Update app.py
Browse files
app.py
CHANGED
@@ -105,14 +105,12 @@ def load_sample_pdf():
|
|
105 |
|
106 |
return "PDF(s) indexed successfully!"
|
107 |
|
108 |
-
last_relevant_info_state = gr.State("")
|
109 |
|
110 |
def format_docs(docs):
|
111 |
return "\n\n".join(doc.page_content for doc in docs)
|
112 |
|
113 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
114 |
-
|
115 |
-
|
116 |
if vector_store is None:
|
117 |
return "Please upload and index a PDF at the Indexing tab."
|
118 |
|
@@ -126,7 +124,6 @@ def generate_response(query, history, model, temperature, max_tokens, top_p, see
|
|
126 |
|
127 |
docs = retriever.invoke(query)
|
128 |
relevant_info = format_docs(docs)
|
129 |
-
last_relevant_info_state.value = relevant_info
|
130 |
|
131 |
rag_chain = (
|
132 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
@@ -137,10 +134,7 @@ def generate_response(query, history, model, temperature, max_tokens, top_p, see
|
|
137 |
|
138 |
response = rag_chain.invoke(query)
|
139 |
|
140 |
-
return
|
141 |
-
|
142 |
-
def get_relevant_info(state):
|
143 |
-
return state # The state's value is what we want to display
|
144 |
|
145 |
additional_inputs = [
|
146 |
gr.Dropdown(choices=["llama-3.3-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it"], value="gemma2-9b-it", label="Model"),
|
@@ -175,18 +169,14 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
175 |
# additional_outputs=[relevant_info],
|
176 |
cache_examples=False,
|
177 |
)
|
178 |
-
with gr.Column():
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
fn=get_relevant_info,
|
187 |
-
inputs=[gr_last_relevant_info_state], # Input is the state component
|
188 |
-
outputs=[relevant_info] # Output updates the relevant_info textbox
|
189 |
-
)
|
190 |
|
191 |
# Launch the Gradio app
|
192 |
demo.launch(share=True)
|
|
|
105 |
|
106 |
return "PDF(s) indexed successfully!"
|
107 |
|
|
|
108 |
|
109 |
def format_docs(docs):
|
110 |
return "\n\n".join(doc.page_content for doc in docs)
|
111 |
|
112 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
113 |
+
|
|
|
114 |
if vector_store is None:
|
115 |
return "Please upload and index a PDF at the Indexing tab."
|
116 |
|
|
|
124 |
|
125 |
docs = retriever.invoke(query)
|
126 |
relevant_info = format_docs(docs)
|
|
|
127 |
|
128 |
rag_chain = (
|
129 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
|
|
134 |
|
135 |
response = rag_chain.invoke(query)
|
136 |
|
137 |
+
return response
|
|
|
|
|
|
|
138 |
|
139 |
additional_inputs = [
|
140 |
gr.Dropdown(choices=["llama-3.3-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it"], value="gemma2-9b-it", label="Model"),
|
|
|
169 |
# additional_outputs=[relevant_info],
|
170 |
cache_examples=False,
|
171 |
)
|
172 |
+
# with gr.Column():
|
173 |
+
# retrieve_button = gr.Button("Retrieve Relevant Info")
|
174 |
+
# relevant_info = gr.Textbox(
|
175 |
+
# label="Retrieved Information",
|
176 |
+
# interactive=False,
|
177 |
+
# lines=20,
|
178 |
+
# )
|
179 |
+
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Launch the Gradio app
|
182 |
demo.launch(share=True)
|