Update app.py
Browse files
app.py
CHANGED
@@ -47,22 +47,24 @@ def index_pdf(pdf):
|
|
47 |
|
48 |
return "PDF indexed successfully!"
|
49 |
|
50 |
-
# Function to handle chatbot queries
|
51 |
-
def chatbot_query(query):
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
68 |
if vector_store is None:
|
@@ -70,11 +72,11 @@ def generate_response(query, history, model, temperature, max_tokens, top_p, see
|
|
70 |
|
71 |
if seed == 0:
|
72 |
seed = random.randint(1, 100000)
|
73 |
-
|
74 |
-
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model)
|
75 |
|
|
|
|
|
76 |
custom_rag_prompt = PromptTemplate.from_template(template)
|
77 |
-
|
78 |
rag_chain = (
|
79 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
80 |
| custom_rag_prompt
|
|
|
47 |
|
48 |
return "PDF indexed successfully!"
|
49 |
|
50 |
+
# # Function to handle chatbot queries
|
51 |
+
# def chatbot_query(query):
|
52 |
+
# if vector_store is None:
|
53 |
+
# return "Please upload and index a PDF first."
|
54 |
|
55 |
+
# # Create a retrieval-based QA chain
|
56 |
+
# retriever = vector_store.as_retriever()
|
57 |
+
# qa_chain = RetrievalQA(llm=OpenAI(), retriever=retriever)
|
58 |
|
59 |
+
# # Get the response from the QA chain
|
60 |
+
# response = qa_chain.run(query)
|
61 |
|
62 |
+
# return response
|
|
|
63 |
|
64 |
|
65 |
+
def format_docs(docs):
|
66 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
67 |
+
|
68 |
|
69 |
def generate_response(query, history, model, temperature, max_tokens, top_p, seed):
|
70 |
if vector_store is None:
|
|
|
72 |
|
73 |
if seed == 0:
|
74 |
seed = random.randint(1, 100000)
|
|
|
|
|
75 |
|
76 |
+
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 8})
|
77 |
+
llm = ChatGroq(groq_api_key=os.environ.get("GROQ_API_KEY"), model=model)
|
78 |
custom_rag_prompt = PromptTemplate.from_template(template)
|
79 |
+
|
80 |
rag_chain = (
|
81 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
82 |
| custom_rag_prompt
|