Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
@@ -13,6 +14,18 @@ from langchain_core.runnables import RunnablePassthrough
|
|
13 |
# Initialize the FAISS vector store
|
14 |
vector_store = None
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Function to handle PDF upload and indexing
|
17 |
def index_pdf(pdf):
|
18 |
global vector_store
|
@@ -48,10 +61,28 @@ def chatbot_query(query):
|
|
48 |
return response
|
49 |
|
50 |
|
|
|
|
|
51 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
52 |
-
|
53 |
-
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return response
|
56 |
|
57 |
|
|
|
1 |
+
import random
|
2 |
import gradio as gr
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
14 |
# Initialize the FAISS vector store
|
15 |
vector_store = None
|
16 |
|
17 |
+
template = \
|
18 |
+
"""Use the following pieces of context to answer the question at the end.
|
19 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
20 |
+
Always say "Thanks for asking!" at the end of the answer.
|
21 |
+
|
22 |
+
{context}
|
23 |
+
|
24 |
+
Question: {question}
|
25 |
+
|
26 |
+
Answer:
|
27 |
+
"""
|
28 |
+
|
29 |
# Function to handle PDF upload and indexing
|
30 |
def index_pdf(pdf):
|
31 |
global vector_store
|
|
|
61 |
return response
|
62 |
|
63 |
|
64 |
+
|
65 |
+
|
66 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
67 |
+
if vector_store is None:
|
68 |
+
return "Please upload and index a PDF at the Indexing tab."
|
69 |
|
70 |
+
if seed == 0:
|
71 |
+
seed = random.randint(1, 100000)
|
72 |
+
|
73 |
+
llm = ChatGroq(groq_api_key=userdata.get('GROQ_API_KEY'), model=model)
|
74 |
+
|
75 |
+
custom_rag_prompt = PromptTemplate.from_template(template)
|
76 |
+
|
77 |
+
rag_chain = (
|
78 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
79 |
+
| custom_rag_prompt
|
80 |
+
| llm
|
81 |
+
| StrOutputParser()
|
82 |
+
)
|
83 |
+
|
84 |
+
response = rag_chain.invoke(query)
|
85 |
+
|
86 |
return response
|
87 |
|
88 |
|