jchen8000 commited on
Commit
515f14b
·
verified ·
1 Parent(s): 29ee960

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -6
app.py CHANGED
@@ -47,21 +47,48 @@ def chatbot_query(query):
47
 
48
  return response
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  # Create the Gradio interface
51
- with gr.Blocks() as demo:
52
  with gr.Tab("Indexing"):
53
  pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
54
  index_button = gr.Button("Index PDF")
55
  index_output = gr.Textbox(label="Indexing Status")
56
-
57
  index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
58
 
59
  with gr.Tab("Chatbot"):
60
- query_input = gr.Textbox(label="Enter your question")
61
- query_button = gr.Button("Submit")
62
- query_output = gr.Textbox(label="Response")
63
 
64
- query_button.click(chatbot_query, inputs=query_input, outputs=query_output)
 
 
 
 
 
 
65
 
66
  # Launch the Gradio app
67
  demo.launch()
 
47
 
48
  return response
49
 
50
+
51
+ def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
52
+ response = query + "\n"
53
+ response = response + model + "\n"
54
+ response = response + temperature + "\n"
55
+ response = response + max_tokens + "\n"
56
+ response = response + top_p + "\n"
57
+ response = response + seed + "\n"
58
+
59
+ return response
60
+
61
+
62
+
63
+ additional_inputs = [
64
+ gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"),
65
+ gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
66
+ gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."),
67
+ gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
68
+ gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random")
69
+ ]
70
+
71
+
72
  # Create the Gradio interface
73
+ with gr.Blocks(gr.themes.Monochrome()) as demo:
74
  with gr.Tab("Indexing"):
75
  pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
76
  index_button = gr.Button("Index PDF")
77
  index_output = gr.Textbox(label="Indexing Status")
 
78
  index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
79
 
80
  with gr.Tab("Chatbot"):
81
+ # query_input = gr.Textbox(label="Enter your question")
82
+ # query_button = gr.Button("Submit")
83
+ # query_output = gr.Textbox(label="Response")
84
 
85
+ # query_button.click(chatbot_query, inputs=query_input, outputs=query_output)
86
+
87
+ gr.ChatInterface(
88
+ fn=generate_response,
89
+ chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
90
+ additional_inputs=additional_inputs,
91
+ )
92
 
93
  # Launch the Gradio app
94
  demo.launch()