Update app.py
Browse files
app.py
CHANGED
@@ -78,41 +78,41 @@ def load_sample_pdf():
|
|
78 |
return "Sample PDF indexed successfully!"
|
79 |
|
80 |
|
81 |
-
def format_docs(docs):
|
82 |
-
|
83 |
|
84 |
|
85 |
-
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
|
108 |
|
109 |
-
additional_inputs = [
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
]
|
116 |
|
117 |
# Create the Gradio interface
|
118 |
with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo:
|
@@ -125,14 +125,14 @@ with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo:
|
|
125 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
126 |
load_sample.click(load_sample_pdf, inputs=None, outputs=index_output)
|
127 |
|
128 |
-
with gr.Tab("Chatbot"):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
# Launch the Gradio app
|
138 |
demo.launch()
|
|
|
78 |
return "Sample PDF indexed successfully!"
|
79 |
|
80 |
|
81 |
+
# def format_docs(docs):
|
82 |
+
# return "\n\n".join(doc.page_content for doc in docs)
|
83 |
|
84 |
|
85 |
+
# def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
86 |
+
# if vector_store is None:
|
87 |
+
# return "Please upload and index a PDF at the Indexing tab."
|
88 |
|
89 |
+
# if seed == 0:
|
90 |
+
# seed = random.randint(1, 100000)
|
91 |
|
92 |
+
# retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 16})
|
93 |
+
# llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model)
|
94 |
+
# custom_rag_prompt = PromptTemplate.from_template(template)
|
95 |
|
96 |
+
# rag_chain = (
|
97 |
+
# {"context": retriever | format_docs, "question": RunnablePassthrough()}
|
98 |
+
# | custom_rag_prompt
|
99 |
+
# | llm
|
100 |
+
# | StrOutputParser()
|
101 |
+
# )
|
102 |
+
|
103 |
+
# response = rag_chain.invoke(query)
|
104 |
|
105 |
+
# return response
|
106 |
|
107 |
|
108 |
|
109 |
+
# additional_inputs = [
|
110 |
+
# gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"),
|
111 |
+
# gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
|
112 |
+
# gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."),
|
113 |
+
# gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
|
114 |
+
# gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random")
|
115 |
+
# ]
|
116 |
|
117 |
# Create the Gradio interface
|
118 |
with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo:
|
|
|
125 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
126 |
load_sample.click(load_sample_pdf, inputs=None, outputs=index_output)
|
127 |
|
128 |
+
# with gr.Tab("Chatbot"):
|
129 |
+
# gr.ChatInterface(
|
130 |
+
# fn=generate_response,
|
131 |
+
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
132 |
+
# examples=examples_questions,
|
133 |
+
# additional_inputs=additional_inputs,
|
134 |
+
# cache_examples=False,
|
135 |
+
# )
|
136 |
|
137 |
# Launch the Gradio app
|
138 |
demo.launch()
|