|
import os |
|
import sys |
|
import random |
|
import gradio as gr |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain_groq import ChatGroq |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain_core.runnables import RunnablePassthrough |
|
|
|
|
|
|
|
vector_store = None |
|
|
|
|
|
sample_filenames = ["User Guide.pdf", |
|
"Installation.pdf", |
|
] |
|
|
|
desc = """ |
|
<h2 style="text-align: center; color: #333;">This is a Demo of RAG (Retrieval-Augmented Generation)</h2> |
|
<p style="text-align: left; color: #555;"> |
|
<b>RAG</b> is an approach that combines retrieval-based and generative LLM models to improve the accuracy and relevance of generated text. |
|
It works by first retrieving relevant documents from an external knowledge source (like PDF files) and then using a LLM model to produce responses based on both the input query and the retrieved content. |
|
This method enhances factual correctness and allows the model to access up-to-date or domain-specific information without retraining. |
|
</p> |
|
<hr/> |
|
""" |
|
|
|
desc_pdf_upload = """ |
|
<p style="text-align: left; color: #555;"> |
|
Choose the PDF files and click <b>Load and Index Documents</b> button below to upload and index the files. It could take some time depends on the size of files. |
|
Once you see the message <i>"PDF(s) indexed successfully!"</i> in the below <b>Indexing Status</b>, go to the <b>Chatbot</b> tab to ask any relevant questios. |
|
</p> |
|
""" |
|
|
|
desc_sample = """ |
|
<p style="text-align: left; color: #555;"> |
|
Alternatively, click the button below to load a <b>User Guide</b> and an <b>Installation</b> for a smoke alarm device into the vector database. It could take a couple of minutes to process. |
|
Once you see the message <i>"PDF(s) indexed successfully!"</i> in the below <b>Indexing Status</b>, go to the <b>Chatbot</b> tab to ask any relevant questions about the device. |
|
</p> |
|
""" |
|
|
|
gui_css=""" |
|
.gradio-container { |
|
font-family: 'Inter', sans-serif; |
|
border-radius: 12px; |
|
overflow: hidden; |
|
} |
|
.panel { |
|
border-radius: 8px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
} |
|
.gr-button { |
|
border-radius: 8px; |
|
padding: 10px 20px; |
|
font-weight: bold; |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); |
|
transition: all 0.2s ease-in-out; |
|
} |
|
.gr-button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15); |
|
} |
|
.gr-textbox textarea { |
|
border-radius: 8px; |
|
} |
|
.gr-slider { |
|
padding: 10px 0; |
|
} |
|
.gr-tabitem { |
|
padding: 20px; |
|
} |
|
""" |
|
|
|
|
|
sample_button = "Load and Index Sample PDF Files" |
|
|
|
|
|
examples_questions = [["How long is the lifespan of this smoke alarm?"], |
|
["How often should I change the battery?"], |
|
["Where should I install the smoke alarm in my home?"], |
|
["How do I test if the smoke alarm is working?"], |
|
["What should I do if the smoke alarm keeps beeping?"], |
|
["Can this smoke alarm detect carbon monoxide too?"], |
|
["How do I clean the smoke alarm properly?"], |
|
["What type of battery does this smoke alarm use?"], |
|
["How loud is the smoke alarm when it goes off?"], |
|
["Can I install this smoke alarm on a wall instead of a ceiling?"], |
|
] |
|
|
|
template = \ |
|
"""Use the following pieces of context to answer the question at the end. |
|
If you don't know the answer, just say you don't know because no relevant information in the provided documents, don't try to make up an answer. |
|
|
|
{context} |
|
|
|
Question: {question} |
|
|
|
Answer: |
|
""" |
|
|
|
|
|
|
|
def load_pdf(files): |
|
global vector_store |
|
documents = [] |
|
|
|
|
|
for file in files: |
|
loader = PyPDFLoader(file.name) |
|
documents.extend(loader.load()) |
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
|
|
embedding_model_name = "bert-base-uncased" |
|
|
|
embeddings = HuggingFaceEmbeddings() |
|
|
|
|
|
vector_store = FAISS.from_documents(texts, embeddings) |
|
|
|
return "PDF(s) indexed successfully!" |
|
|
|
|
|
def format_docs(docs): |
|
return "\n\n".join(doc.page_content for doc in docs) |
|
|
|
def generate_response(query, history, model, temperature, max_tokens, top_p, seed): |
|
|
|
if vector_store is None: |
|
return "Please upload and index a PDF at the Indexing tab.", "" |
|
|
|
if seed == 0: |
|
seed = random.randint(1, 100000) |
|
|
|
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 16}) |
|
