import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_groq import ChatGroq from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough # Initialize the FAISS vector store vector_store = None # Function to handle PDF upload and indexing def index_pdf(pdf): global vector_store # Load the PDF loader = PyPDFLoader(pdf.name) documents = loader.load() # Split the documents into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # Embed the chunks embeddings = HuggingFaceEmbeddings(model_name="bert-base-uncased", encode_kwargs={"normalize_embeddings": True}) # Store the embeddings in the vector store vector_store = FAISS.from_documents(texts, embeddings) return "PDF indexed successfully!" # Function to handle chatbot queries def chatbot_query(query): if vector_store is None: return "Please upload and index a PDF first." # Create a retrieval-based QA chain retriever = vector_store.as_retriever() qa_chain = RetrievalQA(llm=OpenAI(), retriever=retriever) # Get the response from the QA chain response = qa_chain.run(query) return response def generate_response(query, history, model, temperature, max_tokens, top_p, seed): response = query + "\n" response = response + model + "\n" return response additional_inputs = [ gr.Dropdown(choices=["llama-3.1-70b-versatile", "llama-3.1-8b-instant", "llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma2-9b-it", "gemma-7b-it"], value="llama-3.1-70b-versatile", label="Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."), gr.Slider(minimum=1, maximum=8000, step=1, value=8000, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.
Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b, 132k for llama 3.1."), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), gr.Number(precision=0, value=0, label="Seed", info="A starting point to initiate generation, use 0 for random") ] # Create the Gradio interface with gr.Blocks(theme="Nymbo/Alyx_Theme") as demo: with gr.Tab("Indexing"): pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) index_button = gr.Button("Index PDF") index_output = gr.Textbox(label="Indexing Status") index_button.click(index_pdf, inputs=pdf_input, outputs=index_output) with gr.Tab("Chatbot"): # query_input = gr.Textbox(label="Enter your question") # query_button = gr.Button("Submit") # query_output = gr.Textbox(label="Response") # query_button.click(chatbot_query, inputs=query_input, outputs=query_output) gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, ) # Launch the Gradio app demo.launch()