+
raw_data = get_raw_eval_results(results_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
22 |
return df
|
23 |
|
24 |
|
25 |
+
# def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
+
# """Creates the different dataframes for the evaluation queues requestes"""
|
27 |
+
# entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
+
# all_evals = []
|
29 |
+
|
30 |
+
# for entry in entries:
|
31 |
+
# if ".json" in entry:
|
32 |
+
# file_path = os.path.join(save_path, entry)
|
33 |
+
# with open(file_path) as fp:
|
34 |
+
# data = json.load(fp)
|
35 |
+
|
36 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
37 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
38 |
+
|
39 |
+
# all_evals.append(data)
|
40 |
+
# elif ".md" not in entry:
|
41 |
+
# # this is a folder
|
42 |
+
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
43 |
+
# for sub_entry in sub_entries:
|
44 |
+
# file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
+
# with open(file_path) as fp:
|
46 |
+
# data = json.load(fp)
|
47 |
+
|
48 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
49 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
50 |
+
# all_evals.append(data)
|
51 |
+
|
52 |
+
# pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
+
# running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
+
# finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
+
# df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
+
# df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
+
# df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
+
# return df_finished[cols], df_running[cols], df_pending[cols]
|