File size: 10,604 Bytes
ad8dd60
 
500ca41
 
 
 
 
ad397a4
ad8dd60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
    os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git')
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
import tqdm
import numpy as np
import gradio as gr

from detectron2.config import get_cfg

from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
from open_vocab_seg import add_ovseg_config

from open_vocab_seg.utils import VisualizationDemo

# constants
WINDOW_NAME = "Open vocabulary segmentation"


def setup_cfg(args):
    # load config from file and command-line arguments
    cfg = get_cfg()
    # for poly lr schedule
    add_deeplab_config(cfg)
    add_ovseg_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    return cfg


def get_parser():
    parser = argparse.ArgumentParser(description="Detectron2 demo for open vocabulary segmentation")
    parser.add_argument(
        "--config-file",
        default="configs/ovseg_swinB_vitL_demo.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--input",
        default=["/mnt/lustre/jkyang/PSG4D/sailvos3d/downloads/sailvos3d/trevor_1_int/images/000160.bmp"],
        nargs="+",
        help="A list of space separated input images; "
        "or a single glob pattern such as 'directory/*.jpg'",
    )
    parser.add_argument(
        "--class-names",
        default=["person", "car", "motorcycle", "truck", "bird", "dog", "handbag", "suitcase", "bottle", "cup", "bowl", "chair", "potted plant", "bed", "dining table", "tv", "laptop", "cell phone", "bag", "bin", "box", "door", "road barrier", "stick", "lamp", "floor", "wall"],
        nargs="+",
        help="A list of user-defined class_names"
    )
    parser.add_argument(
        "--output", 
        default = "./pred",
        help="A file or directory to save output visualizations. "
        "If not given, will show output in an OpenCV window.",
    )
    parser.add_argument(
        "--opts",
        help="Modify config options using the command-line 'KEY VALUE' pairs",
        default=["MODEL.WEIGHTS", "ovseg_swinbase_vitL14_ft_mpt.pth"],
        nargs=argparse.REMAINDER,
    )
    return parser

args = get_parser().parse_args()

def greet(rgb_input, depth_map_input, rage_matrices_input, class_candidates):
    print(args.class_names)
    print(class_candidates[0], class_candidates[1], class_candidates[2], class_candidates[3],)
    print(class_candidates.split(', '))
    args.input = [rgb_input]
    args.class_names = class_candidates.split(', ')
    depth_map_path = depth_map_input.name
    rage_matrices_path = rage_matrices_input.name
    print(args.input, args.class_names, depth_map_path, rage_matrices_path)
    mp.set_start_method("spawn", force=True)
    setup_logger(name="fvcore")
    logger = setup_logger()
    logger.info("Arguments: " + str(args))

    cfg = setup_cfg(args)

    demo = VisualizationDemo(cfg)
    class_names = args.class_names
    print(args.input)
    if args.input:
        if len(args.input) == 1:
            args.input = glob.glob(os.path.expanduser(args.input[0]))
            assert args.input, "The input path(s) was not found"
        for path in tqdm.tqdm(args.input, disable=not args.output):
            # use PIL, to be consistent with evaluation
            start_time = time.time()
            predictions, visualized_output_rgb, visualized_output_depth, visualized_output_rgb_sam, visualized_output_depth_sam = demo.run_on_image_sam(path, class_names, depth_map_path, rage_matrices_path)
            logger.info(
                "{}: {} in {:.2f}s".format(
                    path,
                    "detected {} instances".format(len(predictions["instances"]))
                    if "instances" in predictions
                    else "finished",
                    time.time() - start_time,
                )
            )

            if args.output:
                if os.path.isdir(args.output):
                    assert os.path.isdir(args.output), args.output
                    out_filename = os.path.join(args.output, os.path.basename(path))
                else:
                    assert len(args.input) == 1, "Please specify a directory with args.output"
                    out_filename = args.output
                visualized_output_rgb.save('outputs/RGB_Semantic_SAM.png')
                visualized_output_depth.save('outputs/Depth_Semantic_SAM.png')
                visualized_output_rgb_sam.save('outputs/RGB_Semantic_SAM_Mask.png')
                visualized_output_depth_sam.save('outputs/Depth_Semantic_SAM_Mask.png')
                rgb_3d_sam = demo.get_xyzrgb('outputs/RGB_Semantic_SAM.png', depth_map_path, rage_matrices_path)
                depth_3d_sam = demo.get_xyzrgb('outputs/Depth_Semantic_SAM.png', depth_map_path, rage_matrices_path)
                rgb_3d_sam_mask = demo.get_xyzrgb('outputs/RGB_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
                depth_3d_sam_mask = demo.get_xyzrgb('outputs/Depth_Semantic_SAM_Mask.png', depth_map_path, rage_matrices_path)
                np.savez('outputs/xyzrgb.npz', rgb_3d_sam = rgb_3d_sam, depth_3d_sam = depth_3d_sam, rgb_3d_sam_mask = rgb_3d_sam_mask, depth_3d_sam_mask = depth_3d_sam_mask)
                demo.render_3d_video('outputs/xyzrgb.npz', depth_map_path)
            else:
                cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
                cv2.imshow(WINDOW_NAME, visualized_output_rgb.get_image()[:, :, ::-1])
                if cv2.waitKey(0) == 27:
                    break  # esc to quit
    else:
        raise NotImplementedError
    
