Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.chains import RetrievalQA
|
7 |
-
from
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Initialize the FAISS vector store
|
10 |
vector_store = None
|
@@ -16,15 +20,17 @@ def index_pdf(pdf):
|
|
16 |
# Load the PDF
|
17 |
loader = PyPDFLoader(pdf.name)
|
18 |
documents = loader.load()
|
19 |
-
|
20 |
# Split the documents into chunks
|
21 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
texts = text_splitter.split_documents(documents)
|
23 |
-
|
24 |
-
# Embed the chunks
|
25 |
-
embeddings =
|
|
|
|
|
26 |
vector_store = FAISS.from_documents(texts, embeddings)
|
27 |
-
|
28 |
return "PDF indexed successfully!"
|
29 |
|
30 |
# Function to handle chatbot queries
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader
|
3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain_core.prompts import PromptTemplate
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain_core.runnables import RunnablePassthrough
|
11 |
+
|
12 |
|
13 |
# Initialize the FAISS vector store
|
14 |
vector_store = None
|
|
|
20 |
# Load the PDF
|
21 |
loader = PyPDFLoader(pdf.name)
|
22 |
documents = loader.load()
|
23 |
+
|
24 |
# Split the documents into chunks
|
25 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
26 |
texts = text_splitter.split_documents(documents)
|
27 |
+
|
28 |
+
# Embed the chunks
|
29 |
+
embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True})
|
30 |
+
|
31 |
+
# Store the embeddings in the vector store
|
32 |
vector_store = FAISS.from_documents(texts, embeddings)
|
33 |
+
|
34 |
return "PDF indexed successfully!"
|
35 |
|
36 |
# Function to handle chatbot queries
|