|
import os |
|
import random |
|
import gradio as gr |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain_groq import ChatGroq |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
|
|
|
|
|
|
vector_store = None |
|
|
|
|
|
sample_filename = "Attention Is All You Need.pdf" |
|
|
|
examples_questions = [["What is Transformer?"], |
|
["What is Attention?"], |
|
["What is Scaled Dot-Product Attention?"], |
|
["What are Encoder and Decoder?"], |
|
["Describe more about the Transformer."], |
|
["Why use self-attention?"], |
|
] |
|
|
|
template = \ |
|
"""Use the following pieces of context to answer the question at the end. |
|
If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
Always say "Thanks for asking!" at the end of the answer. |
|
|
|
{context} |
|
|
|
Question: {question} |
|
|
|
Answer: |
|
""" |
|
|
|
|
|
def index_pdf(pdf): |
|
global vector_store |
|
|
|
|
|
loader = PyPDFLoader(pdf.name) |
|
documents = loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True}) |
|
|
|
|
|
vector_store = FAISS.from_documents(texts, embeddings) |
|
|
|
return "PDF indexed successfully!" |
|
|
|
def load_sample_pdf(): |
|
global vector_store |
|
|
|
|
|
loader = PyPDFLoader(sample_filename) |
|
documents = loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True}) |
|
|
|
|
|
vector_store = FAISS.from_documents(texts, embeddings) |
|
|
|
return "Sample PDF indexed successfully!" |
|
|
|
|
|
def format_docs(docs): |
|
return "\n\n".join(doc.page_content for doc in docs) |
|
|
|
|
|
def generate_response(query, history, model, temperature, max_tokens, top_p, seed): |
|
if vector_store is None: |
|
return "Please upload and index a PDF at the Indexing tab." |
|
|
|
if seed == 0: |
|
seed = random.randint(1, 100000) |
|
|
|
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 16}) |
|
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model) |
|
custom_rag_prompt = PromptTemplate.from_template(template) |
|
|
|
rag_chain = ( |
|
{"context": retriever | format_docs, "question": RunnablePassthrough()} |
|
| custom_rag_prompt |
|
| llm |
|
| StrOutputParser() |
|
) |
|
|
|
response = rag_chain.invoke(query) |
|
|
|
return response |
|
|
|
|
|
|
|
additional_inputs = [ |
|
gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"), |
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), |
|
gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."), |
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), |
|
gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random") |
|
] |
|
|
|
|
|
def greet(name): |
|
return f"Hello, {name}!" |
|
|
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo: |
|
|
|
gr.Markdown("# Simple Gradio Greeter") |
|
gr.Markdown("Enter your name and get a personalized greeting!") |
|
|
|
|
|
name_input = gr.Textbox( |
|
lines=2, |
|
placeholder="Enter your name here...", |
|
label="Your Name" |
|
) |
|
|
|
|
|
greeting_output = gr.Textbox(label="Greeting") |
|
|
|
|
|
|
|
|
|
|
|
submit_button = gr.Button("Get Greeting") |
|
submit_button.click( |
|
fn=greet, |
|
inputs=name_input, |
|
outputs=greeting_output |
|
) |
|
|
|
|
|
|
|
|
|
demo.launch() |
|
|