Spaces:
Runtime error
Runtime error
File size: 10,604 Bytes
ad8dd60 500ca41 ad397a4 ad8dd60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import numpy as np
import gradio as gr
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from open_vocab_seg import add_ovseg_config
from open_vocab_seg.utils import VisualizationDemo
# constants
WINDOW_NAME = "Open vocabulary segmentation"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_ovseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
parser.add_argument(
"--config-file",
default="configs/ovseg_swinB_vitL_demo.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--input",
default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"],
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--class-names",
default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"],
nargs="+",
help="A list of user-defined class_names"
)
parser.add_argument(
"--output",
default = "./pred",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"],
nargs=argparse.REMAINDER,
)
return parser
args = get_parser().parse_args()
def greet(rgb_input, depth_map_input, rage_matrices_input, class_candidates):
print(args.class_names)
print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],)
print(class_candidates.split(', '))
args.input = [rgb_input]
args.class_names = class_candidates.split(', ')
depth_map_path = depth_map_input.name
rage_matrices_path = rage_matrices_input.name
print(args.input, args.class_names, depth_map_path, rage_matrices_path)
mp.set_start_method("spawn", force=True)
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
demo = VisualizationDemo(cfg)
class_names = args.class_names
print(args.input)
if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
start_time = time.time()
predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png')
visualized_output_depth.save('outputs/Depth_Semantic_SAM.png')
visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png')
visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png')
rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path)
depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path)
rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask)
demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path)
else:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1])
if cv2.waitKey(0) == 27:
break # esc to quit
else:
raise NotImplementedError
Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
Depth_map = read_image('outputs/Depth_rendered.png')
Depth_Semantic_SAM_Mask_gif = 'outputs/depth_3d_sam_mask.gif'
RGB_Semantic_SAM_Mask_gif = 'outputs/rgb_3d_sam_mask.gif'
return RGB_Semantic_SAM_Mask, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_Mask, Depth_Semantic_SAM_Mask_gif
with gr.Blocks(analytics_enabled=False) as segrgbd_iface:
gr.Markdown("<div align='center'> <h2> Semantic Segment AnyRGBD </span> </h2> \
<a style='font-size:18px;color: #000000' href='https://github.com/Jun-CEN/SegmentAnyRGBD'> Github </div>")
gr.Markdown("<b> You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. <a style='display:inline-block' href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter?duplicate=true'> <img src='https://bit.ly/3gLdBN6' alt='Duplicate Space'></a> </b>")
#######t2v#######
with gr.Tab(label="Dataset: Sailvos3D"):
with gr.Column():
with gr.Row():
# with gr.Tab(label='input'):
with gr.Column():
with gr.Row():
Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
Depth_Map_Output_Component = gr.Image(label = "Depth_Map").style(width=320, height=200)
with gr.Row():
Depth_Map_Input_Component = gr.File(label = 'Depth_map')
Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters')
with gr.Row():
Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
vc_end_btn = gr.Button("Send")
with gr.Tab(label='Result'):
with gr.Row():
RGB_Semantic_SAM_Mask_Component = gr.Image(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
RGB_Semantic_SAM_Mask_3D_Component = gr.Image(label = "3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
with gr.Row():
Depth_Semantic_SAM_Mask_Component = gr.Image(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
Depth_Semantic_SAM_Mask_3D_Component = gr.Image(label = "3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
gr.Examples(examples=[
[
'UI/sailvos3d/ex1/inputs/rgb_000160.bmp',
'UI/sailvos3d/ex1/inputs/depth_000160.npy',
'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
],
[
'UI/sailvos3d/ex2/inputs/rgb_000540.bmp',
'UI/sailvos3d/ex2/inputs/depth_000540.npy',
'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz',
'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
]],
inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet)
vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
fn=greet)
demo = segrgbd_iface
demo.launch()
|