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model) |
|
custom_rag_prompt = PromptTemplate.from_template(template) |
|
|
|
docs = retriever.invoke(query) |
|
relevant_info = format_docs(docs) |
|
|
|
rag_chain = ( |
|
{"context": retriever | format_docs, "question": RunnablePassthrough()} |
|
| custom_rag_prompt |
|
| llm |
|
| StrOutputParser() |
|
) |
|
|
|
response = rag_chain.invoke(query) |
|
|
|
return response, relevant_info |
|
|
|
|
|
|
|
template = """ |
|
You are a helpful AI assistant. Use the following context to answer the question. |
|
If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
|
|
{context} |
|
|
|
Question: {question} |
|
""" |
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=gui_css) as demo: |
|
with gr.Tab("Indexing"): |
|
with gr.Row(): |
|
gr.Markdown(desc) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(desc_pdf_upload) |
|
pdf_files = gr.File(label="Upload PDF Documents", file_types=[".pdf"], interactive=True, file_count="multiple") |
|
load_button = gr.Button("Load and Index Documents", variant="secondary") |
|
|
|
with gr.Column(): |
|
gr.Markdown(desc_sample) |
|
sample_files = gr.File( |
|
label="Sample PDF Files", |
|
file_count="multiple", |
|
file_types=[".pdf"], |
|
value=sample_filenames, |
|
visible=True, |
|
interactive=False |
|
) |
|
sample_button = gr.Button(sample_button) |
|
|
|
with gr.Row(): |
|
index_output = gr.Textbox(label="Indexing Status") |
|
sample_button.click(load_pdf, inputs=sample_files, outputs=index_output) |
|
load_button.click(load_pdf, inputs=pdf_files, outputs=index_output) |
|
|
|
with gr.Tab("Chatbot"): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
|
|
chatbot = gr.Chatbot( |
|
show_label=False, |
|
show_share_button=False, |
|
show_copy_button=True, |
|
layout="panel", |
|
height=500, |
|
avatar_images=( |
|
"https://placehold.co/60x60/FFD700/000000?text=U", |
|
"https://placehold.co/60x60/6366F1/FFFFFF?text=AI" |
|
) |
|
) |
|
|
|
|
|
msg = gr.Textbox( |
|
label="Your Message", |
|
placeholder="Type your message here...", |
|
show_copy_button=True, |
|
container=False |
|
) |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Send", variant="primary") |
|
clear_btn = gr.ClearButton() |
|
|
|
gr.Examples( |
|
examples=examples_questions, |
|
inputs=[msg], |
|
outputs=[msg], |
|
label="Quick Examples", |
|
cache_examples=False, |
|
) |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("### LLM Settings") |
|
model_name = gr.Dropdown(label="Model Name", |
|
choices=[ |
|
"llama-3.3-70b-versatile", |
|
"llama-3.1-8b-instant", |
|
"llama3-70b-8192", |
|
"llama3-8b-8192", |
|
"whisper-large-v3", |
|
"whisper-large-v3-turbo", |
|
"meta-llama/Llama-Guard-4-12B", |
|
"gemma2-9b-it" |
|
], |
|
value="llama-3.3-70b-versatile", |
|
interactive=True |
|
) |
|
|
|
|
|
temperature_slider = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.01, label="Temperature", interactive=True) |
|
max_tokens_slider = gr.Slider(minimum=10, maximum=2000, value=500, step=10, label="Max Tokens", interactive=True) |
|
top_p_slider = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.01, label="Top P", interactive=True) |
|
seed_number = gr.Number(minimum=0, maximum=100000, value=0, step=1, label="Seed", precision=0, interactive=True) |
|
|
|
gr.Markdown("### Retrieved Information") |
|
|
|
relevant_info_textbox = gr.Textbox( |
|
label="Retrieved Information", |
|
interactive=False, |
|
lines=20, |
|
show_copy_button=True, |
|
autoscroll=True, |
|
container=True |
|
) |
|
|
|
|
|
|
|
def process_chat_and_info(message, chat_history, model, temp, max_tok, top_p_val, seed_val): |
|
|
|
bot_message, retrieved_info = generate_response( |
|
message, chat_history, model, temp, max_tok, top_p_val, seed_val |
|
) |
|
|
|
|
|
chat_history.append((message, bot_message)) |
|
|
|
|
|
return chat_history, retrieved_info, "" |
|
|
|
|
|
msg.submit( |
|
fn=process_chat_and_info, |
|
inputs=[msg, chatbot, model_name, temperature_slider, max_tokens_slider, top_p_slider, seed_number], |
|
outputs=[chatbot, relevant_info_textbox, msg], |
|
queue=False |
|
) |
|
|
|
|
|
submit_btn.click( |
|
fn=process_chat_and_info, |
|
inputs=[msg, chatbot, model_name, temperature_slider, max_tokens_slider, top_p_slider, seed_number], |
|
outputs=[chatbot, relevant_info_textbox, msg], |
|
queue=False |
|
) |
|
|
|
clear_btn.add([msg, chatbot, relevant_info_textbox]) |
|
|
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860) |