import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain.llms import OpenAI # Initialize the FAISS vector store vector_store = None # Function to handle PDF upload and indexing def index_pdf(pdf): global vector_store # Load the PDF loader = PyPDFLoader(pdf.name) documents = loader.load() # Split the documents into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # Embed the chunks and store them in the vector store embeddings = OpenAIEmbeddings() vector_store = FAISS.from_documents(texts, embeddings) return "PDF indexed successfully!" # Function to handle chatbot queries def chatbot_query(query): if vector_store is None: return "Please upload and index a PDF first." # Create a retrieval-based QA chain retriever = vector_store.as_retriever() qa_chain = RetrievalQA(llm=OpenAI(), retriever=retriever) # Get the response from the QA chain response = qa_chain.run(query) return response # Create the Gradio interface with gr.Blocks() as demo: with gr.Tab("Indexing"): pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) index_button = gr.Button("Index PDF") index_output = gr.Textbox(label="Indexing Status") index_button.click(index_pdf, inputs=pdf_input, outputs=index_output) with gr.Tab("Chatbot"): query_input = gr.Textbox(label="Enter your question") query_button = gr.Button("Submit") query_output = gr.Textbox(label="Response") query_button.click(chatbot_query, inputs=query_input, outputs=query_output) # Launch the Gradio app demo.launch()