import gradio as gr from langchain.chains import LLMChain from langchain_core.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain_core.messages import SystemMessage from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain_groq import ChatGroq # # Initialize the language model and memory # llm = Groq(api_key="your_groq_api_key") # memory = ConversationBufferMemory() # # Define the conversation chain # conversation = ConversationChain(llm=llm, memory=memory) # Function to generate responses def generate_response(user_input): # response = conversation.run(user_input) return user_input # Define additional inputs and examples if needed additional_inputs = [ gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.
Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random") ] example1 = [ ["Who are you?"], ] # Create the Gradio interface interface = gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, examples=example1, cache_examples=False, ) # Launch the app interface.launch()