Update app.py
Browse files
app.py
CHANGED
@@ -47,21 +47,48 @@ def chatbot_query(query):
|
|
47 |
|
48 |
return response
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
# Create the Gradio interface
|
51 |
-
with gr.Blocks() as demo:
|
52 |
with gr.Tab("Indexing"):
|
53 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
54 |
index_button = gr.Button("Index PDF")
|
55 |
index_output = gr.Textbox(label="Indexing Status")
|
56 |
-
|
57 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
58 |
|
59 |
with gr.Tab("Chatbot"):
|
60 |
-
query_input = gr.Textbox(label="Enter your question")
|
61 |
-
query_button = gr.Button("Submit")
|
62 |
-
query_output = gr.Textbox(label="Response")
|
63 |
|
64 |
-
query_button.click(chatbot_query, inputs=query_input, outputs=query_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Launch the Gradio app
|
67 |
demo.launch()
|
|
|
47 |
|
48 |
return response
|
49 |
|
50 |
+
|
51 |
+
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
52 |
+
response = query + "\n"
|
53 |
+
response = response + model + "\n"
|
54 |
+
response = response + temperature + "\n"
|
55 |
+
response = response + max_tokens + "\n"
|
56 |
+
response = response + top_p + "\n"
|
57 |
+
response = response + seed + "\n"
|
58 |
+
|
59 |
+
return response
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
additional_inputs = [
|
64 |
+
gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"),
|
65 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
|
66 |
+
gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."),
|
67 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
|
68 |
+
gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random")
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
# Create the Gradio interface
|
73 |
+
with gr.Blocks(gr.themes.Monochrome()) as demo:
|
74 |
with gr.Tab("Indexing"):
|
75 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
76 |
index_button = gr.Button("Index PDF")
|
77 |
index_output = gr.Textbox(label="Indexing Status")
|
|
|
78 |
index_button.click(index_pdf, inputs=pdf_input, outputs=index_output)
|
79 |
|
80 |
with gr.Tab("Chatbot"):
|
81 |
+
# query_input = gr.Textbox(label="Enter your question")
|
82 |
+
# query_button = gr.Button("Submit")
|
83 |
+
# query_output = gr.Textbox(label="Response")
|
84 |
|
85 |
+
# query_button.click(chatbot_query, inputs=query_input, outputs=query_output)
|
86 |
+
|
87 |
+
gr.ChatInterface(
|
88 |
+
fn=generate_response,
|
89 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
90 |
+
additional_inputs=additional_inputs,
|
91 |
+
)
|
92 |
|
93 |
# Launch the Gradio app
|
94 |
demo.launch()
|