Update app.py
Browse files
app.py
CHANGED
@@ -92,7 +92,18 @@ def generate_response(query, history, model, temperature, max_tokens, top_p, see
|
|
92 |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 16})
|
93 |
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model)
|
94 |
custom_rag_prompt = PromptTemplate.from_template(template)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
rag_chain = (
|
97 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
98 |
| custom_rag_prompt
|
|
|
92 |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 16})
|
93 |
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model)
|
94 |
custom_rag_prompt = PromptTemplate.from_template(template)
|
95 |
+
|
96 |
+
|
97 |
+
# Step 1: Prepare inputs manually
|
98 |
+
docs = retriever.invoke(query)
|
99 |
+
context = format_docs(docs)
|
100 |
+
inputs = {"context": context, "question": query}
|
101 |
+
|
102 |
+
# Step 2: Get the final prompt string
|
103 |
+
prompt_value = custom_rag_prompt.invoke(inputs)
|
104 |
+
final_prompt = prompt_value.to_string()
|
105 |
+
print("Final Prompt Sent to LLM:\n", final_prompt)
|
106 |
+
|
107 |
rag_chain = (
|
108 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
109 |
| custom_rag_prompt
|