    Depth_Semantic_SAM_Mask = read_image('outputs/Depth_Semantic_SAM_Mask.png')
    RGB_Semantic_SAM_Mask = read_image('outputs/RGB_Semantic_SAM_Mask.png')
    Depth_map = read_image('outputs/Depth_rendered.png')
    Depth_Semantic_SAM_Mask_gif = 'outputs/depth_3d_sam_mask.gif'
    RGB_Semantic_SAM_Mask_gif = 'outputs/rgb_3d_sam_mask.gif'
    return RGB_Semantic_SAM_Mask, RGB_Semantic_SAM_Mask_gif, Depth_map, Depth_Semantic_SAM_Mask, Depth_Semantic_SAM_Mask_gif

with gr.Blocks(analytics_enabled=False) as segrgbd_iface:
        gr.Markdown("<div align='center'> <h2> Semantic Segment AnyRGBD </span> </h2> \
                     <a style='font-size:18px;color: #000000' href='https://github.com/Jun-CEN/SegmentAnyRGBD'> Github </div>")
        
        gr.Markdown("<b> You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. <a style='display:inline-block' href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter?duplicate=true'> <img src='https://bit.ly/3gLdBN6' alt='Duplicate Space'></a> </b>")
        #######t2v#######
        with gr.Tab(label="Dataset: Sailvos3D"):
            with gr.Column():
                with gr.Row():
                    # with gr.Tab(label='input'):
                    with gr.Column():
                        with gr.Row():
                            Input_RGB_Component = gr.Image(label = 'RGB_Input', type = 'filepath').style(width=320, height=200)
                            Depth_Map_Output_Component = gr.Image(label = "Depth_Map").style(width=320, height=200)
                        with gr.Row():
                            Depth_Map_Input_Component = gr.File(label = 'Depth_map')
                            Component_2D_to_3D_Projection_Parameters = gr.File(label = '2D_to_3D_Projection_Parameters')
                        with gr.Row():
                            Class_Candidates_Component = gr.Text(label = 'Class_Candidates')
                        vc_end_btn = gr.Button("Send")
                    with gr.Tab(label='Result'):
                        with gr.Row():
                            RGB_Semantic_SAM_Mask_Component = gr.Image(label = "RGB_Semantic_SAM_Mask").style(width=320, height=200)
                            RGB_Semantic_SAM_Mask_3D_Component = gr.Image(label = "3D_RGB_Semantic_SAM_Mask").style(width=320, height=200)
                        with gr.Row():
                            Depth_Semantic_SAM_Mask_Component = gr.Image(label = "Depth_Semantic_SAM_Mask").style(width=320, height=200)
                            Depth_Semantic_SAM_Mask_3D_Component = gr.Image(label = "3D_Depth_Semantic_SAM_Mask").style(width=320, height=200)
                gr.Examples(examples=[
                        [
                            'UI/sailvos3d/ex1/inputs/rgb_000160.bmp',
                            'UI/sailvos3d/ex1/inputs/depth_000160.npy',
                            'UI/sailvos3d/ex1/inputs/rage_matrices_000160.npz',
                            'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
                        ],
                        [
                            'UI/sailvos3d/ex2/inputs/rgb_000540.bmp',
                            'UI/sailvos3d/ex2/inputs/depth_000540.npy',
                            'UI/sailvos3d/ex2/inputs/rage_matrices_000540.npz',
                            'person, car, motorcycle, truck, bird, dog, handbag, suitcase, bottle, cup, bowl, chair, potted plant, bed, dining table, tv, laptop, cell phone, bag, bin, box, door, road barrier, stick, lamp, floor, wall',
                        ]],
                            inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
                            outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                            fn=greet)
            vc_end_btn.click(inputs=[Input_RGB_Component, Depth_Map_Input_Component, Component_2D_to_3D_Projection_Parameters, Class_Candidates_Component],
                            outputs=[RGB_Semantic_SAM_Mask_Component, RGB_Semantic_SAM_Mask_3D_Component, Depth_Map_Output_Component, Depth_Semantic_SAM_Mask_Component, Depth_Semantic_SAM_Mask_3D_Component],
                            fn=greet)

demo = segrgbd_iface
demo.launch()